Quantum dot-based electrochemical sensors for early detection and monitoring of blood cancer
Abstract
Recent advancements in quantum dot (QD)-based electrochemical sensors have shown significant promise for the early detection and monitoring of blood cancers, such as leukemia and lymphoma. QDs, with their unique optical properties, high surface area, and tunable fluorescence, offer highly sensitive and specific detection of cancer biomarkers, enabling rapid, real-time diagnostics. These sensors are capable of multiplexed detection, allowing for the simultaneous identification of multiple biomarkers or circulating tumor cells (CTCs), crucial for early diagnosis and monitoring minimal residual disease (MRD). Despite their potential, challenges remain, including concerns over biocompatibility, toxicity, and the need for regulatory approval. Future research is focused on addressing these issues by developing non-toxic, biocompatible QDs, optimizing sensor performance, and integrating these technologies into point-of-care devices. Additionally, the combination of electrochemical and optical sensing techniques, along with advancements in surface modification and signal enhancement, holds promise for further improving the sensitivity, reliability, and clinical applicability of QD-based sensors. As research progresses, QD-based electrochemical sensors are poised to become a powerful tool for non-invasive, early-stage blood cancer detection and personalized treatment monitoring.
References
1. Mohammadi R, Manesh HN, Farzin L, et al. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review. Journal of Pharmaceutical and Biomedical Analysis. 2022; 212(2022): 114628. doi: 10.1016/j.jpba.2022.114628
2. Fu L, Zheng Y, Li X, et al. Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis. Molecules. 2023; 28(18): 6719. doi:10.3390/molecules28186719
3. Shahazi R, Saddam AI, Islam MR, et al. Recent progress in Nanomaterial based biosensors for the detection of cancer biomarkers in human fluids. Nano Carbons. 2024; 2(2): 1254. doi: 10.59400/n-c.v2i2.1254
4. Al-Douri Y, Khan MM, Jennings JR, Synthesis and optical properties of II–VI semiconductor quantum dots: a review. Journal of Materials Science: Materials in Electronics. 2023; 34(11): 993. doi: 10.1007/s10854-023-10435-5
5. Liu J, Nie Y, Xue W, et al. Size effects on structural and optical properties of tin oxide quantum dots with enhanced quantum confinement. Journal of Materials Research and Technology. 2020; 9(4): 8020-8028. doi: 10.1016/j.jmrt.2020.05.041
6. Meenambiga SS, Sakthiselvan P, Hari S, et al. Chapter 13 - Nanotechnology for blood test to predict the blood diseases/blood disorders. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood, Micro and Nano Technologies; 2022.
7. Safarpour H, Dehghani S, Nosrati R, et al. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosensors and Bioelectronics. 2020; 148: 111833. doi: 10.1016/j.bios.2019.111833
8. Sun ZF, Chang Y, Xia N. Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. Biosensors. 2021; 11(8): 281. doi: 10.3390/bios11080281
9. Zhang Z, Li Q, Du X, et al. Application of electrochemical biosensors in tumor cell detection. Thoracic Cancer. 2020; 11(4): 840-850. doi: 10.1111/1759-7714.1335
10. Bressi V, Ferlazzo A, Iannazzo D, et al. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. Nanomaterials. 2021; 11(5): 1120. doi: 10.3390/nano11051120
11. Huang Q, Lin X, Tong L, et al. Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells. ACS Sustainable Chemistry & Engineering. 2020; 8(3): 1644–1650. doi: 10.1021/acssuschemeng.9b06623
12. Khan ME, Mohammad A, Yoon T. State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere. 2022; 302: 134815. doi: 10.1016/j.chemosphere.2022.134815
13. Xing L, Yang L. Surface Modifications Technology of Quantum Dots Based Biosensors and Their Medical Applications. Chinese Journal of Analytical Chemistry. 2014; 42(7):1061-1069. doi:10.1016/S1872-2040(14)60753-2
14. Kargozar S, Hoseini SJ, Milan PB, et al. Quantum Dots: A Review from Concept to Clinic. Nanomaterials for Biomedical Applications. 2020; 15(12): 2000117. doi: 10.1002/biot.202000117
15. Tusher MMH. Microbial synthesis of Cadmium selenide quantum dots (CdSe QDs), influencing factors and applications. Optical and Quantum Electronics. 2023; 55: 332. doi: 10.1007/s11082-023-04632-z
16. ElZorkany HE, Farroh KY, El-Shorbagy HM, et al. Silica-coated graphene compared to Si-CdSe/ZnS quantum dots: Toxicity, e,mission stability, and role of silica in the uptake process for imaging purposes. Photodiagnosis and Photodynamic Therapy. 2022; 29: 102919. doi: 10.1016/j.pdpdt.2022.102919
17. Xu B, Cai J, Hou M, et al. Fluorescent structured color pigments based on CB@SiO2/CQDs core-shell nanospheres for solvent/UV dual-responsive anti-counterfeiting coating. Dyes and Pigments. 2025; 238: 112644. doi: 10.1016/j.dyepig.2025.112644
18. Raham SA, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. Microfluidics in Biotechnology. 2020; 179: 247–265. doi: 10.1007/10_2020_127
19. Nguyen T, Andreasen SZ, Wolff A, Bang DD. From Lab on a Chip to Point of Care Devices: The Role of Open-Source Microcontrollers. Micromachines. 2018; 9(8): 403. doi: 10.3390/mi9080403
20. Sun T, Feng B, Huo J, et al. Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses. Nano-Micro Letters. 2024; 16(14). doi: 10.1007/s40820-023-01235-x
21. Zhang S, Wei S, Liu Z, et al. The rise of AI optoelectronic sensors: From nanomaterial synthesis, device design to practical application. Materials Today Physics. 2022; 27: 100812. doi: 10.1016/j.mtphys.2022.100812
22. Meddi E, Savi A, Moretti F, et al. Measurable Residual Disease (MRD) as a Surrogate Efficacy-Response Biomarker in AML. Molecular Sciences. 2023; 24(4): 3062. doi: 10.3390/ijms24043062
23. Zhang Y, Yuan X. Minimal residue disease detection in early-stage breast cancer. Molecular Biology Reports. 2025; 52(106). doi: 10.1007/s11033-024-10198-0
24. Chakrabarti S, Kasi AK, Parikh AR, Mahipal A. The Evolving Paradigm of Circulating Tumor DNA (ctDNA)—Guided Minimal Residual Disease (MRD) Assessment in Colorectal Cancer (CRC). Cancers. 2022; 14(13): 3078. doi: 10.3390/cancers14133078
25. Honoré N, Galot R, Marcke CV, et al. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers. 2021; 13(21): 5364. doi:10.3390/cancers13215364
26. Alam F, Ahmed MA, Jalal AH, et al. Recent Progress and Challenges of Implantable Biodegradable Biosensors. Micromachines. 2024; 15(4): 475. doi: 10.3390/mi15040475
27. Liu G, Lv Z, Batool S, et al. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. Small. 2025; 21(9): 2207879. doi: 10.1002/smll.202207879
28. Pandey SN, Afzal M, Goyal A, et al. Quantum dot biosensors for Glioblastoma: Merging nanotechnology with precision oncology. Inorganic Chemistry Communications. 2025; 179:114671. doi: 10.1016/j.inoche.2025.114671
29. Bandyopadhyay A, Mitra I, Goodman SB, et al. Improving biocompatibility for next generation of metallic implants. Progress in Materials Science. 2023; 133: 101053. doi: 10.1016/j.pmatsci.2022.101053
30. Li J, Guan X, Fan Z, et al. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers. 2020; 12(10): 2767. doi: 10.3390/cancers12102767
31. Sadr S, Rahdar A, Pandey S, et al. Revolutionizing Cancer Detection: Harnessing Quantum Dots and Graphene-Based Nanobiosensors for Lung and Breast Cancer Diagnosis. BioNanoScience. 2024; 15: 111. doi: 10.1007/s12668-024-01639
32. Barhoum A, Altintas Z, Devi KSS, Forster RJ. Electrochemiluminescence biosensors for detection of cancer biomarkers in biofluids: Principles, opportunities, and challenges. Nanotoday. 2023; 50: 101874. doi: 10.1016/j.nantod.2023.101874
33. Sengupta J, Hussain CM. Early detection of cancer utilizing biosensors based on “Green Graphene”: An innovative and sustainable methodology for advancing cancer diagnosis. TrAC Analytical Chemistry. 2023; 167: 117254. doi: 10.1016/j.trac.2023.117254
34. Pedrero M, Campuzano S, Pingarrón JM. Electrochemical (Bio)sensing of Clinical Markers Using Quantum Dots. Electroanalysis. 2017; 29(1): 24-37. doi: 10.1002/elan.201600547
35. Lichtman MA, Oakes D. The Productivity and Impact of The Leukemia & Lymphoma Society Scholar Program: The Apparent Positive Effect of Peer Review. Blood Cells, Molecules, and Diseases. 2001; 27(6): 1020–1027. doi: 10.1006/bcmd.2001.0476
36. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. American Journal of Hematology. 2018; 93(3): 317–470. doi: 10.1002/ajh.25011
37. Man LM, Morris AL, Keng M. New Therapeutic Strategies in Acute Lymphocytic Leukemia. Current Hematologic Malignancy Reports. 2017; 12: 197–206. doi: 10.1007/s11899-017-0380-3
38. Rubnitz JE, Gibson B, Smith FO. Acute Myeloid Leukemia. Pediatric Clinics of North America. 2008; 5(1): 21–51. doi: 10.1016/j.pcl.2007.11.003
39. Ansell SM. Hodgkin Lymphoma: Diagnosis and Treatment. Mayo Clinic Proceedings. 2015; 90(11): 1574–1583. doi: 10.1016/j.mayocp.2015.07.005
40. Filho AM, Piñeros M, Znaor A, et al. Global patterns and trends in the incidence of non-Hodgkin lymphoma. Cancer Causes & Control. 2019; 30: 489–499. doi: 10.1007/s10552-019-01155-5
41. Becke N. Epidemiology of Multiple Myeloma. Multiple Myeloma. 2011; 183: 25–35. doi: 10.1007/978-3-540-85772-3_2
42. Mondal J, Lamba R, Yukta Y, et al. Advancements in semiconductor quantum dots: expanding frontiers in optoelectronics, analytical sensing, biomedicine, and catalysis. Journal of Materials Chemistry C. 2024; 12(28):10330-10389. doi: 10.1039/D4TC01396
43. Gajdosova V, Lorencova L, Kasak P, et al. Electrochemical Nanobiosensors for Detection of Breast Cancer Biomarkers. Sensors. 2020; 20(14):4022. doi:10.3390/s20144022
44. Zhou H, Du X, Zhang Z. Electrochemical Sensors for Detection of Markers on Tumor Cells. Molecular Science. 2021; 22(15): 8184. doi: 10.3390/ijms22158184
45. Stewart AJ, Brown K, Dennany L. Cathodic Quantum Dot Facilitated Electrochemiluminescent Detection in Blood. Analytical Chemistry. 2018; 90(21):12944–12950. doi: 10.1021/acs.analchem.8b03572
46. Zhu C, Yang G, Li H, et al. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Analytical Chemistry. 2015; 87(1): 230–249. doi: 10.1021/ac5039863
47. Arafa KK, Ibrahim A, Mergawy R, et al. Advances in Cancer Diagnosis: Bio-Electrochemical and Biophysical Characterizations of Cancer Cells. Micromachines. 2022; 13(9): 1401. doi: 10.3390/mi13091401
48. Wu R, Feng Z, Zhang J, et al. Quantum dots for electrochemical cytosensing. TrAC Trends in Analytical Chemistry. 2017; 174: 738-751. doi: 10.1016/j.trac.2022.116531
49. Hammami I, Alabdallah NM, Jomaa AA, Kamoun M. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University – Science. 2021; 33(7): 101560. doi: 10.1016/j.jksus.2021.101560
50. Shoukat R, Khan MI. Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsystem Technologies. 2021; 27: 4183-4192. doi: 10.1007/s00542-021-05211-6
51. Sharma A, Sumana G, Sapra S, Malhotra BD. Quantum Dots Self Assembly Based Interface for Blood Cancer Detection. Langmuir. 2013; 29(27): 8753–8762. doi: 10.1021/la401431q
52. Alabdulqader EA, Alarfaj AA, Umer M, et al. Improving prediction of blood cancer using leukemia microarray gene data and Chi2 features with weighted convolutional neural network. Scientific Reports. 2024; 14(3041): 15625. doi: 10.1038/s41598-024-65315-7
53. Bezuneh TT, Fereja TH, Kitte SA, et al. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta. 2022; 248: 123611. doi: 10.1016/j.talanta.2022.123611
54. Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. Molecules. 2023; 28(1): 364; doi: 10.3390/molecules28010364
55. Ehtiati S, Naeeni B, Qeysouri B, et al. Electrochemical biosensors in early leukemia detection. Clinica Chimica Acta. 2024; 562: 119871. doi: 10.1016/j.cca.2024.119871
56. Atapour A, Khajehzadeh H, Shafie M, et al. Gold nanoparticle-based aptasensors: A promising perspective for early-stage detection of cancer biomarkers. Materialstoday. 2022; 30: 103181. doi: 10.1016/j.mtcomm.2022.103181
57. Kazemi Y, Dehghani S, Nosrati R, et al. Recent progress in the early detection of cancer based on CD44 biomarker; nano-biosensing approaches. Life Sciences. 2022; 300: 120593. doi: 10.1016/j.lfs.2022.120593
58. Tabish TA, Hayat H, Abbas A, Narayan RJ. Graphene quantum dot–based electrochemical biosensing for early cancer detection. Current Opinion in Electrochemistry. 2021; 30: 100786. doi: 10.1016/j.coelec.2021.100786
59. Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors. 2020; 20(4): 1072. doi: 10.3390/s20041072
60. Lin S, Habib MdA, Burse S, et al. Hybrid UV Photodetector Design Incorporating AuPt Alloy Hybrid Nanoparticles, ZnO Quantum Dots, and Graphene Quantum Dots. ACS Applied Materials & Interfaces. 2023; 15(1): 2204–2215. doi: 10.1021/acsami.2c19006
61. Parihar A, Choudhary NK, Sharma P, Khan R. Carbon nanomaterials-based electrochemical aptasensor for point-of-care diagnostics of cancer biomarkers. Materialstoday Chemistry. 2023; 30: 101499. doi: 10.1016/j.mtchem.2023.101499
62. Pham CV, Madsuha AF, Nguyen TV, Krueger M. Graphene-quantum dot hybrid materials on the road to optoelectronic applications. Synthetic Metals. 2016; 219: 33-43. doi: 10.1016/j.synthmet.2016.04.029
63. Mishra RK, Chianella I, Sarkar J, et al. Nanostructured ZnO-CQD Hybrid Heterostructure Nanocomposites: Synergistic Engineering for Sustainable Design, Functional Properties, and High-Performance Applications. ChemNanoMat. 2024; 10(7): e202400020. doi: 10.1002/cnma.202400020
64. Sadeghi M, Sadeghi S, Naghib SM, Garshasbi HR. A Comprehensive Review on Electrochemical Nano Biosensors for Precise Detection of Blood-Based Oncomarkers in Breast Cancer. Biosensors. 2023; 13(4): 481. doi: 10.3390/bios13040481
65. Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors. 2024; 24(1): 37. doi: 10.3390/s24010037
66. Madani SY, Shabani F, Dwek MV, Seifalian AM. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. International Journal of Nanomedicine. 2013; 8: 941–950. doi: 10.2147/IJN.S36416
67. Pardo J, Peng Z, Leblanc RM. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes. Molecules. 2018; 23(2): 378. doi: 10.3390/molecules23020378
68. Qiu X, Xu J, Santos MCD, Hildebrandt N. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Accounts of Chemical Research. 2024; 55(4): 551–564. doi: 10.1021/acs.accounts.1c00691
69. Behyar MB, Nilghaz A, Bahari H, et al. Recent advances on nanomaterials for personalized diagnostics in multiplex point-of-care testing. TrAC Trends in Analytical Chemistry. 2024; 176: 117761. doi: 10.1016/j.trac.2024.117761
70. Kandeel EZ, Sharkawy NE, Hanafi M, et al. Tracing Leukemia Stem Cells and Their Influence on Clinical Course of Adult Acute Myeloid Leukemia. Clinical Lymphoma Myeloma and Leukemia. 2020; 20(6): 383-393. doi: 10.1016/j.clml.2019.11.018
71. Martins CSM, LaGrow AP, Prior JAV. Quantum Dots for Cancer-Related miRNA Monitoring. ACS Sensors. 2022; 7(5): 1269–1299. doi: 10.1021/acssensors.2c00149
72. Ogli AS. Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnology. 2011; 2: 1–19. doi: 10.1007/s12645-011-0015-7
73. Aidli W, Fumagalli D, Pifferi V, Falciola L. From dual-mode to multi-modal electrochemical based sensors: A path toward accurate sensing. Current Opinion in Electrochemistry. 2025; 50: 101655. doi: 10.1016/j.coelec.2025.101655
74. Dong H, Chen W, Xu K, et al. High Selectivity Fluorescence and Electrochemical Dual-Mode Detection of Glutathione in the Serum of Parkinson’s Disease Model Mice and Humans. Anal. Chem. 2025; 97(2): 1318–1328. doi: 10.1021/acs.analchem.4c05627
75. Rafiq K, Sadia I, Abid MZ, et al. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomaterials Science & Engineering. 2024; 10(12): 7268–7313. doi: 10.1021/acsbiomaterials.4c01256
76. Wang Y, Li B, Tian T, et al. Advanced on-site and in vitro signal amplification biosensors for biomolecule analysis. TrAC Trends in Analytical Chemistry. 2022;149: 116565. doi: 10.1016/j.trac.2022.116565
77. Sadani K, Nag P, Thian XY, Mukherji S. Enzymatic optical biosensors for healthcare applications. Biosensors and Bioelectronics: X. 2022; 12: 100278. doi: 10.1016/j.biosx.2022.100278
78. Khanmohammadi A, Aghaie A, Vahedi E, et al. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta. 2020; 206: 120251. doi: 10.1016/j.talanta.2019.120251
79. Karasu T, Armutcu C, Elkhoury K, et al. Conducting polymers as a functional recognition interface to design sensors for pathogen and cancer diagnosis. TrAC Trends in Analytical Chemistry. 2024; 175: 117705. doi: 10.1016/j.trac.2024.117705
80. Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. Nanomaterials. 2023; 13(4): 674. doi: 10.3390/nano13040674
81. Pastucha M, Farka Z, Lacina K, et al. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Microchimica Acta. 2019; 186: 312. doi: 10.1007/s00604-019-3410-0
82. Ebrahimi G, Pakchin PS, Shamloo A, et al. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Microchimica Acta. 2022; 189: 252. doi: 10.1007/s00604-022-05316-3
83. Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems for chemical sensing, biosensing, and bioanalysis. TrAC Trends in Analytical Chemistry. 2022; 152: 116637. doi: 10.1016/j.trac.2022.116637
84. Cheng Y, Ling SD, Geng Y, et al. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Adv. 2021; 3: 2180-2195. doi: 10.1039/D0NA00933D
85. Rasheed S, Kanwal T, Ahmad N, et al. Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC Trends in Analytical Chemistry. 2024; 173: 117640. doi: 10.1016/j.trac.2024.117640
86. Sajeevan A, Sukumaran RA, Panicker LR, Kotagiri YG. Trends in ready-to-use portable electrochemical sensing devices for healthcare diagnosis. Microchimica Acta. 2025; 192: 80. doi: 10.1007/s00604-024-06916-x
87. Soldado A, Barrio LC, Díaz-Gonzalez M, et al. Chapter One - Advances in quantum dots as diagnostic tools. Advances in Clinical Chemistry. 2022; 107: 1-40. doi: 10.1016/bs.acc.2021.07.001
88. Sengupta J, Hussain CM. CNT and Graphene-Based Transistor Biosensors for Cancer Detection: A Review. Biomolecules. 2023; 13(7): 1024. doi: 10.3390/biom13071024
89. Safari M, Moghaddam A, Moghaddam AS, et al. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta. 2023; 258: 124399. doi: 10.1016/j.talanta.2023.124399
90. Lei YM, Xiao MM, Li YT, et al. Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosensors and Bioelectronics. 2017; 91: 1-7. doi: 10.1016/j.bios.2016.12.018
91. Liu H, He Y, Nagashima K, et al. Discrimination of VOCs molecules via extracting concealed features from a temperature-modulated p-type NiO sensor. Sensors and Actuators B: Chemical. 2019; 293: 342-349. doi: 10.1016/j.snb.2019.04.078
92. Zhang S, Yang Q, Wang C, et al. Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science. 2018; 5(12): 1801116. doi: 10.1002/advs.201801116
93. Yang Y, Cheng B, Yu J, et al. TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Research. 2021; 16: 4506–4514. doi: 10.1007/s12274-021-3733-0
94. Zhou M, Liang R, Zhou Z, Dong X. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. Journal of Materials Chemistry A. 2018; 6(37): 17896-17904. doi: 10.1039/C8TA07303A
95. Wei L, Le L, Dexin D, et al. Selective Adsorption of Uranium (VI) by Calix[6]arene-Modified Magnetic Graphene Oxide. Journal of Nanoscience and Nanotechnology. 2018; 18(9): 8160-8168. doi: 10.1166/jnn.2018.16408
96. Patel D, Matsumoto A, Kumakura H, et al. Superconducting Joining Concept for Internal Magnesium Diffusion-Processed Magnesium Diboride Wires. ACS Applied Materials & Interfaces. 2021; 13(2): 3349–3357. doi: 10.1021/acsami.0c17385
97. Kashyap A, Singh PP, Murti Y, et al. Visible-light photocatalysed synthesis of coumarin derivatives. Tetrahedron Letters. 2024; 142: 155099. doi: 10.1016/j.tetlet.2024.155099
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.