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Abstract: The comprehensive progress of mental and physical quality is majorly influenced 

by the college physical education, which is considered a part of the educational system. 

Developing a scientific and efficient evaluation index is significant to compute physical 

education teaching quality. The traditional methods of assessing performance in physical 

education often rely on subjective evaluations or delayed feedback from manual data 

collection. To overcome these challenges, a design based on a real-time monitoring system is 

introduced that leverages wearable biosensor technology to improve physical education 

teaching and training. Initially, some physiological indicators, namely heart rate, respiration 

rate, body temperature, and motion activity, were recorded and analysed to provide 

individualized insights into physical performance. Data pre-processing is performed using a 

median filter to reduce noise and Z-score normalization to standardize the input dataset. Key 

features are extracted using Fast Fourier Transform (FFT), enabling the identification of critical 

performance metrics. A Rat Swarm Optimized Efficient Random Forest (RSO-ERF) algorithm 

was introduced to enhance classification accuracy and optimize system performance. 

Experimental results demonstrate the proposed system’s effectiveness in providing real-time 

feedback, identifying individual fitness levels, and supporting adaptive teaching strategies. The 

increased system’s analysis tendency allows for customized training regimens, ongoing 

feedback, and improved physical health metrics monitoring. It also gives educators the ability 

to make data-driven decisions, encourage safety, and improve the educational experience for 

athletes and students. The findings underscore the potential of wearable biosensor technology 

combined with advanced algorithms in transforming physical education methodologies for 

improved engagement and performance outcomes. 

Keywords: physical activity monitoring; wearable biosensor; physical education teaching; rat 

swarm optimized efficient random forest (RSO-ERF); college 

1. Introduction  

Particularly at higher education organizations, physical education is an essential 

component of the educational program and it is essential to deliver high-quality 

teaching. It helps the student to develop intellectually and physically. To satisfy the 

demands of economic development, young people should improve their health, gain 

knowledge, learn new skills, cultivate empathy, and boost their spirits [1]. All physical 

education teacher education (PETE) programs are expected to produce highly 

qualified graduates who are considered successful educators. Thus, to achieve this 

goal, physical education departments have historically determined what is necessary 

to be covered in each student’s coursework in compliance with the mandates of state 

offices of public teaching (SOPI) [2]. Programs for physical education are often to 

raise awareness of both the requirements of students and instructors. Pre-service 

teacher education programs are essential to ensuring that teachers are equipped to 
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deliver effective physical education training and fundamental movement skill (FMS) 

programs [3]. Self-determination theory (SDT) has gained recognition as a theoretical 

framework that has been proven to be effective over the past forty years for the 

conceptualization and research of motivation in a variety of real-world scenarios, 

including classroom environments like physical education programs [4]. A student’s 

development with memory, growth ability, reasoning, brain function, and attention is 

crucial to encouraging the best possible motivation, learning engagement, and 

tenacity. Various AI-based methods have recently shown successful in teaching 

physical education innovations, particularly in increasing students' involvement in 

sports [5]. Figure 1 represents the student conditions in sports using wearable 

biosensors. 

 

Figure 1. Student conditions in sports using wearable biosensors. 

Physical education needs to provide a high level of teaching to produce top-notch 

athletes. At the same time, effective assistance in the enhancement of academic 

physical involvement teaching is essential [6]. Several athletic and fitness-related 

fields have incorporated persistent or ubiquitous technology by integrating sensor data, 

processing, and communication technologies. The developments in wearable 

intelligent monitoring systems’ sensor integration will be discussed in general terms. 

Sports and health monitoring specifically employ sensor fusion to measure workouts, 

categorize activities and metrics, estimate energy consumption, analyze movement 

patterns, track body response, and assess sleeping patterns [7]. The development of 

wearable technology predates popular belief. Smart bracelets, smart tattoos, smart 

contact lenses, and smartwatches are examples of wearable electronics that are 

commonly referred to as wearable gadgets. Flexible wearable technology has 

incorporated microfluidic chips into its design and development in recognition of the 

potential for improved monitoring accuracy. These chips specifically enable wearable 

devices to monitor biochemical, physiological, and bioelectrical signals with greater 
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accuracy in a smaller volume [8]. A strong basis for evaluating athletes’ training state, 

tracking exhaustion, and identifying and treating sports-related injuries is provided by 

this technical development. In addition, the portable and adaptable nature of 

microvascular chips allows flexible wearable gadgets to easily fit a person’s body. 

These wearable devices have improved the training and learning capabilities of college 

physical education systems when combined with athlete performance data and 

feedback from sports trainers [9]. These observations may be influenced by students’ 

emotional state with physical education, but more detailed research is required to 

comprehend how physical education affects students’ responsiveness throughout the 

college day and how variables like student involvement can alter during physical 

education. Different pedagogical approaches are implemented in physical education 

training. Wearable technology is growing in popularity in a variety of fields, such as 

gaming, fashion, entertainment, health monitoring, and gesture recognition. Wearable 

technology has been applied to teaching in more recent years. Because of its visibility 

and direct contact with the human body, wearable technology has the potential to have 

a big impact on physical education teaching and training [10]. Six of these documents, 

however, are primarily concerned with the experiences of learners before attending 

college. Physical education aims to further investigate the rapid progress in wearable 

learning technologies, with a intend on potential application for training and teaching 

in physical education. Strength training is mostly provided to college students as a way 

to enhance their physical activity, mental well-being, sports performance, muscle 

strength, and even the prevention and treatment of injuries. Health and injury 

management for physical education training can be greatly optimized by technological 

advancements like cloud computing, the Internet of Things (IoT), as well as clever AI 

methods. Real-time data processing and improved decision-making are made possible 

by these advancements, which lead to more efficient training management [11]. 

1.1. Objective 

The main goal is to put in place a real-time monitoring system that makes use of 

physical education instruction and training. To improve classification accuracy and 

optimize system performance, a Rat Swarm Optimized Efficient Random Forest 

(RSO-ERF) algorithm was suggested for analysing physical education training. This 

approach aids in providing improved training and teaching as well as improved athletic 

performance through the use of wearable biosensors. Additionally, teachers learn how 

to use the best teaching techniques to maintain students’ interest and engagement in 

the physical education system. 

1.2. Key contributions 

The following are the key findings of the current research. 

 To collect input data based on wearable biosensors, including heart rate, respiration 

rate, body temperature, and motion activity.  

 To apply a pre-processing method that standardizes the dataset by using Z-score 

normalization and a median filter to eliminate noise.  

 To determine the important features from the input data, the Fast Fourier Transform 

Algorithm (FFT) for the feature extraction technique is introduced.  
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 To implement RSO-ERF to effectively monitor and analyse the performance of 

physical education teaching and training. 

1.3. Paper organization 

Section 2 explains relevant studies based on analysing physical education 

training. The implemented methods are thoroughly explained in Section 3. Also, in 

Section 4, the outcomes obtained from applying the suggested RSO-ERF model are 

discussed. Then, a brief summary of the results produced is covered in Section 5, and 

Section 6 provides a conclusion with the constraints and upcoming work of the 

research. 

2. Related works 

The intelligent sports program suggestion function was executed by using the 

artificial intelligence recommendation (AIR) algorithm [12]. It analysed the 

individual’s body mass index (BMI), physical condition, and age for the student’s 

athletic practices. The result of the functional tests showed that the colleges’ teaching 

needs were satisfied by the sports training environment teaching system, which also 

increased college students’ participation in sports and advanced psychological 

education. The design of a deadly control and prevention system was developed [13] 

by implementing a convolutional neural network (CNN) algorithm. CNN was 

developed to illustrate the dynamic changes between joints by taking advantage of the 

joint action trajectory within the time interval. Results from experiments proved that, 

when compared to other algorithms, the CNN model exhibited improved accuracy in 

action recognition.  

A synthetic neural community expert system was the main framework of a junior 

assessment system for excessive college students’ outstanding mastery of their body 

education [14]. The reduced number of participants in the comparing process 

increased the assessment’s credibility and produced significantly improved and 

accurate comparisons. Research [15] created a one-dimensional CNN (1D-CNN) 

using an LSTM model to classify teenagers’ levels of physical fitness into four 

categories: outstanding, good, medium, and low. For physical fitness, the prediction 

accuracy was 99.26% for females and 98.27% for boys. The experimental findings 

demonstrated that it was possible to use running photoplethysmography (PPG) 

recordings of teens to estimate their degrees of physical fitness. Research [16] 

examined the viability of a generic estimating approach for evaluating human activity 

that uses a single back-mounted sensor. When bearing varying weights, the approach 

takes into account the smallest variability in human body motions. A deep learning 

(DL) structure with comprehensive environment for monitoring behaviours of human 

beings was proposed.  

A deep learning-CNN (DL-CNN) and a long short-term memory (LSTM) 

technique were used [17] to forecast the students’ physical fitness at four different 

accuracy levels: low, medium, good, and outstanding. The results of the study showed 

that running photoplethysmography (PPG) data were used to assess the physical 

fitness of adolescents. Biosensor-based deep neural network-based college student 

mental health prediction model (BDNN-CSMHPM) concept of university learners 
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throughout the tracking period consuming biological knowledge comprising 

biomechanical electroencephalogram (EEG) stress levels were predicted [18]. It 

divided mental health into three categories: good, bad and normal. Compared with 

other methods, the model exhibited better accuracy, emotion recognition, Pearson 

correlation, and psychometric analysis.  

The wireless body area sensor network (WBASN), classification of machine 

learning (ML) algorithms, and intelligent wearable sensors were employed in sports 

and health monitoring [19]. It provided practical answers to the ongoing advancement 

of smart wear materials, identifying potential barriers, future growth prospects that 

may affect them and insightful descriptions of interesting possibilities, presenting 

smart wear technology that is sporty and it happens. It will change health care. The 

analysis of how algorithms were merged with the rise of digitized health and physical 

education (eHPE) through the implementation of new biophysical data and health-

tracking technology was performed in educational environments [20]. The difficulties 

and advancements pointed to the need for further focus on the integration of 

algorithmic systems into new eHPE pedagogies and technology. 

A multi-attribute fuzzy evaluation model (MAFEM) was developed to assess 

student health based on sensor data [21]. The MAFEM method used fuzzy logic and 

fuzzy sets to identify relationships between objects. By using data from the input 

dataset, the effectiveness of the technique was improved, maintaining the minimum 

level of operational complexity and delay potential. DL architecture was presented to 

predict the level of restlessness experienced by sporty students while engaging in 

physical activity [22]. The ML models properly evaluated a person’s training session 

and presented individuals with performance feedback. Decision trees (DT), weighted 

K-Nearest Neighbour (KNN), fine-grained support vector machines (FGSVM), and 

bagged trees (BT) were among the ML techniques applied to the dataset. The testing 

results showed that the weighted KNN model provided increased accuracy. It applied 

fivefold cross-validation on the training and testing datasets. Better precision and 

acceptable classification were achieved by the model based on the testing dataset [23]. 

The gathered data was categorized using machine learning-based classification 

techniques. 

Research gaps 

In researching DL-based models of exercise training and instruction, separation 

and search improved significantly. Even if the research warrants it, there are 

limitations. Although the AIR algorithm is effective in proposing game plans based 

on physical conditions and objects, it still needs further investigation. Future research 

can be more accurate if behavioural, lifestyle, and psychological factors are considered 

and adjusted in real time based on user feedback, functional dynamics, and 

environmental factors. A more integrated strategy that incorporates data from 

movement devices may provide an improved understanding of student health. The 

wearable biosensors and other AI models commonly depend on individual 

physiological parameters to predict health outcomes. Moreover, environmental 

difficulty appears to be a problem for wearable sensor reliability, especially for wrist-

worn machines. The integration of wearable technology and biosensors in multiple 
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disciplines ensures that AI-powered solutions in educational settings address every 

element of students’ well-being. To address the issues related to conventional 

techniques, the present research implements the RSO-ERF algorithm to enhance 

classification accuracy and optimize system performance in physical education 

systems. This approach emphasizes the potential of combining wearable biosensors 

and advanced algorithms to transform physical education methodologies, promoting 

better health and fitness outcomes for students. 

3. Proposed methodology  

This section presents the important techniques used in physical education training 

and teaching. Analysis and forecasting of physical education using the proposed 

methodology represents one of the techniques. Initially, data collection, and data pre-

processing using two methods such as the median filter algorithm, Z-score 

normalization, feature extraction using Fast Fourier transform (FFT), classification 

technique utilizing the Rat swarm optimized efficient random forest algorithm (RSO-

ERF), and finally performance analysis. Figure 2 shows the suggested approach for 

physical education teaching and training.  

 

Figure 2. Overall suggested approach for physical education teaching and training. 

3.1. Dataset description 

The Collective Sports [Sensor] DB of Practice Sessions dataset is used in this 

research, which is a collection of data mainly intended for the analysis of collective 

sports using wearable sensors. Information was collected during practice sessions from 

130 participants when athletes wore sensors to record various performance indicators. 

Height, alcohol use, weekly training rate, smoking, the existence of illnesses, heart-

rate series, weight, R-R interval (the interval between two successive RR waves), 

and/or breathing-rate series are all included in this dataset. This dataset is gathered 
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from a publicly available resource platform and is accessed using https://www.kag 

gle.com/datasets/sujaykapadnis/comprehensive-sports-database.  

3.2. Data pre-processing  

The preprocessing method refers to the steps taken to clean, normalize, and 

transform the raw data from sensors or wearables before it is used for analysis or model 

training. The following pre-processing techniques are used in this research.  

3.2.1. Median filter 

The non-linear median filter is primarily employed to reduce noise in the input 

raw data which interferes with accurate analysis and may distort the true signals. It is 

also known as a signal processing method that aids in removing noise and other 

outliers effectively. This helps to ensure that the data better represents the actual 

physiological or motion signals from the athletes with reduced irregularities. The 

median filter is illustrated by Equation (1). 

𝑔(𝑦,𝑥) =
1

𝑛𝑚
∑ 𝑓(𝑟, 𝑝)

(𝑟,𝑝)∈𝑅𝑦𝑥

 (1) 

where, 𝑅𝑦𝑥 is the set of coordinates in a window (kernel size) of 𝑛 × 𝑚 centered at 

any position (𝑦, 𝑥) in the original image, 𝑝 and 𝑟 are the column and row coordinate 

whose coordinates are members of the set. By substituting the median of each 

surrounding data point for each data point, this filter helps to smooth out sudden noise-

induced shifts. 

3.2.2. Z-Score normalization 

Z-Score normalization is a method employed for normalizing a dataset, 

transforming it to have a mean of 0 and a standard deviation (SE) of 1. Standardizing 

the data guarantees that every feature is on a comparable scale, preventing any variable 

from unduly impacting the analysis or the proposed physical education training model 

because of its scale. It is indicated by Equation (2). 

𝑍 =
𝑋 − 𝑋

𝑆𝐷𝑥
 (2) 

where  𝑆𝐷 denotes standard deviation, 𝑥  is the quantity to be normalized, �̅� is the 

average value, and 𝑍 is the normalization outcomes.  

3.3. Feature extraction 

Key patterns in physical education are detected by feature extraction using the 

FFT.  

Fast fourier transform algorithm (FFT) 

The FFT approach provides the ability to preserve more processing resources as 

the number of sampling points increases. First, the original signal’s consecutive time-

domain data is obtained by using a sliding window. Then, using the FFT approach, 

which is explained by Equation (3), all window data are converted to frequency 

information.  
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𝑍𝑙 = ∑ 𝑧𝑚𝑑−𝑗2π𝑙𝑚/𝑀

𝑀−1

𝑚=0

𝑙 = 0,… . ,𝑀 − 1 (3) 

where 𝑍𝑙 is time-domain data, and 𝑙 = 0,… ., M − 1 is a complex number. The number 

of sampling points is denoted by. Critical performance indicators are significantly 

identified by applying the FFT algorithm to extract key features. 

3.4. Classification using rat swarm optimized efficient random forest 

(RSO-ERF) algorithm  

The RSO-ERF program is an excellent comprehensive tool that combines the 

ERF approach with a naturally stimulated RSO-efficient algorithm to accurately 

predict college students’ physical and cognitive development Educators to make data-

driven decisions, promote safety encourage, and improve the academic experience for 

student athletes, 1999. The RSO and ERF concepts are used to enhance the 

performance quality function through the benefits of monitoring physiological and 

health parameters. 

3.5. Efficient random forest algorithm (ERF) 

Several decision trees are used in the RF algorithm, an ensemble technique that 

increases classification accuracy. By adding a feature weighting mechanism and a tree 

selection approach, the ERF improves RF for improved multi-class categorization. 

The association between input features and class labels is used to calculate feature 

weights. The ERF model’s classification accuracy is further improved by normalized 

weights. 

3.5.1. Random forest (RF) algorithm 

The RF is known as an ensemble technique, which comprises a group of 

classifiers in a tree-like structure. It uses bagging, averaging, and bootstrapping 

concepts to continuously train multiple decision trees (DTs). It is possible to use 

specific groups of available characteristics to build multiple independent DTs 

simultaneously on different training sample segments. Without the problems of 

imbalanced datasets or overfitting, the RF classifier aims to continuously outperform 

all other existing classifier algorithms in terms of precision. 

3.5.2. Efficient random forest (ERF) algorithm 

The ERF classification strategy employs an instance filter method, an attribute 

evaluator method, and the RF algorithm. This classification approach is currently used 

to classify text documents by combining the tree selection method with a special 

feature weighting mechanism. Amaratunga’s t-test approach can be modified with the 

chi-square statistic as characteristics measurement for weighting randomized 

subdomain selection, which may result in ERF classification, helping to address the 

multi-class text classification problem. The method’s objective is to increase the 

ERF’s prediction accuracy for the physical education training system. In this part, a 

feature weighting mechanism for subspace sampling is introduced, followed by a tree 

selection strategy. Figure 3 represents the working model of the ERF algorithm 

involved in analyzing the accurate classification.  
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Figure 3. Efficient random forest classification model. 

1) Feature Weighting Method  

The feature weighting technique for subspace sampling in ERF aids in improving 

the classification accuracy. Let {𝐵1, 𝐵2,… , 𝑏𝑁} be an N-dimensional feature space. 

The computation of the weights {𝑣1, 𝑣2,… , 𝑣𝑁}  for each feature in the space is 

presented. Each DT in RF is then grown using these weights. Normalized weights and 

feature weight computation are the only focus of the feature weighting approach. 

The information of each input feature 𝑏𝐽’s is determined by its correlation to the 

class feature 𝑍, which is then used to calculate the feature weight. When the weight is 

high, the feature’s values correspond to the class labels of the training set’s objects. 

The class feature 𝐵 , represented as 𝑧𝑖(𝑓𝑜𝑟 𝑖 = 1,… , 𝑠),  can accept 𝑟  values, 

represented by 𝑏𝑗 (𝑓𝑜𝑟𝑗 = 1, … , 𝑟), given that it contains 𝑠 distinct values or classes. 

Given a dataset of class feature 𝑍 and input feature B, the correlation based on 

the chi-square statistic is calculated by using Equation (4). 

𝑐𝑜𝑟𝑟(𝐵, 𝑋) = ∑ ∑
(𝜆𝑗𝑖 − 𝑟𝑗𝑖)

2

𝑟𝑗𝑖

𝑠

𝑖=1

𝑟

𝑗=1
 (4) 

Here, the data samples are denoted by∑ ∑ 𝜆𝑗𝑖
𝑠
𝑖=1

𝑟
𝑗=1 , where 𝑟𝑗𝑖 is the anticipated 

frequency and𝜆𝑗𝑖 is the observed frequency. 

2) Normalized Weights 

Feature weights are normalized for feature subspace sampling. Assume that a 

feature 𝑏𝐽  and its class label feature 𝑧 have a relationship for 𝐽 = 1,… ,𝑁 . It is 

expressed by Equation (5).  

𝑣𝑗 =
√𝑐𝑜𝑟𝑟(𝐵𝑗, 𝑍)

∑ √𝑐𝑜𝑟𝑟(𝐵𝑗, 𝑍)𝑁
𝑗−1

𝐽 = 1,… ,𝑁 (5) 

The extraction of the correlation’s square root is a popular smoothing method. It 

is visible that the normalized weight 𝑣𝑗 calculates feature 𝑏𝐽’s. One popular method 

for smoothing is to obtain the correlation’s square root. Feature 𝐵𝑗 ’s relative 

informativeness is measured by the normalized weight 𝑣𝑗 . Thus, the algorithm is 

designed using this weight information for feature subspace sampling.  

3) Tree Selection Method  
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Determining each tree’s accuracy is the primary problem in the tree selection 

procedure. To assess the significance of a tree, the research employs out-of-bag 

accuracy. Using the bagging method, several training data subsets are created for the 

ERF construction model. These training subsets are subsequently employed to build 

trees. Each tree has two types of data: out-of-bag (OOB) data, which is the subset of 

data composed of the remaining data, and in-bag (IOB) data, which is the subset of 

training information is applied to build the tree. 

Given a tree classifier  𝑔𝑙(𝐼𝑂𝐵𝑙) constructed from the  𝑙𝑡ℎ  subset of training 

data 𝐼𝑂𝐵𝑙. The OOB correctness of the tree 𝑔𝑙(𝐼𝑂𝐵𝑙)is defined by Equation (6). 

𝑂𝑂𝐵𝐴𝑐𝑐𝑙 =
∑ 𝐽(𝑔𝑙(𝑒𝑗) = 𝑧𝑗; 𝑒𝑗∉𝐼𝑂𝐵𝑙)

𝑚
𝑗=1

∑ 𝐽𝑚
𝑗=1 (𝑒𝑗 ∉ 𝐼𝑂𝐵𝑙)

 (6) 

where 𝐽is is an indicator function, all the trees are sorted according to their OOB 

accuracy in descending order, and the top-ranked trees are chosen to construct the 

ERF. A good tree population is produced by such a tree selection technique.  

3.6. Rat swarm optimized (RSO) algorithm  

Rats are long-tailed, medium-sized animals that differ in size and weight. They 

groom one another and engage in a variety of sports like boxing, tumbling, chasing, 

and jumping. Rats live in groups of both men and females and are territorial creatures. 

They frequently exhibit extremely aggressive behavior, which can cause some animals 

to die. The primary driving force behind this effort is aggressive conduct and engaging 

in combat with prey. Rats’ chasing and fighting activities are mathematically 

represented to create an RSO algorithm and carry out optimization. 

3.6.1. Catching the prey (Exploration)  

Rats are generally expressive animals that exhibit social agonistic behaviour 

when hunting in groups. It is assumed that the ideal search agent knows the position 

of the prey to quantitatively explain this behaviour. In Equation (7), the process is 

presented clearly. 

�⃗� = 𝐵. �⃗� 𝑗(𝑦) + 𝐷. (�⃗� 𝑠(𝑦) − �⃗� 𝑗(𝑦)) (7) 

where, the best optimal solution is �⃗� 𝑠(𝑦), and the rat positions are defined by �⃗� 𝑗(𝑦). 

While Equation (8) is used to derive the 𝐵 and 𝐷 parameters. 

𝐵 = 𝑆 − 𝑦 × (
𝑆

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) (8) 

𝐷 = 2 · 𝑟𝑎𝑛𝑑() (9) 

𝑆 𝑎𝑛𝑑 𝐷  are random numbers in the present scenario. 𝐵  and 𝐷 lead to better 

exploration and exploitation during iterations.  

3.6.2. Fighting with prey (Exploitation) 

Rats’ fighting behavior with prey has been quantitatively defined by the Equation 

(10).  
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�⃗� 𝑗(𝑦 + 1) = |�⃗� 𝑠(𝑦) − 𝑄|⃗⃗⃗⃗  (10) 

where the rat’s updated future position is defined by �⃗� 𝑗(𝑦 + 1). As demonstrated by 

Equations (9) and (10), the parameters can be changed to attain a different number of 

places relative to the current position. However, this idea can also be expanded in an 

environment with n dimensions. Figure 4 represents the entire process involved in the 

RSO algorithm in effectively providing real-time feedback for physical education 

training. 

 

Figure 4. Flowchart of rat swarm optimized (RSO) algorithm. 

Thus, the RSO-ERF is considered a powerful optimization technique that 

combines the strengths of both the metaheuristic approach of RSO with the relational 

learning capability of ERFs. The RSO-ERF model creates a very successful 

optimization framework for intricate data analysis tasks by skilfully fusing the 

relational learning capabilities of ERFs with the metaheuristic approach of the RSO 

technique. RSO uses the benefits of both methods in this hybrid technique to enhance 

classification performance by optimizing the hyperparameters of the ERF algorithm. 

To improve model accuracy, especially in classification problems, two crucial factors 

must be changed throughout the optimization process: feature weighting and tree 

selection. By optimizing these hyperparameters, the RSO-ERF can navigate high-

dimensional data fields efficiently, ensuring that relevant features are prioritized while 
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lowering the risk of overfitting. Table 1 illustrates the hyperparameters used to 

increase the accuracy of the analysis process. The extent of the search space is 

probably indicated by the suggested range (10 to 30). The algorithm exploration 

parameter (1–5) determines how much it looks for new solutions, and its exploitation 

parameter (0–2) determines how much it concentrates on improving existing ones. The 

number of algorithm runs is defined by max iterations (50 to 200), and fixing a random 

seed, a common setting of 42 guarantees repeatability across tests. 

Table 1. Details of hyperparameter for RSO-ERF. 

Hyperparameter Values 

Suggested Range 10 to 30 

Exploration Parameter Between 1 and 5 

Exploitation Parameter Between 0 and 2 

Max Iterations 50 to 200 

Common Setting 42 (for reproducibility) 

Algorithm 1 reveals the methods and strategies employed in the proposed RSO-

ERF for physical education instruction and training. 

Algorithm 1 RSO-ERF used in training and teaching physical education 

1: Step 1: ERF Training 

2: deftrain_optimized_erf(features, class_labels, feature_weights, max_trees=100): 

3:     subsets = create_training_subsets(features, class_labels) 

4:     trees = [] 

5:     for subset in subsets: 

6: tree = train_tree_with_weights(subset, feature_weights) 

7: trees.append(tree) 

8: oob_accuracies = evaluate_oob_accuracy(trees) 

9: selected_trees = select_best_trees(trees, oob_accuracies) 

10: random_forest = build_random_forest(selected_trees) 

11:    return random_forest 

12: Step 2: RSO Optimization 

13: defoptimize_hyperparameters_using_RSO(features, class_labels, max_iterations, population_size, exploration_param, 

exploitation_param): 

14:     population = initialize_population(population_size) 

15:     for iteration in range(max_iterations): 

16:  for rat in population: 

17: update_position_chasing(rat, exploration_param, exploitation_param) 

18: update_position_fighting(rat) 

19: evaluate_population_fitness(population, features, class_labels) 

20: best_solution = get_best_solution(population) 

21:     return best_solution 

22: Step 4: Execute the RSO-ERF Algorithm 

23: defRSO_ERF_algorithm(dataset, class_labels, max_iterations=100, population_size=20, exploration_param=3, 

exploitation_param=1, max_trees=100): 

24:     features = preprocess_data(dataset) 

25: feature_weights = compute_feature_weights(features, class_labels) 

26: best_hyperparameters = optimize_hyperparameters_using_RSO(features, class_labels, max_iterations, population_size, 

exploration_param, exploitation_param) 

27: random_forest = train_optimized_erf(features, class_labels, feature_weights, max_trees) 

28:     predictions, evaluation_metrics = classify_with_erf(random_forest, dataset) 

29:     return predictions, evaluation_metrics 

30: End 
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4. Results and discussion 

The RSO-ERF method aims to improve classification accuracy by providing 

more accurate information on student activities, which can significantly enhance 

physical education instruction. This section presents the results obtained by the 

proposed RSO-ERF method based on a few performance parameters. Furthermore, 

comparative studies with the proposed model as well as existing studies have been 

adopted to determine the reliability of the study. 

4.1. Experimental setup 

The RSO-ERF method is implemented in a setting with Windows 10 (64-bit), 

TensorFlow 2.4.1, and Python version 3.6. RAM of 8 GB, an Intel Core i7 multi-core 

processor, CUDA 11.1, and an NVIDIA GeForce GTX 1650 graphics card, 

comprising the software environments for the experiment.  

4.2. Performance analysis 

The performance of the exercise training and instruction is verified through the 

comparison of the proposed RSO-ERF method with traditional methods. Existing 

studies used for comparison include recurrent neural networks (RNN) [24] and LSTM 

and generative adversarial networks (LSTM-GAN) [25] Thus, results are stated with 

each method depending effects on research variables are discussed below. The 

experimental results are analysed in this research incorporating multiple evaluation 

metrics comprises accuracy, F1-score, precision and recall. The outcomes procured by 

implementing the RSO-ERF method are displayed in Table 2. The model properly 

diagnoses the majority of cases with an accuracy of 99.3%. With an accuracy of 

93.8%, 93.8% of the anticipated positive cases turn in to be true. The 92% recall 

indicates that 92% of real positive events are properly identified by the technique. The 

model’s capability in handling inaccurate result is demonstrated by its F1-score of 

95.3%, which strikes a compromise between accuracy and recall.  

Table 2. Evaluation matrices of the RSO-ERF outcomes. 

Evaluation Metrics RSO-ERF [Proposed] 

Accuracy 99.3% 

Precision 93.8% 

Recall 92% 

F1-Score 95.3% 

4.2.1. Accuracy 

Accuracy is used to evaluate how frequently the students complete tasks 

correctly, such as performing a movement with the right form or technique. It indicates 

how frequently students perform a particular physical movement correctly versus 

poorly (true positive vs. false negative) when learning physical exercises. Accuracy is 

used to evaluate the effectiveness of the system in providing real-time feedback or 

assessing the students’ performance. It is expressed in Equation (11). 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (11) 

where 𝑡𝑛 stands for true negative, 𝑓𝑝  indicates false positive, 𝑓𝑛 means false 

negative, and 𝑡𝑝 represents true positive.  

4.2.2. Precision 

Precision ensures accurate and helpful feedback for skill development in physical 

education by accurately detecting performance. This enables teachers to customize 

interventions according to the needs of individual students by customizing activities 

based on the data. Achieving this improves the quality of education, facilitates 

successful learning, and stops the reinforcement of inappropriate or unwanted actions, 

which leads to better performance and behavior. Equation (12) denotes the 

representation of precision.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (12) 

Improved precision values help in improving athlete feedback, customizing 

training plans, and assisting coaches in making more informed, data-driven decisions 

to enhance sports performance by reducing false positives, or inaccurate predictions. 

Table 3 provides the outcomes based on precision and accuracy procured by the 

existing and the suggested model. The suggested RSO-ERF approach outperforms the 

other models in both measures, with 99.3% accuracy and 93.8% precision, and the 

LSTM-GAN model has 95% accuracy and 92.1% precision, while the RNN model 

obtains 99% accuracy with 88% precision. 

Table 3. Results determined by accuracy and precision. 

Methods Accuracy Precision 

RNN [24] 99% 88% 

LSTM-GAN [25] 95% 92.1% 

RSO-ERF [Proposed] 99.3% 93.8% 

 

Figure 5. Outcomes of (a) Accuracy; (b) Precision. 

Figure 5 shows the comparison of existing and proposed methods in (a) 

accuracy, as well as (b) precision. The accuracy and precision results for the three 
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approaches LSTM-GAN, RNN, and the suggested RSO-ERF. (a) Accuracy of the 

suggested RSO-ERF was obtained 99.3%, LSTM-GAN 95%, and RNN 99%. (b) 

Precision was attained by RNN at 88%, LSTM-GAN at 92.1%, and RSO-ERF at 

93.8%. Outperforming both RNN and LSTM-GAN, the suggested RSO-ERF 

approach exhibits the best accuracy and precision. 

4.2.3. Recall 

Recall refers to the model’s capacity to accurately pick out positive examples 

among all real positive examples, such as when pupils reach a particular performance 

threshold or participate in particular physical activities. It measures how successfully 

the system uses information gathered from wearable sensors to determine each 

student’s accurate performance or fitness level. Recall helps successful teaching by 

acknowledging achievement in skills and recording positive behaviours to reinforce 

growth in physical education. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (13) 

4.2.4. F1-score 

The F1 score tracks the trade-off between false positives (FN) and false negatives 

(FP), combining accuracy and recall to offer an improved assessment of model 

performance. Since precision and recall are reconciliation tools, it ensures that they 

are given equal weight in the analysis. The sample determines the percentage of true 

positives, while the accuracy is the percentage of true positives and negatives. The two 

criteria are balanced by the F1-score, where a higher F1-score indicates the need for 

more accurate and detailed modelling. 

Accuracy and recall are combined in the F1 score to provide a reliable evaluation 

of physical education proficiency. It helps to assess both the identification of 

appropriate behavior and the ability to record any positive incidents. Improved 

assessment, more accurate feedback, and enhanced student skill assessment are all 

indicated by higher F1-scores. 

F1 − score 2 ×
(Precision) × (Recall)

(Precision) + (Recall)
 (14) 

The results produced by the proposed and existing models based on recall and 

F1-score are shown in Table 4. The LSTM-GAN advances to 91.2% recall and 94.5% 

F1-score, whilst the RNN attains 89% recall. A recall of 92.7% and an F1-score of 

95.3% are both superior to those of the suggested RSO-ERF approach. These findings 

imply that RSO-ERF outperforms earlier techniques like RNN and LSTM-GAN in 

terms of recall and F1 score, suggesting its potential efficacy for the position. 

Table 4. Results based on Recall and F1-Score. 

Methods Recall F1-Score 

RNN [24] 89% - 

LSTM-GAN [25] 91.2% 94.5% 

RSO-ERF [Proposed] 92.7% 95.3% 
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Figure 6a,b shows the F1-score and recall metrics outcomes. With considering 

(a) recall, the proposed RSO-ERF approach attains the greatest value at 92.7%, 

followed by LSTM-GAN at 91.2%, and RNN at 89%. In terms of (b) F1-Score, which 

the suggested RSO-ERF approach achieves at a high level of 95.3%, LSTM-GAN 

outperforms RNN with 94.5%, suggesting that both approaches perform well overall. 

 

Figure 6. Results of (a) Recall; (b) F1-Score. 

5. Discussion 

The results highlight the effectiveness of the RSO-ERF method in assessing 

exercise training and learning, and show that it is better able to produce and test 

exercise effects than traditional methods. Despite their efficiency, the RNN and LSTM 

models are far inferior to the RSO-ERF method, especially for classification tasks such 

as performance evaluation in exercise. The RNN model has the disadvantage of 

relying on sequential input, which makes it difficult to deal with missing paths and 

long dependence times. While RNNs can recognize patterns over time, they may have 

problems processing data with complex layers or long associations. In addition, RNN 

models have limited scalability and fitness in practical applications, are 

computationally expensive, and involve large amounts of training data to achieve high 

accuracy The perfect generalization LSTM-GAN model for unusual complex motion 

sequences Capacity is hampered by data scarcity. Additionally, motion blurring during 

prediction is still an issue even after dilated RNN and CNN were included for 

improved spatiotemporal feature modelling. Although the model performs strongly in 

action identification and prediction, real-time motion difficulties may not be 

adequately addressed by its reliance on accurate feature extraction and prediction 

modules, particularly in dynamic, unexpected circumstances. The RSO-ERF 

algorithm reduces false positives and false negatives and provides more reliable results 

for exercise training and instructional evaluation. Because of its robustness and 

accuracy, the RSO-ERF is a highly reliable resource for accurate, real-time feedback 

in exercise situations. 

6. Conclusion 

To develop improved exercise teaching and training strategies, the present study 
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uses a DL-based RSO-ERF model. The study includes data preprocessing techniques 

to reduce noise and standardize input data, such as mean filtering and Z-normalization 

using fast Fourier transform (FFT) algorithms for feature extraction to carefully 

measure physical activity parameters. These techniques improve the ability of the 

models to detect abnormal behaviour in the training data and can capture significant 

improvements in fitness. By optimizing the parameters of the ERF model, the RSO 

method provides more accurate forecasting and classification. The results show that 

the model bought F1-score (95.3%), accuracy (99.3%), precision (93.8%), and recall 

(92.7%). This confirms that the model consistently predicts positive and negative 

aspects of training and exercise. It demonstrated the potential of the model to provide 

useful insights that could improve academic achievement and increase student 

engagement in physical activity programs. Despite these positive results, there is still 

room for improvement. If a model does not adapt well to different learning 

environments or performs poorly with variables and complex data, it may restrict its 

generalizability to different situations Future research can focus on addressing these 

issues, for its flexibility has increased, and it has expanded its scope to include ever-

changing doctrinal formats.  
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