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Abstract: Art has been a medium of self-expression, evolving with technological 

advancements. Using physiological signals, biometric painting directly affects the artistic 

process. By bridging the gap between the artist’s internal emotional state and the visual 

depiction of the painting, this fusion provides an innovative approach to examining and 

expressing human emotions. The objective is to investigate biometric painting, integrating 

biosensor data into the creative process. To expand the creative process of biometric painting 

by utilizing biosensor data to establish emotion recognition in biometric painting. A biometric 

painting system was created that used users’ real-time biosensor data to gather visual 

components that represented their emotional and physical states. The data is preprocessed using 

a median filter to remove noise from the sensor data. Then, the features are extracted using 

wavelet transform (WT). The research introduces an Intelligent Remora Optimized Flexible 

Deep Belief Network (IRO-FDBN) to recognize emotion in biometric painting using biosensor 

data. The results indicate that the established model outperforms an emotion recognition model. 

The approach emphasizes the smooth combination of visual and affective feedback, allowing 

audiences to engage with the artwork on an advanced level. This provides a foundation for 

incorporating biosensor data into the creative process, advancing artistic exploration and 

effective content development. 

Keywords: biometric painting; biosensor; creative process; intelligent remora optimized 

flexible deep belief networks (IRO-FDBN) 

1. Introduction 

Biometric painting is an innovative and creative method that combines 

physiological information attained by biosensors into the creative process. The 

emotional state of the artist is reflected by biosensors, which measure concurrent 

signals including heart rate, brainwave activity (EEG), galvanic skin response, and 

even breathing patterns. Following their dispensation by software algorithms, these 

signals are rehabilitated into visual components like colors, patterns, and shapes. This 

results in artwork that vigorously depicts feelings or physical states Ibsen et al. [1]. By 

converting physiological information, such as heart rate, skin conductivity, and 

brainwave activity into optical components, biometric data enhances artistic 

expression. Through this relationship, artists dynamically externalize their feelings 

and creative work that mirrors their inner emotions. It provides a fresh method for 

examining the emotional state of artistic procedures by bridging the gap between 

inspiration and knowledge Saeed [2]. Biosensors are used in concurrent emotion 

revelation to trace physiological information, like heart rate and brain activity, and 

exchange them into active visual patterns. This system enhances artistic emotions by 

enabling artists to characterize their emotional states quickly. It generates an 

immersive experience by fusing emotion and technology, strengthening the bonds 

between artists and their audiences Hasnine et al. [3]. The perfect mapping of 
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physiological information to optical out puts is made possible by complex biometric 

painting technologies, including machine learning (ML) and signal processing. This 

method ensures particular evaluation and important adaptation of emotions into 

dynamic artwork. They turn the creative process into an active, emotionally attractive 

experience with superior accuracy and adaptability Ozkara and Ekim [4]. Figure 1 

shows the emotion analysis using biometric paintings. 

 

Figure 1. Unlocking emotions: Harnessing biometric data for real-time emotion 

Recognition. 

Through concurrent emotion recognition, biometric painting fosters a mutual 

emotional experience between the artist and the viewer. Dynamic images permit the 

audience to recognize the artist’s inner feelings, hopeful understanding, and 

contribution. The intensity and consequence of artistic meets are improved by this 

creative system that connects public expression with group knowledge Lin et al. [5]. 

Applications for biometric painting enlarge beyond the domain of art and comprise 

interactive activity, educational property for the growth of emotional aptitude, and 

treatment applications, including stress reduction and mood regulation. It offers a 

novel method of understanding and interacting with human emotions in a range of 

contexts by illustrating them artistically Morse et al. [6]. Biometric integration currents 

face challenges like controlling signal noise, ensuring accurate emotion-to-visual 

mapping and maintaining prominent stability between artistic autonomy and data-

driven restrictions. While maintaining the artist’s creative freedoms within a 

controlled, data-informed structure, it is challenging to understand multifaceted 

physiological signals, requiring complicated dispensation equipment Gnacek et al. [7]. 

Simulations of biosensors have served as a major source of encouragement for 

solving challenging human issues. In particular, the biomechanics have been several 

reports of attempts in the domain of robotics to enhance mechanical components by 

imitating organic structures. Tendons are composed and have been a key source of 

motivation in these physiological models for improving stabilizing joints and 

transferring force to the skeletal muscle Kim et al. [8]. The vast majority of people on 

the planet reside in cities, and it is predicted that within the next 30 years, three-

quarters of the global population will live in metropolitan areas. They are caused by 

the use of new toxic substances in building substances, decorations, and consumer 

goods, as well as by poor design and improper care. Although this is mainly unknown, 

it would seem that as individuals expend more time in enclosed spaces and air 

circulation rates decrease due to buildings having been more airtight for energy 
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effectiveness, amounts of exposure to the compounds in daily life should raise Persiani 

et al. [9]. 

The objective is to incorporate biosensor data into biometric painting so that 

emotions are recognized using physiological signals in real-time, enhancing the 

creative method. The research generates a system for emotion recognition utilizing 

Intelligent Remora Optimized Flexible Deep Belief Networks (IRO-FDBN). By 

including emotional and optical feedback, the method improves the creative practice 

and promotes a stronger emotional connection between the audience and the artwork. 

Contribution of the research 

By including biosensor data in the creative method, it investigates the integration 

of art and technology to provide a new method of emotional visual expression utilizing 

biometric painting. It fills the void between the emotional condition of the artist and 

the work they create. Key contributions are given below: 

• To improve the emotional depth and interaction of the artwork by giving artists a 

new platform to express their innermost feelings in real time. 

• The research uses wavelet transform (WT) for feature extraction after using 

sophisticated pretreatment methods, including median filtering, to clean sensor 

data. This ensures the accuracy and reliability of the data utilized for emotion 

recognition. 

• It explores the limits of emotion recognition in a biometric painting by 

introducing a unique Machine Learning (ML) technique called IRO-FDBN to 

identify emotions from biosensor data. 

• The outcomes show that the proposed method improved emotion identification, 

providing improved accuracy in recognizing emotional states through biometric 

information. 

To create the foundation for future developments in art, emotional expression, 

and affective content creation by integrating biosensor data into the creative process, 

creating new opportunities for audiences and artists alike. 

The remaining of the article is separated as follows: Section 2 summarizes the 

related article. Section 3 shows the method flow. Section 4 demonstrates the findings. 

Section 5 provides the discussion and Section 6 offers a conclusion. 

2. Related work 

This section provided earlier research on the integration of biometric information 

into creative processes, with an emphasis on biosensor-based emotion identification. 

It presents current strategies, techniques, and tools for bridging the gap between 

creative expression and physiological information. 

Macruz et al. [10] explored new technologies to improve well-being by 

developing biophilic 2D geometries and utilizing EEG biosensors and facial micro 

expression analysis to measure human reactions. Applications in architecture and 

interior design were made possible by the results, which rank geometries according to 

emotional valence, meditation levels, and preferences, highlighting technology-driven, 

human-centered methods for improved surroundings. 
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Wu et al. [11] suggested BioFace- three-dimensional (3D), a portable, single-

earpiece bio-sensing device that continually records facial motions and produces 

3Dfacial animations. It does 3D facial reconstruction from bio-signals without visual 

input by using cross-modal transfer learning. Numerous tests demonstrated excellent 

facial tracking accuracy, user authentication, and resilience to threats. 

Zhang et al. [12] created an academic painting sentiment dataset, and five deep 

learning (DL) approaches were tested to determine which one worked best. The final 

training accuracy of 54.17% was attained by refining the selected model. It improved 

knowledge of traditional academic painting and showed the promise of DL in Chinese 

cultural studies. 

Guo et al. [13] examined the sentiment expression of oil painting topics in 

communal settings using neural network (NN) algorithms and big data identification 

technology. It created a framework for using these technologies to create oil paintings. 

High-resolution images were displayed in the experiment, but the image optimization 

procedure took a long time roughly an hour. 

Bian and Shen [14] used an optimized Squeeze Net model for sentiment analysis 

along with the aesthetic qualities of Chinese paintings. The model’s classification 

accuracy was improved by two optimizations adding a residual network and widening 

the model. The results of the research demonstrated improved generality and 

categorization accuracy in the emotion analysis of Chinese paintings. 

Zhang et al. [15] suggested Inkthetics, a DL outline for evaluating the aesthetics 

of Chinese ink artworks. It outperformed present techniques by including handcrafted 

descriptions with a deep multi-view equivalent CNN (DMVCNN), improving artistic 

outcomes prediction by 5.7% and attaining a Pearson correlation of 0.843. 

Cheng [16] suggested a new method for predicting the distribution of emotions 

in abstract paintings by applying the weighted nearest neighbor algorithm. In addition 

to using encoder-decoder architecture with a blank attention mechanism, emotional 

features were extracted. With an accuracy of 80.7%, the system surpassed existing 

categorization methods. 

Liu et al. [17] examined immersive art in recent paintings, with exacting attention 

to substance semantics, protrusion mechanisms, and immersion. It draws attention to 

anthropology, semiotics, and psychology. It also examined the deficiency of education 

evaluation and the need for more systematic assessments. It concluded that enhanced 

learning potential and precision were presented by DL-based image design. 

Wang [18] suggested a conditional random field-based sentiment analysis system 

that synthesized emotional polarity weights and extracted key lines from lengthy 

artwork. When it comes to sentiment analysis, it showed greater accuracy and 

efficiency than conventional techniques. Experiments demonstrated its efficacy and 

stability through increased F-value, accuracy, and recall. 

Duan et al. [19] examined the growing desire from users for personalized design 

and suggested an imitative design approach based on AI sentiment analysis. It 

investigated the integration of AI emotion identification with personalized design, 

providing creative alternatives for future art derivative design, and validated the 

viability of this approach using a personalized design system powered by facial 

emotion features. 
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Muratbekova and Shamoi [20] presented a fuzzy set method that takes human 

subjectivity into account when classifying emotions in art. It developed the Wiki Art 

Dataset to remove fuzzy color-emotion relations utilizing 120 colors and 10 emotions. 

The outcomes enhanced emotion analysis by indicating strong associations, like fear 

with gray and support with orange, brown, and green. 

Xu and Nazir [21] emphasized how art design utilized artificial Intelligence (AI) 

and ML to generate artistic competence and coherent emotions. By enabling 

interactive, superior designs, these techniques have transformed the construction, 

allotment, and education of art. It offered how AI and ML were impacting art design 

in the present situation. 

Wędołowska et al. [22] created an ML technique that utilized the colors of images 

and videos to forecast emotions. It entails examining color extraction models, selecting 

superior techniques for analyzing the emotions in movies, and verifying the outcomes 

using an online survey. The system used baseline models and DL to unite clustering 

and histograms. 

Lu et al. [23] examined ML-based painting emotion prediction, tackling the 

struggles connected to the nuance of visual signals. The research restricted 

performance by emphasizing semantic fundamentals. A model used feature fusion to 

combine object information with facial emotion and position features. Tests using 

open datasets demonstrated that the suggested approach was more effective than 

baseline techniques. 

Tashu et al. [24] characterized emotions in art using a hybrid sentiment 

identification design that combined feature-level and modality attention. Through 

improved feature extraction and modality synthesis, the method facilitated genre-

specific searches suggested paintings based on mood, and efficiently classified 

artworks. WikiArt experiments confirm its effectiveness in three different ways. 

Chen et al. [25] integrated color classification models to present a quantitative 

approach to image emotion analysis. It provided consumers with thorough emotion 

analysis findings by combining important color attributes, assessing brightness 

saturation and black-and-white filling, and applying design principles to statistically 

analyze emotions. 

Nolazco-Flores et al. [26] used the EMOTHAW database to examine temporal, 

spectral, and cepstral properties from tablet-captured signals for the identification of 

stress, anxiety, and depression. Using fast correlation-based feature selection the 

accuracy of classification was enhanced via filtering and data augmentation. The 

accuracy of an SVM with a radial basis and leave-one-out approach was 4%–34% 

greater than that of baseline models. 

Kumar et al. [27] suggested a safe soft-biometric system that used AlexNet to 

classify age, gender, expressions, and spoofing and a 5-layer U-Net for emotion 

detection. Tested on six datasets, it beat current techniques and obtained 96.9% 

accuracy for expressions, improving patient-doctor interactions and medical data 

accessible worldwide. 

Martínez-Díaz et al. [28] assessed three lightweight face recognition models for 

masked face recognition, with an emphasis on periocular images and fine-tuning with 

masked faces. It used both simulated and actual datasets for experiments. The findings 
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demonstrated that fine-tuning masked images produced improved outcomes than the 

particular system and it was more efficient than modern methods. 

Particularly in the area of biomechanics tracking, the medical field is presently 

undergoing a substantial transition from central healthcare structures to residence-

based and customized surveillance approaches. Utilizing cutting-edge nanostructures 

to create innovative biosensors that are mobile for applications in cardiology is gaining 

traction. With an emphasis on their uses in blood pressure measurement, acceleration 

of pulse waves assessment, cardiac activity monitoring, and biosensors detection, it 

offers a thorough examination of the products to design ideas, working processes, and 

most current developments associated with such sensors Chen et al. [29]. 

Glaucoma is a leading cause of irreversible vision loss due to its complex 

relationship with intraocular pressure (IOP). These technological advancements are 

incorporated into clinical practice, highlighting their practical uses, patient-centered 

approaches, and opportunities for further advancement in IOP control. By combining 

theoretical ideas, cutting-edge medical technology, and useful clinical discoveries. 

These contribute an integrated and complete view of the IOP biosensor’s involvement 

in glaucoma, acting as a guide for ophthalmological academics, physicians, and 

professionals Wu et al. [30]. 

3. Methodology 

The research gathers data from biometric paintings and biosensor data (heart rate, 

EEG, etc.). Median filtering is used for data preprocessing to reduce noise and then 

feature extraction employs Wavelet Transform (WT) for time-frequency analysis and 

the IRO-FDBN is used for emotion detection to facilitate the development of emotion-

based artwork. Figure 2 shows the methodological flow. 

 

Figure 2. A novel methodological flow for biometric painting analysis using (IRO-

FDBN). 
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3.1. Dataset 

The dataset used in this research combines extensive biosensor information, 

including heart rate, skin conductance, EEG, and respiratory rate, which reveal 

information about the user’s mental and physiological states. These biological cues 

are essential for real-time comprehension of the user’s state of stress and emotional 

reactions. Together with the biomedical readings, the collection also contains 

dynamically produced biometric images, which are visual elements derived from the 

biomedical data points. Through the use of colors, textures, and structure, the paintings 

graphically depict the user’s psychological emotions; each visual component is linked 

to a certain physiological reaction. To provide a comprehensive knowledge of how 

changes in emotions appear in the biological artwork, information is included with the 

visual data to document the connections between these graphical components and the 

fundamental state of mind. Thorough examination of the relationship between bodily 

reactions and artistic depiction of emotions is made possible by the integration of 

physiology data and graphic outputs, which facilitates a more thorough examination 

of recognizing feelings. 

3.2. Data pre-processing 

The data is pre-processed using a median filter. The most recognized order-

statistics filter, which substitutes the median of the gray levels surrounding a pixel for 

the pixel’s value is given in Equation (1). 

𝑒̂(𝑦, 𝑥) =
𝑚𝑒𝑑𝑖𝑎𝑛
(𝑡, 𝑠) ∈ 𝑇𝑦𝑥

{ℎ(𝑡, 𝑠)} (1) 

𝑒̂Represents a function, that takes in two variables, 𝑦𝑎𝑛𝑑𝑥, the 𝑚𝑒𝑑𝑖𝑎𝑛 is being 

calculated over the pair of indicates (𝑡, 𝑠), where (𝑡, 𝑠)belongs to a set 𝑇𝑦𝑥. ℎ(𝑡, 𝑠) 

represents a function or value that depends on the pair (𝑡, 𝑠), potentially derived from 

some observations. 

The initial value of the pixel is used to compute the median. Due to their 

significantly lower blurring compared to linear smoothing filters of the same 

dimension, median filters are frequently utilized for certain types of random noise. 

3.3. Feature extraction 

The noise-removed data features are extracted using Wavelet Transform (WT). 

WT is a mathematical field that combines numerical analysis, harmonic analysis, 

Fourier analysis, and functional analysis. In domains like speech, images, and signal 

processing, as well as nonlinear sciences, it has emerged as a crucial technique. When 

used in conjunction with Fourier analysis, WT is regarded as an efficient time-

frequency analysis method. WT offers localized analysis in both the temporal and 

frequency domains. WT employs multi-scale analysis, which addresses issues that the 

Fourier transforms, by scaling and translating signals to obtain detailed information. 

WT is computed using Equation (2). 

𝑔𝑒𝑑𝑖 = 𝑔𝑒𝑑𝑖+1𝑔1; 𝑘𝑒𝑑𝑖 = 𝑘𝑒𝑑𝑖+1𝑘1, (𝑖 = 0,… .𝑚 − 1) (2) 
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where 𝑔1  represents the high-pass filter and 𝑘1  is the low-pass filter;𝑔𝑒𝑑𝑖  and lfcj 

stand for the high and low-frequency portions of the 𝑖𝑡ℎ  layer, respectively. WT 

predicts the high-frequency and low-frequency components independently and the 

predicted outcome for each of these components that are recreated. Furthermore, 

Equation (3) displays the wavelet reconstruction expression. 

𝑔𝑒𝑑𝑖 = 𝑔𝑒𝑑𝑖+1𝑔2 + 𝑘𝑒𝑑𝑖+1𝑘2, (𝑖 = 𝑚 − 1,… . ,1,0) (3) 

where 𝑘1 opposing computation is represented by𝑘2 and 𝑔1 opposing calculation is 

represented by 𝑔2. Through the provision of time-frequency localization, multi-scale 

analysis, and effective management of non-stationary data, it improves feature 

extraction. 

3.4. Emotion recognition using intelligent remora optimized flexible deep 

belief networks (IRO-FDBN) 

This section presents the IRO-FDBN for emotion identification, specific to 

biometric painting applications where user emotion recognition is essential for 

producing meaningful and customized artwork combined with FDBN and IRO 

algorithms. 

3.4.1. Flexible deep belief networks (FDBN) 

After the feature extraction, the data is classified using FDBN. A FDBN is an 

enhanced version of the traditional DBN designed to be more adaptable while learning 

challenging data. To better suit particular tasks, it is composed of layered Restricted 

Boltzmann Machines (RBMs) with movable layer connections and activation 

functions. Unsupervised pre-training using untagged data and supervised fine-tuning 

using labeled data are both components of the learning process. FDBNs are energy-

based models with weighted undirected linkages connecting the visible and buried 

layers. For a binary RBM, the energy function 𝐹(𝑢, 𝑔; 𝜃)  and the probability 

distribution model 𝑞(𝑢, 𝑔; 𝜃) are given in Equations (4) and (5). 

𝑞(𝑢, 𝑔; 𝜃) =
1

𝑤(𝜃)
exp(−𝐹(𝑢, 𝑔; 𝜃)) (4) 

𝐹(𝑢, 𝑔; 𝜃) = −∑ 𝑏𝑗
𝐶

𝑗=1
𝑢𝑗 −∑ 𝑎𝑖𝑔𝑖

𝐸

𝑖=1
−∑ ∑ 𝑧𝑗𝑖𝑢𝑗𝑔𝑖

𝐸

𝑖=1

𝐶

𝑗=1
= 𝑏𝑆𝑢 − 𝑎𝑆𝑔 − 𝑢𝑆𝑍𝑔 (5) 

where 𝑤(𝜃) is the regularization factor, 𝑢 is the visible layer’s key vector, 𝑔 is the 

hidden layer’s output vector,𝜃 are the parameters of the model, 𝐹(𝑢, 𝑔; 𝜃) is a function 

of the inputs and parameters, 𝑏𝑗𝑎𝑛𝑑𝑢𝑗 represents a set of variables, 𝑎𝑖  is the 

coefficients, 𝐶 is the total number of elements, 𝐸 is the sum of the elements in the 

locate, 𝑧𝑗𝑖  represents a set of iteration coefficients,  𝑍  is the weight vector, 𝑔 =

(𝑧, 𝑏, 𝑎)is the set of internal parameters,𝑏𝑆 is the summary of the coefficient, 𝑎𝑆is an 

aggregated or transformed version, and 𝑢𝑆  represents a vector, respectively. The 

following Equation (6) defines each unit’s parameters: 
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{
 
 

 
 

𝑢 = (𝑢1, 𝑢2, … . , 𝑢𝑗′)
𝑆𝑗′ ∈ 𝑀 ∗

𝑔 = (𝑔1, 𝑔2, … . , 𝑔𝑖′)
𝑆𝑖′ ∈ 𝑀 ∗

𝜔 = (𝜔𝑗′𝑖′)
𝑆𝑗′ ∈ [1, 𝑛′], 𝑖′ ∈ [1,𝑚′]

𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛′)
𝑆

𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑚′)
𝑆

 (6) 

𝑢, 𝑔, 𝜔, 𝑏, and 𝑎 are all sets of parameters, 𝑀 is a set that defines the allowable 

indices for 𝑢 and 𝑔, 𝜔 is a matrix that models interactions between two sets of indices 

𝑗 and 𝑖, with its dimensions being [1, 𝑛′] for 𝑗 and [1,𝑚′]for 𝑖, 𝑏 and𝑎 are additional 

sets of parameters, indexed by 𝑛 and 𝑚 respectively. Let the numbers for the visible 

and hidden layers be |𝑈| and |𝐺| , respectively. It is possible to determine the 

provisional prospect distributions of the concealed layer and the perceptible layer, 

respectively calculated by Equations (7) and (8). 

𝑞(𝑔𝑖|𝑢; 𝜃) = 𝜎(𝑏𝑖 +∑𝑈𝑗𝑍𝑖𝑗

|𝑈|

𝑗=1

) (7) 

𝑞(𝑔𝑖|𝑔; 𝜃) = 𝜎(𝑎𝑖 +∑𝑔𝑗𝑍𝑖𝑗

|𝐺|

𝑖=1

) (8) 

The sigmoid function is where Training the k-step contrastive divergence yields 

the internal parameter vector 𝑔 = (𝑧, 𝑏, 𝑎) the activation function is 𝜎(𝑦) =

(
1

1+𝑓−𝑦)
).A DBN then be created by stacking multiple RBMs. The visible layer 𝑢𝑆 

joint probability distribution is written as follows in Equation (9). 

𝑞(𝑢; 𝜃) =∑
𝑓−𝐹(𝑢,𝑔;𝜃)

∑ 𝑓−(𝑢,𝑔;𝜃)𝑢,𝑔𝑔

=
1

𝑤(𝜃)
∑exp (𝑢𝑆

𝑔

𝑧𝑔 + 𝑎𝑆𝑢 + 𝑏𝑆𝑔) =
1

𝑤(𝜃)
𝑓(𝑎

𝑆𝑢)∏(1+ exp (𝑏𝑖

𝐸

𝑖=1

+∑𝑧𝑗𝑖𝑢𝑗))

𝐶

𝑗=1

 (9) 

Unsupervised feature learning makes use of the FDBN. It offers enhanced 

generalization, flexibility, and representation learning through training and model 

architectural adaptation. Their proficiency in managing multi-modal data and non-

linear interactions makes them perfect for intricate jobs like biometric painting’s 

emotion recognition. In particular, FDBNs improve performance while dealing with 

unlabelled, noisy, or missing data. 

3.4.2. Intelligent remora optimization (IRO) 

Classified data is optimized using IRO to improve accuracy and reliability. It is 

a nature-inspired optimization technique that mimics the symbiotic relationship 

between remora fish and larger marine animals like sharks and turtles. In this algorithm, 

the remora fish represent smaller agents that seek to attach themselves to larger hosts 

in a search space. The phases of free travel and eating thoughtfully in IRO correspond 

to the stages of exploration and exploitation. The method uses one small step to try to 

transition between the exploration and exploitation stages. 

Exploration: 
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The global search is carried out by the IRO using the sailfish optimization (SFO) 

approach, which is based on the elite technique employed in the swordfish algorithm. 

The following is an expression for the position updating in Equation (10). 

𝑈𝑗(𝑠 + 1) = 𝑌𝑏𝑒𝑠𝑡(𝑠) − (𝑢𝑎𝑛𝑑 × (
𝑌𝑏𝑒𝑠𝑡(𝑠) + 𝑌𝑢𝑎𝑛𝑑(𝑠)

2
) − 𝑌𝑢𝑎𝑛𝑑(𝑠) (10) 

And the 𝑗𝑡ℎ remora’s nominee location is denoted by𝑈𝑗(𝑠 + 1). The best position 

is𝑌𝑏𝑒𝑠𝑡(𝑠). Remora’s random position is denoted by𝑌𝑢𝑎𝑛𝑑(𝑠). 𝑠is an Iteration number. 

A random number between 0 𝑎𝑛𝑑 1 is called𝑢𝑎𝑛𝑑. 

Furthermore, remora switches hosts based on its experiences. In this instance, a 

fresh candidate post is created by Equation (11). 

𝑈𝑗
′(𝑠 + 1) = 𝑈𝑗(𝑠 + 1) + 𝑢𝑎𝑛𝑑𝑚 × (𝑈𝑗(𝑠 + 1) − 𝑌𝑖(𝑠)) (11) 

And the 𝑗𝑡ℎ  remora’s nominee location is determined by𝑈𝑗
′(𝑠 + 1) . The 𝑗𝑡ℎ 

remora’s previous position is represented by𝑌𝑖(𝑠). Moreover, a correctly dispersed 

random integer is created utilizing a distribution of algorithm. 

Exploitation: 

To obtain food, remora clings to humpback whales. Remora’s moves are equal 

to humpback whales. In ROA, the local search is carried out using the whale 

optimization algorithm (WOA) approach. More precisely, the WOA bubble-net attack 

technique is utilized. The following are the updated position updates in Equations 

(12)–(15). 

𝑈𝑗(𝑠 + 1) = 𝐸 × 𝑑
𝑏 × cos(2𝜋𝑏) + 𝑌𝑏𝑒𝑠𝑡(𝑠) (12) 

𝐸 = |𝑌𝑏𝑒𝑠𝑡(𝑠) − 𝑌𝑖(𝑠)| (13) 

𝑏 = 𝑢𝑎𝑛𝑑 × (𝑎 − 1) + 1 (14) 

𝑎 = −(1 +
𝑠

𝑆
) (15) 

where 𝐸 is the division among the fare and the remora, it is evident from Equations 

(10) and (11) that is 𝑎  random number between  2 𝑎𝑛𝑑 1 . Additionally, 𝑎  drops 

linearly from 1 𝑡𝑜 2. 

Furthermore, the surrounding prey process in WOA is explained as follows, the 

remora produces a small stride to improve the superiority of the explanation given in 

Equations (16)–(19) 

𝑌𝑗(𝑠 + 1) = 𝑈𝑗(𝑠 + 1) + 𝐵 × 𝐸′ (16) 

𝐵 = 2 × 𝐴 × 𝑢𝑎𝑛𝑑 − 𝐴 (17) 

𝐵 = 2 × (1 −
𝑠

𝑆
) (18) 

𝐸′ = 𝑈𝑗(𝑠 + 1) − 𝐷 × 𝑌𝑏𝑒𝑠𝑡(𝑠) (19) 
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where the 𝑗𝑡ℎ remora’s recently produced position is defined by𝑈𝑗(𝑠 + 1), the remora 

feature, denoted by 𝐵  in IRO, is set to  0.1 . It increases the effectiveness of 

optimization by robustly managing nonlinear, multi-modal issues in dynamic 

situations. It enhances convergence speed, performs exceptionally well in multi-

objective optimization, and fits well with real-time applications. Model performance 

and accuracy are improved by IRO’s adaptability and capacity of the methods. 

IRO-FDBN enhances emotion recognition using real-time biosensor data by 

fusing the capabilities of IRO with FDBN. The model successfully navigates complex, 

hierarchical data by optimizing FDBN parameters with IRO, which improves its 

capacity to precisely identify and categorize emotional states. Higher performance 

results from the model’s ability to avoid local minima and converge more quickly due 

to this optimization process. By modifying the artwork according to the user’s 

emotional state, this method enhances the interaction between the user and the art and 

allows for dynamic emotion-driven feedback in applications, such as biometric 

painting. This results in individualized and captivating experiences. Algorithm 1 

shows the IRO-FDBN algorithm. 

Algorithm 1 Intelligent remora optimized flexible deep belief networks (IRO-FDBN) 

1: START 

2:  Step 1: Initialize Parameters 

3:             Initialize FDBN parameters (weights, biases, and other network parameters) 

4:             Initialize IRO parameters (𝑈, 𝑌𝑏𝑒𝑠𝑡, 𝑎𝑛𝑑, 𝑠) 
5:  Step 2: Pre-training using Unsupervised Learning (FDBN) 

6:            For epoch in range (max epochs): 

7:                           Forward pass through FDBN 

8:            For data in the dataset: 

9: 𝑢, 𝑔 = FDBN forward (data, FDBN parameters) 

10:                         Loss = Compute loss (𝑢, 𝑔) 
11:          Back propagate and Update FDBN weights 

12:                         FDBN update (FDBN parameters) 

13: Step 3: Optimization using IRO 

14:                                 Phase 1:  Exploration Stage 

15:                                           For iteration in range (max iterations): 

16:                                 Phase 2: Remora Optimization—Exploration (using SFO approach) 

17:                                           For remora in remoras: 

18:                                                 Update position exploration (remora, 𝑌𝑏𝑒𝑠𝑡 , 𝑢𝑎𝑛𝑑, 𝑠) 

19:                                 Phase 3: Remora Optimization—Exploitation (using WOA approach) 

20:                                            For remora in remoras: 

21:                                                  Update position exploitation (remora, 𝑌𝑏𝑒𝑠𝑡 , 𝑌𝑖, 𝑠) 
22:                                 Phase 4: Update FDBN parameters based on the optimized position from IRO 

23:                                            FDBN parameters = Update FDBN parameters with optimized positions (remoras) 

24:  Step 4: Fine-tuning using Supervised Learning 

25:                    For epoch in range (fine-tuning epochs): 

26:               Forward pass through FDBN 

27:                          For labeled data in the labeled dataset: 

28:  𝑢, 𝑔 = FDBN forward (labeled data, FDBN parameters) 

29:                                  Loss = Compute loss (𝑢, 𝑔) 
30:                         Back propagate and Update FDBN weights with supervised data 

31:                                  FDBN update (FDBN parameters) 

32:  Step 5: Final Evaluation and Emotion Recognition 

33:                          Predicted emotion = Predict emotion (training data, FDBN parameters) 

34:                          Print (predicted emotion) 

35:              END 
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4. Result 

On a Lenovo machine running Windows 8.1 and featuring an Intel i7 processor 

and 8 GB of RAM loaded, the CPLEX Ensemble Software. Using Python 3.10, the 

emotion analysis for biometric paintings is evaluated by IRO-FDBN. The performance 

of the IRO-FDBN system is evaluated using important metrics like throughput, 

processing time, accuracy, F1 score, precision, recall, and error rate. The purpose of 

these metrics is to evaluate the system’s capability to recognize emotions, handle 

information effectively, and reduce mistakes in real-time emotion recognition. 

Performance evaluation 

Accuracy: The percentage of outcomes that are accurately anticipated out of all 

predictions is known as accuracy. The IRO-FDBN model’s overall effectiveness in 

forecasting emotional states using biosensors and biometric painting data is measured 

by accuracy. It is calculated using Equation (20). Figure 3 determines the assessment 

of accuracy. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

 

Figure 3. Evaluation of the accuracy of IRO-FDBN in emotion recognition through 

biometric paintings. 

The algorithm’s accuracy increases with the number of iterations and ultimately 

achieves near 0.95 stability. This shows how effective the system is based on how well 

it performs and converges to high accuracy. As established by the process, the 

algorithm capably learns from data over time, ensuring enduring learning and 

optimization for enhanced accuracy and recital in succeeding rounds. 

Precision: It establishes the proportion of True Positive (TP)forecast among the 

entire system positive forecast like TP and True Negative (TF). Reducing False 

Positives (FP) in biometric emotion detection ensures that the recognized emotional 

states are relevant. Equation (21) is utilized to calculate precision. Figure 4 determines 

the estimation of precision. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (21) 

 

Figure 4. Optimizing emotion recognition with IRO-FDBN for accurate biometric 

painting. 

The model’s precision rises and stabilizes at almost 0.95 as the number of 

iterations increases, offering the method’s efficiency. This shows successful 

convergence and optimization, demonstrating that the system keeps learning and 

enhancing its predictions over time. The method is reliable for complex tasks due to 

its long-term learning description, which ensures permanent, accurate results. 

Recall: The proportion of values that the system accurately detects is known as 

recall or sensitivity. To reduce False Negatives (FN) in emotion identification, recall 

examines the IRO-FDBN’s capability to identify emotional states. Recall is computed 

using Equation (22). Figure 5 denotes the evaluation of recall rates. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (22) 

 

Figure 5. A dynamic evaluation for recall performance in biometric painting. 

This highlights how recall increases and stabilizes at about 0.8 with other 

iterations, offering the effectiveness of the proposed system. This reveals competitive 

learning and optimization for tasks like emotion recognition and biometric analysis, 
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ensuring that the system constantly enhances its potential without experiencing 

considerable performance loss over time. 

F1-Score: F1-Score stabilizes the substitute between precision and recall by 

fascinating the harmonic mean of the recall and precision. It presents a thorough 

assessment of the system’s recall and precision, primarily in circumstances with 

unstable data. F1-score is calculated using Equation (23). Figure 6 Assessments of f1-

score. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (23) 

 

Figure 6. Optimizing emotion recognition with f1-score evaluation. 

The F1-score increases and stabilizes at about 0.74 as the number of iterations 

rises, indicating the method’s long-term learning potential and efficient optimization. 

In addition to efficiently managing unbalanced data and preserving consistency across 

several iterations, it ensures strong performance in emotion recognition tests. 

Throughput: Throughput is the speed at which a system processes information 

tasks in a persuasive amount of time. It is often expressed in requisites of successful 

operations per second. The competence of the IRO-FDBN method in processing 

biosensors and optical data for emotion detection is examined. High throughput 

interactive biometric painting significance is necessary to identify emotions 

concurrently while ensuring the system can capably handle huge amounts of data. 

Figure 7 represents the assessment of the throughput of the suggested approach. 

 

Figure 7. Maximizing efficiency enhancing throughput for real-time emotion 

recognition in biometric painting. 
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As the IRO-FDBN model is trained auxiliary, the rising throughput with more 

epochs demonstrates the system processes data. The processing competence of the 

model enhances over time, attaining superior throughput ideals by later epochs after 

starting with a lower throughput at the start. This implies that when the system is 

trained, its capacity to extract features and identify emotions improves. This illustrates 

a rise in throughput to measure system performance over time, influential when further 

training yields deteriorating or when the finest point is reached for the best emotion 

recognition results. This development underlines the model’s development in learning 

from biosensor data. 

Processing time: Processing time is the overall amount of time that a computer 

system or algorithm needs to finish a given task, including the time needed for data 

input, processing, and output generation. This assesses the effectiveness of IRO-

FDBN in completing tasks including emotion identification, feature extraction, and 

biosensor data preprocessing based on processing time. The technology is appropriate 

for concurrent applications, such as the creation of biometric paintings, due to efficient 

processing that saves time. Figure 8 shows the processing speed of the proposed 

system. 

 

Figure 8. Processing time reduction in IRO-FDBN for efficient emotion recognition. 

The processing time is 13.8 seconds at epoch 1 and gradually drops to 0.8 seconds 

by epoch 10. Efficiency gains become less significant with time, as evidenced by the 

rate of decline decreasing as training increases. By the last epochs, the processing time 

has stabilized below 1 second, indicating that the system has reached a point where 

more preparation output reduces processing time returns. This behavior demonstrates 

that the model steadily finds a stable, efficient performance stage after initially 

optimizing quickly. 

Time delay: The outcome of time delay on system performance is investigated 

through error values and outcomes from delays between input and output. Systems 

locate more complex to adjust quickly as time delays increase, leading to larger 

differences between normal and concrete outputs. This looks into how delays impact 

executive and prediction accuracy with the objective of the best potential equilibrium 

between reducing time delays and control error values in a significant phase of 

concurrent systems like communication networks. Figure 9 shows the error rate for 

the proposed method. 
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Figure 9. Impact of time delay error on emotion recognition. 

As the time delay increases, the system’s error number either climbs or stays the 

same, depending on how successfully the input is processed and emotions are 

identified. Higher errors, which are caused by data noise or processing limitations, 

indicate, lower accuracy, whereas lower or consistent errors suggest better accuracy. 

Since longer delays impair real-time feedback, which damages the artist’s creativity 

and audience engagement, this relationship is essential for system optimization. To 

amplify the exactness of emotion recognition and make the model more responsive 

and efficient for real-time artistic creation, delays decreased or data processing 

improved. 

Skin conductance: It is recognized as Galvanic Skin Response (GSR) is a 

dimension of the skin’s electrical conductivity that varies depending on the amount of 

moisture (sweat) present. Sweat glands regulate this moisture and are impacted by the 

sympathetic nervous system. Higher skin conductance results from increased sweating 

production brought by an increase in emotional or physiological arousal. Skin 

conductance is utilized to monitor physiological or emotional reactions to various 

situations, such as being exposed to stresses or incentives. Figure 10 demonstrates the 

evaluation of skin conductance over time. 

 

Figure 10. Tracking skin conductance for enhanced biometric emotion recognition. 

This is important since it shows the connection between time, raw skin 

conductance data, and the 3-point rolling average. It reduces the effect of natural 

differences in the body. In addition to selection to understand how physiological or 

emotional states change concurrently, this rolling standard assists in the recognition of 
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enduring trends, like a reliable increase in skin conductance over time. It is particularly 

practical in research involving stress, emotions, or other psychological conditions 

since it allows for a more precise examination of individuals’ mental or physical 

conditions. 

5. Discussion 

To investigate the significance of emotion analysis in biometric paintings by 

using biometric data to analyze and describe emotional conditions. The objective was 

to enhance the accuracy and emotional affluence of biometric artwork by analyzing 

physiological conditions that were interrelated between emotional changes, like 

variations in skin conductance. The IRO-FDBN system capably managed biosensor 

data, displaying an amplified throughput with time and attaining superior accuracy, F1 

score, precision, and recall with each iteration. Furthermore, the model’s shorter 

processing time determined superior efficacy, which qualifies for concurrent 

applications like dynamic biometric painting, where emotional conditions play a 

crucial function in the method of creating art. By precisely detecting minute emotional 

changes in biological sensor data, such as respiration and EEG impulses, the suggested 

IRO-FDBN overcomes difficulties in identifying emotions from biometric drawing. 

The IRO enhances model performance by lowering overfitting and improving 

resolution. It enables immediate handling and adaption to a variety of sensor 

information, facilitating accurate and variable detection of emotions. As a result, 

emotion detection techniques become more reliable and effective. In the environment 

of biometric painting, the suggested IRO-FDBN model has several improvements over 

alternative models. It provides a more comprehensive depiction of the user’s physical 

and mental reactions by integrating biosensor data, including conductivity of the skin, 

cardiac rate, and EEG, to precisely record the state of mind. By increasing learning 

effectiveness, the IRO improves accuracy and speeds up resolution. FDBN 

adaptability also makes it possible to recognize emotions in real-time, which makes it 

ideal for dynamic, participatory processes of creativity like biological painting. The 

resource will be added between the source and destination by the process of 

introducing. 

6. Conclusion 

Emotion analysis with biometric paintings was important since it traced and 

exhibited emotional conditions concurrently, adding to the creative prosperity and 

genuineness by including physiological information. The aim utilized biosensor data 

to assess and suggest emotional conditions to create dynamic biometric paintings. The 

findings showed that the IRO-FDBN method demonstrated enhanced throughput and 

decreased processing times over time, allowing for successful concurrent applications, 

and it forecasted emotional states with excellent accuracy, F1-score, precision, and 

recall. The IRO-FDBN model demonstrated that accuracy achieves 0.95, precision 

achieves 0.95, recall of 0.80, and F1-Score of 0.74. They showed a balanced efficiency, 

stabilizing at 0.74. By epoch 10, the processing time has reduced from 13.8 seconds 

to 0.8 seconds, indicating effective optimization. The influence of exterior variables 

that prejudiced skin conductance ability and possible issues managing data noise were 
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drawbacks. By adding more physiological sensors, and expanding the systems used to 

other interactive art forms, future research investigated boosting model resilience and 

capturing a superior range of emotional expressions. 
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