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Abstract: Product design has increasingly become the process of creating stronger 

relationships between people and products while improving utility and emotional 

involvement in today’s fast-paced technological environment. Biosensors that measure 

physiological and neurological responses have been revolutionary tools in this field. To 

establish the biosensor-driven design methodology to enhance interactivity and user 

experience in cultural and creative product design. The device employs 

electroencephalography (EEG), a sophisticated biosensor, to capture users’ emotional states 

and preferences as they interact with various cultural elements. The pleasure-arousal-

dominance (PAD) model is used to evaluate EEG data. To extract consumers’ perceptual 

image semantics for product design, factor analysis is used concurrently. An Intelligent Sea 

Lion Optimization (ISLO), combined with a Resilient Long Short-Term Memory (RLSTM), 

evaluates user interaction, reducing fatigue from repeated interactions. Designers employ 

cultural factors to inform the first product prototypes, and the system iteratively refines ideas 

by matching them to the emotional demands of users. The results indicate the effectiveness of 

integrating user feedback into interactive design processes. As a result, the ISLO-RLSTM 

method performed better in RMSE at 1.58, MAE at 1.22, and MSE at 2.17. This approach 

demonstrates the way biosensors can revolutionize product creation and improve user 

experiences by bridging the gap between functional design and emotional engagement. 

Keywords: product design; biosensors; interactivity; user experience; intelligent sea lion 

optimized resilient long short-term memory (ISLO-RLSTM) 

1. Introduction 

Sensors are excellent information-gathering devices for the deployment of 

smart towns because of their unique position at the interface between the analog 

world humans live in and basic communication organizations. Depending on the 

application context, sensors are characterized as physical or virtual. Biosensors play 

a significant role in product design, having progressed from traditional 

electrochemical biosensors to wearable and implantable biosensors [1]. Biosensors 

are a popular topic in today’s scientific community. With advancements in science 

and technology, biosensors have become more sensitive and capable of detecting 

biomolecules in various fields, including medical, environmental, and military [2]. 

A biosensor is a device able to convert chemical data derived from biomolecule 

concentrations into usable analytical signals. It essentially constitutes four 

constructions consisting of elements of the sensing bind, which exactly binds with 
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the analyte being tested, an interface offering a working location for the elements of 

a biosensor, converting chemical or physical data, resulting from the collaboration 

between the elements of sensing with the analyte in the electrical signals, and 

amplification and processing of these signals together with an interface circuit 

designed for data processing and analysis. The biosensor’s structure is represented in 

Figure 1 [3]. 

 

Figure 1. Biosensor’s structure. 

The term “biosensor” is derived from two words: “bio”, an abbreviation for 

biology or life, and sensor, indicating a device or system that measures and responds 

to stimulant. A biosensor is a highly advanced analytical instrument that has been 

precisely designed to detect subtle changes occurring within complex biological 

processes, an essential feature in product design. It converts these small fluctuations 

into recognizable electrical signals. At the core, this biosensor utilizes the synergistic 

interaction of this biological sensing element with a transducer, itself an integral part 

of the conversion of biological information into measurable electrical signals [4]. 

Biosensors are low-cost and portable devices that can detect pathogens, proteins, and 

other analytes in a matter of instant time; establishing new possibilities for 

innovation in product design. They intend to eliminate the time and high cost of 

expertise involved in testing processes that, in certain industries, cost more to acquire. 

Biosensors form a rapidly developing multidisciplinary field, potentially 

transforming consumer, health care, and industrial testing [5]. 

These devices have provided solutions to a variety of applications, including 

food safety and processing, drug growth, disease detection, defense, biomedicine, 

environmental monitoring, and security [6]. Biosensors are designed based on the 

target analyte and transduction process, the characterized as labeled or label-free 

based on their label use. Labeled biosensors utilize a reporter for identifying analytes 

such as enzymes, electroactive chemicals, or fluorescent molecules. Labels improve 

signal amplification and selectivity for sensing but occur at a higher cost and longer 

sensing time. Label-free approaches rely on bio recognition elements (BRE) to 

recognize targets, and their basic design makes them ideal for portable devices and 

adaptable in product design [7]. 
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According to the traditional definition, biosensors are sensors that make use of a 

bio receptor, such as nucleic acid, peptide, enzyme, antibody, etc. Biosensors have 

developed into many different kinds of transducers, such as spectroscopic, optical, 

and electrochemical biosensors [8]. In today’s rapidly developing technology 

environment, product design prioritizes strengthening links between people and 

things to improve usefulness and emotional involvement. Biosensors can measure 

physiological and neurological responses, making them a game changer. This 

research aims to develop a biosensor-driven design approach to improve interaction 

and user experience in creative and cultural product design. 

Contribution of the research 

⚫ The use of EEG biosensors to record emotional reactions gives designers of 

customized products access to real-time data. Users are more emotionally 

invested in items as a result of this integration. 

⚫ Using EEG data and the PAD model, a novel strategy was presented for 

enhancing user involvement and emotional engagement in cultural and creative 

products. Product experiences become more meaningful as a result. 

⚫ To improve the entire design process by reducing interaction fatigue and 

enhancing design prototypes, factor analysis, Intelligent Sea Lion Optimization 

(ISLO), and Resilient Long Short-Term Memory (RLSTM) are used. 

⚫ To ensure that product prototypes reflect the feelings and preferences of users, 

the technique incorporates cultural components into the design process. This 

encourages more enticing and pertinent cultural product designs. 

The organization of the research involves the following structures: Section 2 

provides the related works and the methodology is explained in section 3. The result 

of the research was evaluated in Section 4 and discussed briefly in section 5. Section 

6 covers the conclusion. 

2. Related works 

The state of the art for several smartphone-based biosensor types was provided, 

considering their stages of development in Madrid et al. [9]. A comprehensive 

examination of the potential causes of the failure of several innovations to make it to 

market was provided in the second section. The result highlighted the necessity of 

bolstering the phases of technology transfer, application, and end-user acceptance. 

By considered nanophotonic’ potential in biosensing, compiled current 

developments in the creation of optical and nanophotonic biosensors, emphasizing 

their sensing capabilities [10]. They usually divide these kinds of biosensors into five 

groups: surface-enhanced spectroscopies, phase-driven, resonant dielectric 

nanostructures, plasmonic, and evanescent-field. Evaluated the significance of 

improving the performance and effectiveness of the sensor by tackling some of the 

main issues in nanophotonic biosensing, like resolving the problems of managing 

biological specimens and reducing their costs for accessibility. 

An rise in emotional and physical self-awareness was brought about by the 

upgrading of affective technologies [11]. It described the bio signals used in 

inexpensive physiological monitoring and how they might be integrated with the 
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techniques of interface designers to create aesthetically pleasing and physiologically 

engaging experiences. The term orchestration was presented, which refers to the 

process of creating the entire interaction, including the coupling of sensors, starting 

and stopping the interaction, habituating, and modifying the relaxing, soothing, or 

stimulating impacts of the interaction. A comprehensive overview of the various 

machine learning (ML) techniques used in food safety biosensors was provided by 

Zhou et al. [12]. The main ML techniques were first described, and then a detailed 

investigated of the combined use of biosensors and ML in food safety was conducted. 

The results showed that ML-based algorithms could help to identify food safety 

problems quickly. To evaluate food quality, Zhu [13] showed how to integrate 

biosensors with deep learning (DL). They initially concentrate on the datasets 

required to train the models and the procedure by which deep neural networks (DNN) 

produce prediction models. Second, they highlight research on biosensors for food 

nutritional content measurement and how convolutional neural networks can be used 

to extract exterior aspects of food products.  

The applications of surface enhanced ramen spectroscopy (SERS) and ML in 

the last years included the identification of biological molecules, rapid detection of 

diseases, development of new methods for immunoassay, and improvement of the 

performance of SERS in semi-quantitative measurements [14]. At the end, the 

possible benefits and challenges of integration between SERS and ML were 

addressed. Anapanani [15] evaluated the use of ML in biosensors, which pointed out 

potential benefits of this technology, including increased sensitivity, selectivity, and 

accuracy. It covered various ML methods applied in biosensors, including feature 

extraction, data preparation, and classification models. Challenges of integrated ML 

with biosensors, including issues related to data accessibility, functionality of sensors, 

and processing demands. The use of ML in improving the performance of these 

bioreceptor-free biosensors Schackart et al. [16] discussed the ML has been applied 

to imaging, Etongue and Enose, as well as SERS-based biosensors. 

Significantly, principal component analysis (PCA) combined with support 

vector machine (SVM) and various artificial neural network (ANN) algorithms 

performed well in a range of tasks. DL neural network (DLNN) was developed to 

classify gait and assess the joint angle, based on sEMG signals as well as filtered and 

denoised signals from sEMG and plantar pressure measurements acquired during 

human walking [17]. The findings show high precision for joint-angle computation 

and distinguishing human gait with the best accuracy as 95.42%, the lowest of 

90.11%, and an average error of 3.19 for joint angle estimate. The multifaceted uses 

of ML models, such as regression and classification, and how they raise the potential 

of biosensors were examined [18]. To examined at great length the functions of 

wearable sensors, colorimetric sensors, 

electrochemiluminescence/chemiluminescence sensors, lab-on-a-chip sensors, and 

ML-assisted electrochemical sensors in analysis. A plan to ascertain and predict the 

sample rate of active biosensors in wireless body area networks (WBANs) was 

presented [19]. Three primary factors were used in the scheme: patient activity, risk, 

and pivot biosensor value. Additionally, the Spline interpolation method and a 

modified Fisher test were employed. After every cycle, the sampling rate was 

calculated using mathematical and statistical techniques. Two ML methods, adaptive 
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neuro fuzzy inference system (ANFIS) and long short-term memory (LSTM), were 

used to forecast the sample rate after a certain round has been reached. The 

suggested methods cut network energy use by 73% and data traffic by 81%. 

Hemdan et al. [20] looked at a variety of biosensor technologies, including 

enzymatic, immunological, and deoxyribonucleic acid (DNA) sensors, as well as 

how they are used in disease biomarker detection and drug monitoring. Recent 

advancements like wearable technology and the incorporation of nanotechnology 

were emphasized, and issues like data confidentiality, repeatability, sensitivity, and 

specificity were discussed. It improved global healthcare results, stimulated 

technology innovation, and guided strategic decision-making. The relevant research 

progress of nanozyme-based biosensors for organ phosphorus pesticides (OP) 

detection was compiled in Zhao et [21]. It includes a discussion of the biosensing 

approach, catalytic activity, and structural categorization. The research presents the 

practical uses of nanozyme-enabled biosensors, such as optical and electrochemical 

biosensors, with a focus on on-site detection, low cost, and ease of use. Lastly, the 

primary issues and potential developments are discussed, which can offer theoretical 

support for the use of nanozyme-based biosensors in organophosphorus pesticides 

(OP) detection. Inshyna et al. [22] examined the composition, classification, and 

applications of modern biosensors in a number of fields, with a focus on design 

advancements and bioreceptor immobilization methods. It compares immobilization 

techniques, examined the use of metal nanoparticles and carbon nanomaterial’s to 

improve electrochemical characteristics, and evaluates optical, acoustic, calorimetric, 

piezoelectric, and electrochemical sensors. The usefulness of immobilization 

techniques and their uses in environmental monitoring, human health diagnostics, 

and the evaluation of food and water quality are also covered. 

3. Methodology 

The section consists of some of the following procedures. The chair and teapot 

data were gathered and then the PAD model was used to evaluate EEG data. Next, 

factor analysis is used concurrently to extract the semantics of the perceptual image 

of consumers for product design. Finally, an ISLO was combined with an RLSTM to 

evaluate user interaction, reducing fatigue from repeated interactions. Figure 2 

depicts the architecture of the methodology. 

 

Figure 2. Architecture of the methodology. 
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3.1. Data collection 

The data was gathered from the open source Kaggle website: 

https://www.kaggle.com/datasets/ziya07/biosensor-driven-product-design/ data. This 

dataset is a user interaction data with cultural and creative products, like chairs, tea 

cups, etc. The dataset is merged together EEG signals with user feedback 

measurements of user satisfaction and emotional engagement during product 

interaction. The dataset contains EEG signal data of different brain wave frequencies, 

such as beta, theta, delta, alpha, and gamma, which have been captured during user 

interaction with a product. As the goal variable, the satisfaction ratings are utilized to 

group users into three satisfaction levels: high, medium, and low. 

3.2. PAD model 

The model pleasure-arousal-dominance (PAD) is widely applied to product 

design to evaluate the emotional response and enhance the user experience by 

measuring levels of pleasure, arousal, and dominance during contact. Biosensors are 

integrated with this model to provide immediate feedback on consumers’ states of 

mind, allowing designers to develop more engaging and tailored products. This 

approach enhances interaction because it matches the properties of the product with 

consumer emotional responses, thereby creating higher pleasure and usefulness. 

3.2.1. Emotional scale of PAD model 

The PAD emotion scale has strong structural validity and can reliably assess 

emotional state based on three dimensions: dominance, arousal, and pleasure. 

Therefore, the PAD emotion scale was utilized to gauge users’ feelings regarding 

various cultural components. Eight categories can be determined by the three 

dimensions mentioned above, such as +𝑃 −  𝐴 −  𝐷  (gentle), −𝑃 −  𝐴 −  𝐷 

(boring), +𝑃 +  𝐴 +  𝐷  (happy), +𝑃 +  𝐴 –  𝐷  (dependent), +𝑃 −  𝐴 +  𝐷 

(relaxed), −𝑃 −  𝐴 +  𝐷 (disdainful), −𝑃 +  𝐴 −  𝐷 (anxious), and −𝑃 +  𝐴 +  𝐷 

(hostile). The six pairs of adjectives that make up the PAD emotion scale each 

indicate a various emotional state, with each pair of adjectives representing a 

dimension as depicted in Figure 3. 

 

Figure 3. PAD model’s emotional scale. 

Every pair of adjectives indicates the opposite emotions on the dimension to 

which they are connected, even if the emotional values on the remaining two 

dimensions are nearly identical. The semantic distinction scale with a score of nine is 

used to assess these feelings. For instance, V1: awake-sleepier has a score in the 
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range of−4 𝑡𝑜 4 . The subjects’ emotional intensity determines their score. The 

“awake” score increases as it moves from left to right. The more precise the score, 

the “sleepier” the condition it depicts. The correlation between the scores of the 

aforementioned six pairs of adjectives, pleasure (𝑃), arousal (𝐴), and dominance (𝐷) 

is demonstrated by Equations (1) to (3). Each dimension’s score is calculated as the 

average of the four adjective groups. 

𝑃 =
(𝑉1 − 𝑉2 + 𝑉4 − 𝑉5) 

4
 (1) 

𝐴 =
(−𝑉2 + 𝑉3 − 𝑉4 + 𝑉6)

4
 (2) 

𝐷 =
(𝑉1 − 𝑉3 + 𝑉5 − 𝑉6)

4
 (3) 

3.2.2. PAD model’s emotion test 

Subjects rated the six objects in Figure 3 on a scale from −4 to 4 for each of the 

two images. The two categories into which the two image samples were split: like 

and dislike. To generate distinct emotional experiences from the patients, three sets 

of image samples representing various emotional states were used as the visual 

inducement materials for the next EEG tests. The PAD model enabled exact 

classification of the emotional state as it measured pleasure, arousal, and dominance, 

which were required to be measured for biosensor-based analysis. EEG data 

collected from this test was further analyzed using ISLO-RLSTM to determine the 

user interaction that ensures an emotional fit with product design. Factor analysis 

reduced perceptual image dimensions, streamlining cultural elements for higher 

design accuracy. This method fills the gap between users’ emotional needs and 

functional product design, enhancing interactivity and user experience. 

3.3. Experimental data analysis 

The gathered information was examined using the Bio semi Active Two, which 

is an EEG system that was employed for the acquisition of high-quality data of 

neurophysiological. Signals that were elicited by image presentation were obtained 

at 5000 ms. The EEG data obtained were processed digitally, then segmented and 

operated. For quantitative analysis, the average power of 𝛼 wave was measured at 

electrodes  𝐹𝑃1 ,  𝐹𝑃2 ,  𝐹3 ,  𝐹4 ,  𝐹𝑍 ,  𝐶𝑍 , and 𝑃𝑍  in the frequency range 8∼13 Hz. No 

significant difference in the average power of α waves at 𝐹𝑃1 (left frontal pole), 𝐹3 

(left frontal), and 𝐹𝑃2 (right frontal pole), 𝐹4 (right frontal) under general stimulation. 

The preferred images reduced the mean power of the 𝛼 waves in the 𝐹3 and𝐹𝑃1 , 

meaning that these images evoked positive emotions among the users. 

When respondents were exposed to disliked images, the average strength of the 

wave in the right frontal pole decreased, indicating that these images triggered 

negative feelings. Table 1 examines the strength of α waves in the 𝐹𝑃1  and 𝐹𝑃2 

following stimulation with various image samples. The difference in the strength of 

the 𝛼 wave in the 𝐹𝑃1 and 𝐹𝑃2 helps to measure a subject's emotional state, offering 

designers with user preferences through emotion.  
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Table 1. Power of α waves in 𝐹𝑃1 and 𝐹𝑃2 analyzes. 

Number of the Image 𝑭𝑷𝟏 𝑭𝑷𝟐 𝑭𝑷𝟏/𝑭𝑷𝟐 Features 

1 3.562 4.245 0.84 Like 

2 4.158 3.465 1.20 Dislike 

3.4. Perceptual image semantics’ factor analysis 

The factor analysis was applied to reduce a few complete image vocabularies 

from the perceptive component. Exploratory factor analysis (EFA) was applied to the 

relationship between variables. The EFA value was close to one, and the correlation 

between the variables was higher. If the EFA measure is greater than0.7, then this 

analytic approach can be used. This method reduces the dimensionality while 

retaining essential perceptual attributes. Moreover, EFA also helps in uncovering the 

latent patterns within the data, thereby enhancing the interpretability of the 

perceptual image semantics. This approach refines the relationship between the user 

emotions and the product design to deliver more focused and impactful results. 

3.5. Improving interactivity and user experience using an intelligent sea 

lion optimization -resilient long short-term memory (ISLO-RLSTM) 

The proposed ISLO-RLSTM model to optimize and improve biosensor-driven 

systems. ISLO boosts resilience by determining ideal settings for consistent 

performance in a variety of situations, while RLSTM efficiently analyzes time-series 

biosensor data and models user interactions in real time. ISLO-RLSTM improves 

product flexibility via sensor feedback, resulting in more customized and responsive 

experiences. ISLO-RLSTM forecasts trends and dynamically adjusts product 

behavior, enhancing engagement and user experience. 

3.5.1. RLSTM 

To create an RLSTM model that makes predictions about a user's emotional and 

physical states in real time based on biosensor data. As shown in Figure 4, 𝐸 =

{𝑦(0), 𝑦(1), … , 𝑦(𝑚)}(𝑦(𝑗) ∈ 𝑅, 𝑗 ∈ [0, 𝑚])  represents the sensor data generated by 

the biosensors, which track a user's emotional states over time, such as pleasure and 

arousal. A 𝑛-dimensional vector of physiological measures from 𝑚 sensing channels, 

including EEG signals, is represented by each data sample 𝑦(𝑗) . Let 𝑙𝑦  and 𝑙𝑧 

represent the input and predicted sequence lengths, respectively, for the RLSTM 

model. The prediction issue is formulated as follows: The model generates 𝑍 = �̂�(𝑡), 

which is the expected emotional state or interaction outcome at time 𝑡, given the 

input 𝑌 = 𝑦(𝑡−𝑙𝑦), 𝑦(𝑡−𝑙𝑦+1), … , 𝑦(𝑡−1). To simplify the model and focus on precise, 

real-time predictions, employ 𝑙𝑦 = 1. 
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Figure 4. Prediction of user interaction in biosensor. 

The fundamental challenge in the creation of an RLSTM model in user 

interaction prediction of product design driven by biosensor data is the variability in 

physiological data from different users and interactions. Physiological signals may 

vary widely depending on the user’s preference, the situation, or the way they 

interact with the product. Other signals, for example, pulse rate, are likely to be 

steadier in pattern, while a user’s emotional response to the qualities of a product, 

say visual attractiveness or haptic feedback, is likely to vary hugely depending on 

their mood. The primary objective of an augmented RLSTM model is to predict user 

engagement and emotional reactions accurately, while accounting for the wide 

variation in physiological signals between different users and situations. This makes 

the model better suited for application to a range of product designs and usage 

conditions. Figure 5 illustrates the structure of the RLSTM model. 

 

Figure 5. Structure of RLSTM. 

Unlike traditional LSTM models, the RLSTM model’s input gate incorporates 

both the input and forget gates. When users’ emotional states or interactions are 



Molecular & Cellular Biomechanics 2025, 22(4), 1028.  

10 

influenced by prior experiences or context, this design enables the model to update 

the cell state based on new inputs while retaining critical historical data. The updated 

model can be characterized using the following Equations (4) to (6). 

𝑒𝑠 = δ(𝑊𝑒 × [𝑦𝑠, 𝑔𝑠−1, 𝐷𝑠−1] + 𝑐𝑒) (4) 

�̂�𝑠 = tanh (𝑊𝑑 × [𝑦𝑠, 𝑔𝑠−1] + 𝑐𝑑 (5) 

𝑠 = 𝐷𝑠−1 × 𝑒𝑠 + �̂�𝑠 × (1 − 𝑒𝑠) (6) 

where 𝑦𝑠 is the current input (e.g., physiological measurements), 𝑔𝑠−1 is the previous 

hidden state, and 𝐷𝑠 is the updated cell state. The present input 𝑦𝑠 has a greater effect 

on capturing real-time changes in the user’s emotional and physiological state. The 

expected emotional or interaction state of the user is calculated as following 

Equations (7) to (9). 

P𝑠 = δ(W𝑜 × [𝑦𝑠, 𝑔𝑠−1] + 𝑐𝑜 (7) 

Q𝑠 = tanh (𝑊𝑞 × [𝑦𝑠, 𝑔𝑠−1] + 𝑐𝑞 (8) 

𝑔𝑠 = P𝑠 × tanh(D𝑠) + (1 − P𝑠) × Q𝑠 (9) 

After training the RLSTM model with biosensor data from user interactions, it 

is used to anticipate user reactions in real time while using the device. The model 

predicts the value �̂�(𝑡) for each time instant 𝑠 using the input sequence 𝑌 =

𝑦(𝑡−𝑙𝑦), 𝑦(𝑡−𝑙𝑦+1), … , 𝑦(𝑡−1). The anticipated emotional or physiological state �̂�(𝑡) is 

then compared against the actual observed values to compute an error 𝑒(𝑡) =∣ �̂�(𝑡) −

𝑦(𝑡)|. RLSTM detects a substantial change in user interaction or emotional reaction, 

suggesting a possible problem with the product design or user experience, if the error 

is beyond a predefined threshold 𝑇𝑒, i.e., 𝑒(𝑡) > 𝑇𝑒. A crucial factor in guaranteeing 

the model’s sensitivity to variations in user involvement is the error threshold 𝑇𝑒, 

which affects how well real-time feedback works for interactive product design. 

3.5.2. ISLO 

The ISLO was used, which can improve product design by optimizing biosensor 

integration, increasing user interface engagement, and fine-tuning the user 

experience using adaptive algorithms. It can effectively pick the best sensor setups, 

resulting in more responsive and tailored goods. ISLO’s optimization approach 

speeds the iterative design process, allowing for real-time revisions depending on 

user feedback. This results in novel designs that are more intuitive and user-centered, 

which improves the whole product experience. 

1) Improvement of the Exploration phase 

Due to the inheriting characteristics of current solutions, newborn agents result 

in poor exploration search capacity throughout the ISLO exploration phase. To 

address this issue, a newly developed solution should satisfy two criteria: 

⚫ Carrying random features to guarantee a robust exploration phase 

capability. 
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⚫ Landing in a sufficiently respectable position. To increase the performance, 

a new, enhanced operation is implemented that takes advantage of both the 

individual’s history and the best global answer. 

The idea of a person’s past data comes from particle swarm optimization (PSO), 

including the bird swarm algorithm and the gaining-sharing knowledge algorithm. 

The second criterion is guaranteed by a piece of information from the world’s finest 

information, whereas the first requirement for the recently updated answer is 

guaranteed by knowledge about a person’s past with a random coefficient. 

Combining three vectors allows new ways to the global best solution (GBS), the best 

distinct tests, and the search space. In keeping with that idea, Equations (10) to (12) 

suggest the following new update method in ISLO to enhance exploitation 

possibilities. 

𝑑𝑖𝑓1 = (2𝑟1𝑌𝑏𝑒𝑠𝑡
ℎ − 𝑌ℎ) (10) 

𝑑𝑖𝑓1 = (2𝑟2𝑌𝑏𝑒𝑠𝑡
ℎ − 𝑌ℎ) (11) 

𝑌ℎ+1 = 𝑌ℎ + 𝐷 × 𝑑𝑖𝑓1 + 𝐷 × 𝑑𝑖𝑓2 (12) 

where 𝑌ℎ local represents the individual’s best position up to iteration ℎ, 𝑟1 and 𝑟2 

are random numbers in the interval [0, 1], 𝑑𝑖𝑓1 is the difference between the current 

position and the best solution discovered thus far, and 𝑑𝑖𝑓2 is the difference between 

the current position and the best solution discovered throughout the current 

individual’s history. In a few iterations, especially with the value 𝐷, Equation (12) 

focused on the search procedure with more data from both vectors, which will help 

the algorithm to know the most probable location in a larger jump. The effects of 

both factors are defined by two random numbers, 𝑟1 and 𝑟2. Additionally, they are 

essential to the updating process since they produce random characteristics for the 

operation, which enables ISLO to utilize both considerations and avoid the local 

minimum. When 𝑟1  and 𝑟2  are absent, the reorganized location is continuously 

impacted by the similar proportion of the best representative and its experience 

throughout generations, which reduces population diversity. 

2) Improvement of the Exploitation phase 

According to the observations, ISLO takes benefits of the GBS while roaming 

about to produce fresh, untapped options. As a result, the algorithm’s exploitation 

potential in multidimensional space is limited, as the genuine GBS can exist in the 

opposite direction of the present GBS. The RLSTM method enables ISLO to conduct 

faster searches during exploitation. RLSTM has been effectively applied to 

grasshopper optimization algorithms, grey wolf optimization, and other applications. 

First, Equation (13) improves exploitation. Because of the large value of 𝐷 , the 

generated result jumps in a limited range around the 𝑌𝑏𝑒𝑠𝑡 solution, and the normal 

variable 𝐷  guarantees that the newly produced result is broken in an arbitrary 

direction for every generation. 

𝑌ℎ+1 = 𝑌𝑏𝑒𝑠𝑡 + D 𝑁(0, 1)(2𝑟3𝑌𝑏𝑒𝑠𝑡 − 𝑌ℎ) (13) 

Following that, RLSTM is used to generate the opposite solution (Equation 14) 

of the previously generated solution. As a result, ISLO searches for both the opposite 
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and present positions using the GBS at the same time, allowing ISLO to exploit more 

quickly and effectively. 

𝑌𝑜𝑝𝑝𝑜
ℎ+1 = 𝐿𝐵 + 𝑈𝐵 − 𝑌𝑏𝑒𝑠𝑡 + 𝑟3(𝑌𝑏𝑒𝑠𝑡 − 𝑌ℎ+1) (14) 

ISLO-RLSTM technique enhances product design through biosensors, bringing 

in interaction and satisfaction among customers. The improvement in parameters of 

RLSTM increases predictions about user preferences based on biosensor inputs 

accurately, and its adaptive learning enables strong robustness to fluctuations in 

inputs. This technique also lowers the processing cost as its parameter adjustment is 

optimized and provides real-time responses and smooth interaction with interactive 

systems. ISLO-RLSTM also enhances system stability, enabling the effective 

regulation of noise and uncertainty in sensor data. With its ability to be applied to 

various biosensor types, it thus expands its application in a wider range of product 

designs. More importantly, the method fosters innovation by accommodating more 

customized and adaptive experiences for users. Algorithm 1 illustrates the 

pseudocode for the proposed ISLO-RLSTM approach. 

Algorithm 1 ISLO-RLSTM 

1: 𝐼𝑛𝑝𝑢𝑡 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑡𝑚𝑎𝑥 = 1000, 𝑁 = 50, 𝐷 = 30, 𝑙𝑦 = 1, 𝑇𝑒 = 0.5 

2: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑔𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠: 𝑌𝑏𝑒𝑠𝑡  , 𝑌ℎ  , 𝑔𝑏𝑒𝑠𝑡  𝑎𝑛𝑑 𝑔ℎ 
3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑓𝑜𝑟 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛: 𝑟1, 𝑟2 𝑎𝑛𝑑 𝑟3 

4: # 𝑅𝐿𝑆𝑇𝑀 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
5: 𝑓𝑜𝑟 ℎ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑡𝑚𝑎𝑥): 
6: # 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 
7:     𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑁): 
8:          𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑜𝑟 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑎 𝐺𝐵𝑆 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10)  
9:          𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑜𝑟 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11) 
10:          𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑑𝑖𝑓1 𝑎𝑛𝑑 𝑑𝑖𝑓2 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12)  
11:        𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 
12:     𝑌𝑏𝑒𝑠𝑡  =  𝑛𝑝. 𝑚𝑖𝑛(𝑌ℎ , 𝑎𝑥𝑖𝑠 = 0) 

13: # 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 

14: 𝑓𝑜𝑟 ℎ 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑡 𝑚𝑎𝑥): 
15:     𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑁): 
16:          𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘 𝑎𝑟𝑜𝑢𝑛𝑑 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (13) 
17:         𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (14) 
18:         𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐺𝐵𝑆 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 
19:             𝑌𝑏𝑒𝑠𝑡 = 𝑛𝑝. 𝑚𝑖𝑛(𝑌ℎ, 𝑎𝑥𝑖𝑠 = 0) 
20: # 𝐼𝑆𝐿𝑂 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑖𝑛𝑝𝑢𝑡: 𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠) 
21: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑔𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4) 
22: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒′𝑠 𝑚𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5) 
23: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 
24: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7) 
25: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8) 
26: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9) 
27: #𝑅𝐿𝑆𝑇𝑀 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟𝑠 
28:     𝑒𝑟𝑟𝑜𝑟 =  𝑛𝑝. 𝑎𝑏𝑠(𝑔𝑆 − 𝑎𝑐𝑡𝑢𝑎𝑙_𝑠𝑡𝑎𝑡𝑒) 
29:     𝑖𝑓 𝑒𝑟𝑟𝑜𝑟 > 𝑇𝑒: 
30:                  𝑝𝑎𝑠𝑠 
31: 𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑏𝑜𝑡ℎ 𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒𝑠, 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 

32:  𝑌𝑏𝑒𝑠𝑡 
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4. Result 

4.1. Experimental setup 

To ensure effective processing of complicated data, the experimental setup uses 

Python 3.9 in the Anaconda environment on a high-performance workstation 

equipped with an NVIDIA GeForce RTX 3070 GPU, AMD Ryzen 9 5900X CPU, 

32 GB RAM, and 1 TB SSD. 

4.2. Analyzes of user perceptions images of cultural and creative 

products 

A total of nine adjectives were gathered from various sources, including the 

internet and publications, to describe the image of cultural and creative items, as 

represented in Table 2. The flavoring chair and teapots were designed with distinct 

shapes and styles to broaden customers’ awareness of chair and teapot shapes. Image 

vocabulary consists of responsiveness, user adaptability, real-time feedback, 

personalization, innovation, functionality, durability, cost-effectiveness, and 

simplicity. 

Table 2. Image vocabulary. 

Image vocabulary 

1 Responsiveness 

2 User Adaptability 

3 Real-time Feedback 

4 Personalization 

5 Innovation 

6 Functionality 

7 Durability 

8 Cost-effectiveness 

9 Simplicity 

The observed value in Mauchly’s test of sphericity could be interpreted as 

signifying a substantial difference between the unit matrix and the correlation 

coefficient matrix because the corresponding probability of the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 was near 

zero and below the significance level of 𝛼 (𝛼 = 0.05). The selection of words with 

high load factor values from each group was used to determine users’ image desire 

for cultural and creative things. These language terms included exceptional texture, 

unique style, inventiveness and intrigue, practicality, and simplicity. The dimension 

of the nine variables was reduced to four factors in the way described above, which 

allowed for the reflection of most of the information from the original variables. 3 

handle features of the teapot, 3 body features of the chair, and 6 decorative patterns 

were attained in Table 3. By randomly combining the system, six chromosomes 

were created. Table 4 displays the initial population of flavoring chair and teapot 

shapes and matching codes that were produced at random. 
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Table 3. Characteristics of the flavoring chairs and teapots. 

Characteristics Shapes and Patterns 

Body Features of Chair 

   

Decorative Patterns of 

Chair    

Body Features of Teapot 

 
 

 

Decorative Handle 

Patterns of Teapot 

  

 

Table 4. Initial population of flavoring chairs and teapots. 

Characteristics Flavoring Chairs and Teapots 

Body Features of Chair 

   

Decorative Patterns of 

Chair 

   

Each column’s bolded data in Table 5 indicates a heavier stress on one of four 

elements, accordingly. For example, the first element can explain classical, 

fashionable, and five perceptual image vocabularies. Thus, the general style type of 

creative and cultural products is primarily explained by the first factor; users’ 

demands for engaging and customized design are primarily reflected by the second 

factor; the high-quality design of the details of the product’s cultural and creative is 

primarily explained by users’ expectations in terms of the third factor; and users’ 

consumption tendencies are primarily reflected by the fourth factor. 
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Table 5. Rotated component matrix. 

Components 

 1 2 3 4 

Responsiveness 0.845 −0.112 0.215 0.034 

User Adaptability 0.812 0.021 0.123 −0.198 

Real-time Feedback 0.745 0.105 −0.098 0.198 

Personalization 0.153 0.872 −0.113 −0.089 

Innovation −0.011 0.854 0.192 −0.135 

Functionality −0.043 0.209 0.798 0.093 

Durability 0.121 −0.134 −0.109 0.882 

Cost-effectiveness −0.015 −0.098 0.124 0.855 

Simplicity 0.205 0.134 −0.089 0.798 

4.3. Performance metrics 

The performance metrics used in this research include mean absolute error 

(MAE), mean square error (MSE) and root mean square error (RMSE). Table 6 

depicts the outcomes of the research. 

⚫ RMSE 

It measures the average magnitude of prediction errors in the same units as the 

data, giving importance to higher errors because of the squared term. It provides an 

opportunity to assess how accurately the RLSTM model of biosensors predicts user 

emotional states and interactive behavior. Low RMSE values indicate a better fit 

between actual feedback and model output; this fit is crucial for the refinement of an 

interactive product. 

⚫ MSE 

It measures the average of squared differences between actual values and 

predicted values, depicting overall model accuracy with large errors. It’s very 

important for analyzing integration in biosensors and optimizing the performance of 

ISLO-RLSTM during iterative design. A lesser MSE ensures that the system 

functions well with diverse emotional and physiological states. 

⚫ MAE 

It is the calculation of mean absolute prediction errors that give direct measures 

of deviations without highlighting the large ones. They are used in the verification of 

the consistency of predictions through real-time user interaction. Low MSE ensures 

biosensor-based systems do not let the system drift from user engagement by 

producing the correct interpretation of emotional feedback. The outcome of metrics 

is shown in Table 6 and Figure 6. 

Table 6. Outcome of ISLO-RLSTM model. 

Performance Metrics RMSE MAE MSE 

ISLO-RLSTM [Proposed] 1.58 1.22 2.17 
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Figure 6. Outcomes of various metrics. 

5. Discussion 

The method’s feasibility was demonstrated using a flavoring chair and teapot 

design, but more cultural and home product models need to be developed for 

designers. They investigated the association between frequency domain features and 

enjoyment under cultural components but only looked at frequency domain 

characteristics. An ISLO-RLSTM was employed for verification, but future research 

should evaluate the evolutionary impacts of the methods and optimize them for 

enhanced system effectiveness and quality of the product design. The flavoring chair 

and teapot shape were easily disassembled, and future studies should focus on 

creating a gene bank of morphological traits to improve goods. The present method 

creates two-dimensional wireframe patterns, but future work might include three-

dimensional designs. The ISLO-RLSTM technique improves product design by 

optimizing biosensor data to make precise, real-time user experience predictions. 

This might be addressed in future research by expanding the process to incorporate 

three-dimensional designs, which would allow for a more realistic and immersive 

depiction of product conceptions. Such developments would provide designers with 

a greater understanding of consumer preferences and product functioning in addition 

to improving the designs’ aesthetic appeal. Its adaptive learning enables consistent 

performance even with dynamic and noisy inputs. 

6. Conclusion 

The results of the EEG experiment demonstrated that the frontal alpha 

asymmetry, which was employed to gauge the participants’ level of enjoyment when 

exposed to various cultural aspects, and the frontal α wave can represent the link 

between user emotion and product experience. By using this approach, designers 

might choose consumer preferences more objectively and steer clear of subjectivity 

when choosing cultural components. The perceptual location of creative and cultural 

items has been made possible by the user’s perceptual image inquiry. Mastering the 

image sentiments of the users for creative and cultural items, as well as statistically 
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measuring the degree to which the user prefers image semantics, both of which are 

of benefit to the improvement of product form design and optimization. 

To evolve product shapes, cultural elements from EEG experiments were used 

to code morphological characteristics, which were then crossed, mutated, and 

selected. Users’ perceptual image vocabulary was evaluated to determine individual 

fitness values. ISLO-RLSTM has evaluated the user interaction by reducing fatigue 

from repeated interactions. As a result, the ISLO-RLSTM method performed better 

in RMSE at 1.58, MAE at 1.22, and MSE at 2.17. The evolutionary design system 

was created and validated using a flavored chair and teapot design example. 

Limitations include the expensive cost of biosensor integration and the difficulty in 

effectively interpreting different physiological data. The future scope includes 

creating cost-effective, scalable biosensor technologies and integrating AI to 

improve real-time adaptation and customization. 
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