
Molecular & Cellular Biomechanics 2025, 22(2), 1093. 

https://doi.org/10.62617/mcb1093 

1 

Article 

Research on the effect of biosensing technology on the dissemination of 

health information in ideological and political education 

Ruirui Zhao 

Longdong University School of New Energy, Qingyang 74500, China; Zrr20231202@163.com 

Abstract: Biosensing technologies, which monitor physiological responses such as Heart 

Rate Variability (HRL), Skin Conductance Level (SCL), and Electroencephalogram (EEG) 

activity, offer a novel approach to enhancing the dissemination of health information in 

ideological and political education (IPE). In this context, health information encompasses 

topics such as mental health, stress management, and healthy lifestyle practices, all crucial to 

students’ overall well-being. Traditional health education methods cannot often capture real-

time physiological and emotional responses, which can improve engagement and learning 

outcomes. This research explores the effectiveness of biosensing technology in enhancing the 

dissemination of health information within IPE. It examines how physiological data can be 

utilized to assess student engagement, emotional responses, and learning outcomes related to 

health. A mixed-methods approach was adopted, combining quantitative data from wearable 

biosensors (heart rate monitors, Galvanic Skin Response (GSR) sensors, EEG headsets) with 

qualitative feedback from students. Physiological data were preprocessed using signal 

filtering techniques, such as the Savitzky-Golay Filter, and features such as heart rate 

variability, skin conductance, and EEG alpha waves were extracted using the Kalman Filter 

(KF). A Modified Runge-Kutta Optimizer Integrated with Deep Belief Networks (MRKO-

DBN) classifier was employed to predict student engagement based on these features. The 

research revealed that physiological responses, particularly heart rate variability and skin 

conductance, were strongly correlated with student engagement. The MRKO-DBN model 

achieved accuracy in predicting engagement. Qualitative feedback further confirmed that 

Biosensing technology significantly improved students’ engagement. Integrating Biosensing 

technology into health education within ideological and political contexts offers significant 

potential for enhancing student engagement and learning outcomes. By providing real-time, 

personalized feedback, it fosters a more interactive and responsive learning environment. 

Keywords: biosensing technologies; ideological and political education; health information; 

Modified Runge-Kutta Optimizer Integrated with Deep Belief Networks (MRKO-DBN); 
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1. Introduction 

Health information plays a progressively important role in current IPE [1]. As 

civilizations evolve and face new tasks, the integration of health-related knowledge 

into educational structures is vital for shaping people who are not only politically 

aware but also physically and mentally healthy. In this context, the dissemination of 

health information includes a broad range of topics, from physical well-being to 

mental health, and includes practical knowledge, societal norms, and policies that 

guide individuals towards a healthier lifestyle [2]. The importance of integrating 

dissemination health information into IPE lies in its potential to adopt a complete 

view of individual and collective well-being, which is fundamental for national 
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development [3]. Traditionally, this education focused on fostering political 

awareness, moral integrity, and social responsibility. However, with the development 

in the complexity of society and globalization, this education has expanded to the 

scope of health problems that influence the effectiveness of individuals in 

contributing to society. The promotion of health literacies in the IPE system can both 

help reduce the likelihood of adverse health outcomes and support the strengthening 

of social stability and national well-being [4]. 

It develops individual responsibility for the health of the person as well as the 

responsibility of society towards maintaining health standards [5]. This includes 

analyzing how socioeconomic status, education, political systems, and health are 

correlated. Students are supposed to learn how some government policies may have 

an impact on the health of people and communities [6]. Thus, focusing on social 

cohesiveness and national unity, the system of education endeavors to produce a 

population that is not only knowledgeable of the existing political infrastructure but 

also knows how politics influence the populace’s health [7]. Moreover, health 

information in IPE also plays a key role in determining community approaches 

toward healthcare schemes. By teaching students about the structure and function of 

healthcare systems, including the position of universal health coverage and access to 

medical services, educational programs help to align citizens with the goals of 

national health systems [8]. This integration assists in the fight against stigma and 

enables people with issues of mental health to seek treatment and human support. 

Thus, it promotes the development of a society with increased empathy and support 

for its members. The integration of health information into IPE is a step in the right 

direction in changing the culture of society to a healthier and more socially 

responsibility-oriented [9]. It enables learners to appreciate the role of health 

problems in social, political, and economic determinants and prepare for the essential 

role of enhancing the well-being of society. This shows that as public health 

challenges persist, health information in IPE will play an even more significant role 

in building health literacy, capable as well as health-oriented societies [10]. 

This research explores the efficiency of Biosensing technology in enhancing the 

dissemination of health information within IPE. 

Key contribution 

 Combining quantifiable data from wearable biosensors, such as heart rate 

monitors, GSR sensors, and EEG headsets, with qualitative responses from 

students. 

 Data preprocessing involved using the Savitzky-Golay filter to smooth 

physiological signals (heart rate, skin conductance, and EEG) and reduce noise. 

The KF was then employed for feature extraction, refining key metrics like 

heart rate variability, skin conductance, and EEG alpha waves. 

 An MRKO-DBN classifier was employed to predict student engagement levels 

based on these features. 

The remaining research is addressed in the sections that follow: Part 2 provides 

a summary of previous research. Part 3 presents the suggested method. In Part 4, the 



Molecular & Cellular Biomechanics 2025, 22(2), 1093.  

3 

results of using the approach were evaluated and explained. Part 5 describes the 

discussion of the research. The conclusion is shown in Part 6. 

2. Related work 

To minimize the generation of negative feelings and behavioral issues among 

college students and encourage their mental health development, Tao [11] examined 

the concept of mastering the fundamental psychological condition of students using 

the support of online political and ideological learning classrooms and also explored 

the mechanism of influence between the students’ mental health and proposed 

intervention recommended accordingly. 

To detect health misinformation, Zha et al. [12] suggested a model that 

combined peripheral-level variables like language, sentiment, and user behavioral 

characteristics with central-level features like dependent features. It further 

represented the characteristics of user engagement, the following behavioral aspects 

were stated: Starting a conversation, interacting with others, having an impact, 

mediating relationships, and being independent of information. 

The conventional data control method and data categorization technique were 

improved in Li et al. [13] and an effective cloud-based online learning administration 

system was proposed that might be an excellent online education task. It was 

impossible to separate the control of IPE from the development of students’ ideal 

personalities and high moral standards. Students serve as teachers’ tools in the 

traditional IPE setting and face-to-face communication between teachers and 

students was essential for the successful development of college students’ IPE in the 

traditional setting. 

To enable keep track of vital signs and identify biological and psychological 

alterations in students, Souri et al. [14] suggested an Internet of Things (IoT)-based 

approach for student healthcare monitoring. The model analyzes data using Machine 

Learning(ML) techniques; the support vector machine has the greatest accuracy, at 

99.1%. The model performs better than techniques for multilayer perceptron neural 

networks, random forests, and decision trees. 

Using the hierarchical regression test, Zhao and Jinle [15] examined the 

integrated development and implementation of IPE and Ideological and Ethical 

Education (IEE) in educational institutions based on the beneficial psychological 

character of entrepreneurship. The findings showed that there were significant 

differences in college students’ psychological qualities related to entrepreneurship by 

grade, gender, and family geography. IPE, IEE, and the psychological character of 

entrepreneurship were all influenced by entrepreneurial self-efficacy. College 

students’ innovation efficiency and the positive psychological aspects of 

entrepreneurship could be enhanced by the integrated building of IPE and IEE. 

Internet technology was proposed by Jiao and Yu [16] to re-invent the teaching 

method of the Ideological and Political (IAP) classroom. First, the significance of the 

IAP course was thoroughly examined, as was the precise definition and 

implementation procedure of MCT over the Internet. As well as a theoretical 

analysis of the synergy between MCT and IAP classrooms, the instructional situation 
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of cloud learning classes was explored from the perspective of the basic design and 

operation of Mobile Cloud Training (MCT) platforms. 

A platform for deep learning-based innovative IPE had been developed by Yun 

et al. [17] to increase restrictions on how multinational corporations might operate or 

limit their access to high-quality funding and trading for instruction. Quality analysis 

of information supervision was introduced to decrease the perception of social threat 

through appropriate strategic evaluation and execution. Companies utilized the 

realization ideological education strategy to solve domestic issues through economic 

ties. 

To enhance the evaluation effect of IPE, Wang [18] investigated artificial 

intelligence (AI) algorithms. It combined concepts from ML with the condition of 

political and ideological teaching currently to create a fuzzy statistical hierarchy 

process model of the quality of political and ideological teaching. Additionally, it 

built a model network framework using a three-tier structure based on fuzzy 

assessment features. 

The impact of educational providers and educational goals were among the 

many risk variables that were impacted in IPE. To enhance data awareness and the 

way that people thought about IPE, Feng and Yulong [19] presented the Deep 

Learning-Based Innovation Path Optimization Methodology (DL-IPOM) to improve 

the quality of IPE, DL-IPOM was combined with the political educational 

collaborative analysis. 

The use of biosensors for human health monitoring was examined by Muñoz-

Urtubia et al. [20]. With a primary emphasis on 13 journals and more than 881 

keywords, it examined 275 identifications published in 161 journals. It identified 

areas of innovation, cooperation, and technological obstacles that might direct future 

research and discovered an exponential tendency in biosensor research for health 

monitoring. The emphasized how crucial it was to find productive writers and deal 

with technical issues. 

The connection between political ideology and assessments of the COVID-19 

threat was examined by Calvillo et al. [21]. It expected conservatives to consider 

COVID-19 as less threatening because of the Republican leadership’s initial 

rejection of it and the politicized media coverage that occurred. The prediction was 

confirmed by two preregistered online studies. Conservative was linked to increased 

support for the ideas that the media had overstated the virus’s impact and that the 

virus’s propagation was a conspiracy, as well as a perception of less emotional 

vulnerability to the infection and a lower level of its severity. 

To address a gap in the current empirical evaluations of COVID-related 

behaviors, Young and Bleakley [22] proposed the ideological health spirals model 

(IHSM), which conceptualized relationship discussion, and media choices actions as 

results of identity-driven reasons shaped by political and psychological factors. The 

model described how social sorting, political polarization, and media fragmentation 

all contribute to communication gaps that lead to gaps in normative, efficacy-related, 

and attitudinal views, which in turn influence health behaviors. 

Communication has emerged at a historic intersection due to the Internet’s rapid 

expansion and the widespread usage of smartphones, and it had an enormous impact 

on opinions, habits, and lifestyles. College students had emerged as the primary user 
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group of micro-communication since they were the group that was most open to new 

concepts; the benefits and drawbacks of micro-communication’s impact on college 

students’ IPE were examined and focused improvement strategies were suggested to 

integrate micro-communication with these subjects and find agreement between the 

two groups Zeng et al. [23]. 

The political and ideological teaching in higher schooling had grown into a 

system that was both national and institutionalized, as demonstrated by Liu et al. 

[24]. It showed how political and ideological education methods institutionalize 

conformity and patriotism as suitable ideological perspectives for learners. It 

provided factual support for the formal instruction, party-led structures, and diverse 

activities that collectively comprise higher education political and ideological 

education. 

To enhance the quality of education, Xu [25] examined the ideological and 

political programs at universities, with the challenges and strategies of implementing 

meta-universe technology. It commenced by discussing how meta-universe 

technology affects the teaching of politics and ideology, emphasizing how it might 

improve the interaction and viability of instruction. But it also had issues with 

teacher preparation, technology integration, and unequal student involvement. 

3. Methodology 

 
Figure 1. Flow of methodology. 

A dataset of publicly available biosensing data was collected from wearable 

sensors, including heart rate monitors, GSR sensors, and EEG headsets, for analysis 

within the context of IPE. During the preprocessing stage, the physiological signals 

were filtered using signal processing techniques like the Savitzky-Golay Filter. For 

feature extraction, the KF was applied to extract key features, such as heart rate 

variability, skin conductance, and EEG alpha waves, which are indicators of student 
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engagement and emotional responses. Though the focus was on forecasting student 

engagement, a novel approach was developed by integrating the MRKO-DBN for 

enhanced classification. Application of this approach demonstrated increased 

efficiency of classifying and interpreting the data of students’ physiological states to 

generate more precise dissemination of health information about the level of their 

involvement during the lessons conducted within the framework of health education 

programs, as presented in Figure 1. 

3.1. Data collection 

Data has been collected from Kaggle source-https://www.kaggle.com/datasets 

/ziya07/bio sensing-health-education-dataset/data. This dataset has been intended to 

explore the relationship between physiological indicators, session appearances, and 

student commitment in health education situations. Essential physiological data 

features include Heart Rate (HR), which describes the reaction of the autonomic 

nervous system to being under stress or relaxed, and also Skin Conductance (SC), 

which measures the emotional arousal state and EEG activity which is particularly 

dominant by alpha waves, a description of the person’s state of cognitive 

engagement. 

3.2. Data preprocessing using savitzky-golay filter 

Physiological data were preprocessed using signal filtering methods, precisely 

the Savitzky-Golay filter. This method is used to increase signal-to-noise of raw 

physiological signals, like heart rate or skin temperature while preserving the 

significant data trends. The Savitzky-Golay filter applies polynomial smoothing to 

the signal, which improves its accuracy and reliability, ensuring that subsequent 

analysis or interpretation of the physiological data remains precise and informative 

for understanding health-related patterns in educational contexts. 

3.2.1. Savitzky-golay filter 

The noisy simulated EEG signal is subjected to the Savitzky-Golay filtering 

with different frame sizes and order values. While changing the values iteratively, 

effort should be taken to ensure that the polynomial’s order is not beyond the frame 

size. There are variations in the frame size and polynomial order, respectively. A 

spectrum of values is used to obtain and evaluate the filtered signal. To assess the 

pattern of filtering action for various parameter values, the correlation between the 

original simulated signals and the filtered signals for various values, frame size, and 

order is beneficial, as shown in Equation (1). 

𝐶𝑂𝑅 =
∑ (𝑊𝑗 − �̅�)(𝑊𝑗 − �̅�)𝑚

𝑗=1

∑ (𝑊𝑗 − �̅�)(𝑊𝑗 − �̅�)2𝑚
𝑗=1

 (1) 

Dataset 𝑊 = {𝑊1 … . . 𝑊𝑚}�̅�  is the sample mean in this instance and the 

dataset 𝑍 = {𝑍1 … 𝑍𝑚}�̅�, is the sample mean. If the correlation among the simulated 

signal and the Savitzky-Golay filtered signal is 1, and the associated frame size and 

order values are ideal, then the filtering is ideal. 
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3.3. Feature extraction using KF 

Features such as heart rate variability, skin conductance, and EEG alpha waves 

were extracted using the KF. The KF is an analytical method that increases the 

accuracy of such physiological signals by eliminating noise while updating the 

ongoing real-time calculations. Using these features, it explores how biosensing 

technology helps in an improvement of understanding the emotional and cognitive 

conditions and the subsequent, better distribution of dissemination health 

information in education. 

KF 

The KF is an analytical model that provides an estimate of the state of a 

dynamically evolving system based on probabilistic measures. The process of 

popularizing health information in IPE contributes to enhancing data accuracy to 

facilitate decision-making and response strategies. Equations (2) and (3) examine the 

system model. 

𝑤𝑙+1 = 𝐸𝑤𝑙 + 𝑥𝑙 (2) 

𝑧𝑙 = 𝐺𝑤𝑙 + 𝑢𝑙 (3) 

where the state is denoted by 𝑙  and the time step by 𝑙 . The measurement is 

represented by 𝑧𝑙, the state transitions and measurement matrices are represented by 

𝐸 and 𝐺 , and the zero-mean processing noise and measurement noise, with 

covariance’s 𝑅and 𝑄, respectively, are represented by 𝑥𝑙 and 𝑢𝑙. KFs are provided in 

Equations (4)–(8). 

𝑂𝑙
− = 𝐸𝑂𝑙−1

+ 𝐸𝑆 + 𝑅 (4) 

𝐿𝑙 = 𝑂𝑙
−𝐺𝑆(𝐺𝑂𝑙

−𝐺𝑆 + 𝑄)−1 (5) 

�̂�𝑙
− = 𝐸�̂�𝑙−1

+  (6) 

�̂�𝑙
− = �̂�𝑙

− + 𝐿𝑙(𝑧𝑙 − 𝐺�̂�𝑙
−) (7) 

𝑂𝑙
+ = (𝐽 − 𝐿𝑙𝐺)𝑂𝑙

− (8) 

where 𝐽  represents the identity matrix for  𝑙 = 1,2, … ., . A priori estimates of the 

condition 𝑤𝑙given measurement up to and including time 𝑙 − 1 are denoted by the 

symbol �̂�𝑙
−. A posteriori estimates of the condition 𝑤𝑙 given measurement up to and 

included time are denoted by �̂�𝑙
−.𝑙, 𝑂𝑙

−is the probability of the subsequent estimate 

error 𝑤𝑙 − �̂�𝑙
−,𝐿𝑙 is known as Kalman benefit, and 𝑂𝑙

− represents the probability of 

the a priori measurement error𝑤𝑙 − �̂�𝑙
+. Initialization of the Kalman filter is done 

using Equations (9) and (10). Where the expectation operator is 𝐹(. ). 

𝑤0
+ = 𝐹(𝑤0) (9) 

𝑂0
+ = 𝐹[(𝑤0 − 𝑤0

+)(𝑤0 − 𝑤0
+)𝑆] (10) 

The KF, which is the minimum variance filter, minimizes the trace of the {𝑥𝑙} 

and {𝑢𝑙}  are Gaussian uncorrelated, and white. Although nonlinear filters might 
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work better, the Kalman filtering is the minimum-variance linear filter when {𝑥𝑙} and 

{𝑢𝑙}  are non-Gaussian. The least variance filter may be obtained by modifying 

Equations (4)–(8) if {𝑥𝑙}and {𝑢𝑙} have correlations or are colored. The equality 

criteria have been satisfied by the approach. Equation (11) is implemented, or the 

limitations of inequality Equation (12) is applied. 

𝐶𝑤𝑙 = 𝑐 (11) 

𝐶𝑤𝑙 ≤ 𝑐 (12) 

where 𝑐  represents a known vector and 𝐶  represents a known matrix. Finding a 

condition estimate �̂�𝑙 that corresponds with the limitations may be desirable in this 

situation by Equations (13) or (14). 

𝐶�̂�𝑙 = 𝑐 (13) 

𝐶�̂�𝑙 ≤ 𝑐 (14) 

3.4. MRKO-DBN 

The MRKO-DBN provides a more sophisticated solution for improving and 

interpreting biosensing data concerning IPE. This method is likely to integrate the 

iterative optimization capability of MRKO techniques, and the classification 

functionality of DBN. The MRKO algorithm helps in achieving faster convergence 

in DBN through updates of parameters and can learn non-linear biosensing data, like 

heart rate variability, skin conductance, and EEG features. Thus, applying MRKO 

for optimization, the DBN model can leverage real-time physiological data to better 

predict the level of student engagement and their emotional reactions. This results in 

better dissemination of health information, individualized teaching and learning, as 

well as better educational achievements. The integration of MRKO with DBN thus 

offers a solid foundation for enhancing biosensing technology interface and 

educative content in IPE. Algorithm 1 shows the pseudo-code of MRKO-DBN. 

Algorithm 1 MRKO-DBN 

1: 𝒊𝒎𝒑𝒐𝒓𝒕 𝑛𝑢𝑚𝑝𝑦 𝒂𝒔 𝑛𝑝 

2: 𝒊𝒎𝒑𝒐𝒓𝒕 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤 𝒂𝒔 𝑡𝑓 

3: 𝒇𝒓𝒐𝒎 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝒊𝒎𝒑𝒐𝒓𝒕 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑟 

4: 𝒅𝒆𝒇 𝒍𝒐𝒂𝒅_𝒃𝒊𝒐𝒔𝒆𝒏𝒔𝒊𝒏𝒈_𝒅𝒂𝒕𝒂(): 
5:     𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 =  𝑛𝑝. 𝑙𝑜𝑎𝑑(′𝒃𝒊𝒐𝒔𝒆𝒏𝒔𝒊𝒏𝒈_𝒅𝒂𝒕𝒂. 𝒏𝒑𝒚′)   
6: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 

7: 𝒅𝒆𝒇 𝒑𝒓𝒆𝒑𝒓𝒐𝒄𝒆𝒔𝒔_𝒅𝒂𝒕𝒂(𝑑𝑎𝑡𝑎):     
8:     𝑠𝑐𝑎𝑙𝑒𝑟 =  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑟() 

9:     𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎 =  𝑠𝑐𝑎𝑙𝑒𝑟. 𝑓𝑖𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑑𝑎𝑡𝑎) 

10: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑐𝑎𝑙𝑒𝑑_𝑑𝑎𝑡𝑎 

11: 𝒄𝒍𝒂𝒔𝒔 𝑫𝑩𝑵: 
12: 𝒅𝒆𝒇 __𝒊𝒏𝒊𝒕__(𝑠𝑒𝑙𝑓, 𝑙𝑎𝑦𝑒𝑟𝑠): 
13: 𝑠𝑒𝑙𝑓. 𝑙𝑎𝑦𝑒𝑟𝑠 =  𝑙𝑎𝑦𝑒𝑟𝑠 

14: 𝑠𝑒𝑙𝑓. 𝑚𝑜𝑑𝑒𝑙 =  𝑠𝑒𝑙𝑓. 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙() 

15: 𝒅𝒆𝒇 𝒃𝒖𝒊𝒍𝒅_𝒎𝒐𝒅𝒆𝒍(𝑠𝑒𝑙𝑓): 
16: 𝑚𝑜𝑑𝑒𝑙 =  𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙() 

17: 𝑓𝑜𝑟 𝑙𝑎𝑦𝑒𝑟 𝑖𝑛 𝑠𝑒𝑙𝑓. 𝑙𝑎𝑦𝑒𝑟𝑠: 
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Algorithm 1 (Continued) 

18:         𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(𝑙𝑎𝑦𝑒𝑟, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝒓𝒆𝒍𝒖′)) 
19:         𝑚𝑜𝑑𝑒𝑙. 𝑎𝑑𝑑(𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠. 𝐷𝑒𝑛𝑠𝑒(1, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝒔𝒊𝒈𝒎𝒐𝒊𝒅′))   
20:         𝑚𝑜𝑑𝑒𝑙. 𝑐𝑜𝑚𝑝𝑖𝑙𝑒(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 = ′𝒂𝒅𝒂𝒎′, 𝑙𝑜𝑠𝑠 = ′𝒃𝒊𝒏𝒂𝒓𝒚_𝒄𝒓𝒐𝒔𝒔𝒆𝒏𝒕𝒓𝒐𝒑𝒚′, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [′𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚′]) 
21:   𝒓𝒆𝒕𝒖𝒓𝒏 𝑚𝑜𝑑𝑒𝑙 
22: 𝒅𝒆𝒇 𝒕𝒓𝒂𝒊𝒏(𝑠𝑒𝑙𝑓, 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑒𝑝𝑜𝑐ℎ𝑠 = 10, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 32): 
23:     𝑠𝑒𝑙𝑓. 𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑒𝑝𝑜𝑐ℎ𝑠 = 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) 

24:     𝑑𝑒𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑠𝑒𝑙𝑓, 𝑋_𝑡𝑒𝑠𝑡): 
25: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑒𝑙𝑓. 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡) 

26: 𝒅𝒆𝒇 𝒎𝒓𝒌𝒐_𝒐𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒓(𝑚𝑜𝑑𝑒𝑙, 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 100): 
27:     𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠() 
28:     𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  0 
29:     𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟): 
30: 𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑔𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠() 

31: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑚𝑟𝑘𝑜_𝑎𝑑𝑗𝑢𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠(𝑝𝑎𝑟𝑎𝑚𝑠) 

32:         𝑚𝑜𝑑𝑒𝑙. 𝑠𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠)     
33: 𝑚𝑜𝑑𝑒𝑙. 𝑡𝑟𝑎𝑖𝑛(𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

34: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑚𝑜𝑑𝑒𝑙, 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

35: 𝑖𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 >  𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦: 
36: 𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

37: 𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠 

38: 𝑚𝑜𝑑𝑒𝑙. 𝑠𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑏𝑒𝑠𝑡_𝑝𝑎𝑟𝑎𝑚𝑠) 

39: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑜𝑑𝑒𝑙 
40: 𝒅𝒆𝒇 𝒎𝒓𝒌𝒐_𝒂𝒅𝒋𝒖𝒔𝒕_𝒑𝒂𝒓𝒂𝒎𝒔(𝑝𝑎𝑟𝑎𝑚𝑠): 
41: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠 =  𝑝𝑎𝑟𝑎𝑚𝑠 +  𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑛(∗ 𝑝𝑎𝑟𝑎𝑚𝑠. 𝑠ℎ𝑎𝑝𝑒)  ∗  0.01 

42: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠 

43: 𝒅𝒆𝒇 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒆_𝒎𝒐𝒅𝒆𝒍(𝑚𝑜𝑑𝑒𝑙, 𝑋, 𝑦):     
44:  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋) 

45:     𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑛𝑝. 𝑚𝑒𝑎𝑛((𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ==  𝑦))   
46: 𝒅𝒆𝒇 𝒎𝒂𝒊𝒏(): 
47: 𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 =  𝑙𝑜𝑎𝑑_𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎() 

48: 𝑋 =  𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑑𝑎𝑡𝑎(𝑏𝑖𝑜𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑑𝑎𝑡𝑎) 

49: 𝑦 =  𝑛𝑝. 𝑙𝑜𝑎𝑑(′𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡_𝑙𝑎𝑏𝑒𝑙𝑠. 𝑛𝑝𝑦′)   
50: 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑋_𝑡𝑒𝑠𝑡 =  𝑋[: 𝑖𝑛𝑡(0.8 ∗ 𝑙𝑒𝑛(𝑋))], 𝑋[𝑖𝑛𝑡(0.8 ∗ 𝑙𝑒𝑛(𝑋)): ] 
51: 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑒𝑠𝑡 =  𝑦[: 𝑖𝑛𝑡(0.8 ∗ 𝑙𝑒𝑛(𝑦))], 𝑦[𝑖𝑛𝑡(0.8 ∗ 𝑙𝑒𝑛(𝑦)): ] 
52: 𝑑𝑏𝑛_𝑚𝑜𝑑𝑒𝑙 =  𝐷𝐵𝑁(𝑙𝑎𝑦𝑒𝑟𝑠 = [64, 32, 16])   
53: 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝑚𝑜𝑑𝑒𝑙 =  𝑚𝑟𝑘𝑜_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝑑𝑏𝑛_𝑚𝑜𝑑𝑒𝑙, 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛) 

54: 𝑡𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑_𝑚𝑜𝑑𝑒𝑙, 𝑋_𝑡𝑒𝑠𝑡, 𝑦_𝑡𝑒𝑠𝑡) 

55: 𝑝𝑟𝑖𝑛𝑡(𝑓"𝑻𝒆𝒔𝒕 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚: {𝒕𝒆𝒔𝒕_𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 ∗  𝟏𝟎𝟎: . 𝟐𝒇}%") 

56: 𝒊𝒇 __𝒏𝒂𝒎𝒆__  ==  "__𝑚𝑎𝑖𝑛__": 
57: 𝑚𝑎𝑖𝑛() 

3.4.1. DBN 

DBN is a kind of neural network used for unsupervised learning and is 

architected with several layers of connected nodes. In health information 

dissemination, DBNs can recognize and enhance patterns in Biosensing data in IPE 

communication. DBN training using a greedy learning method. To estimate a lower 

bound for the log probability assigned to the data by the DBN. Consider learning a 

DBN that has two hidden feature levels. Stacks of Restricted Boltzmann Machines 

(RBMs) are used in the greedy technique. Then proceed by using parameter 𝑋 to 

train the bottom RBM. The combined distribution of the RBM 𝑜(𝑢, 𝑔1|𝑋1) is an 

important observation. 𝑋1  is the identical value of a DBN where 𝑋2 = 𝑋1𝑆
 is the 

weight of the second layer. To improve the fitness of the training data, by separating 
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and improving 𝑋2 . The DBN’s for any approximate distribution  𝑅(𝑔1|𝑢) . The 

following Equation (15) is the variation lower bound for log-likelihood. 

𝐼𝑛 𝑜(𝑢|𝑋1, 𝑋2) ≥ ∑ 𝑅(𝑔1|𝑢)[𝐼𝑛 𝑜(𝑔1|𝑋2) + 𝐼𝑛 𝑜(𝑢|𝑔1, 𝑋1)] + 𝒢(ℛ(𝑔1|𝑢))
𝑔1

 (15) 

where the entropy function is denoted by 𝒢(. ) . It establishes ℛ(𝑔1|𝑢) =

𝑜(𝑔1|𝑢,  𝑋1) and is defined by RBM. First, the bound is tight for 𝑋2 = 𝑋1𝑆
, where 𝑅 

is the true factorial posterior of the DBN over 𝑔1. The true probability of the model 

will therefore rise in response to any increment in the bound. Using frozen 𝑋1 to 

maximize the bound of Equation (15) is equivalent to maximizing. This is the same 

as using vectors from 𝑅(𝑔1|𝑢) to train the second layer RBM, as data shown in 

Equation (16). 

∑ 𝑅(𝑔1|𝑢)𝐼𝑛 𝑜(𝑔1|𝑋2)
𝑔1

 (16) 

By using 𝑔2 vectors obtained from a second RBM to train a third RBM, this 

approach can be expanded. The log-likelihood itself may fall, but the lower limit on 

the log-likelihood is assured to be improved and it initializes𝑋3 = 𝑋2𝑆
. Several 

iterations of this greedy, layer-by-layer training produce a deep, hierarchical model. 

The total number of hidden elements of the new RBM does not have to match the 

number of visible components of a lower-level RBM because installing a new layer 

𝑘 usually does not initialize𝑋𝑘 = 𝑋𝑘−1𝑆
. 

Consider an identical DBN model that has two hidden feature layers. Equation 

(17) is the joint distribution model. 

𝑜(𝑢, 𝑔1, 𝑔2) = 𝑜(𝑢|𝑔1)𝑜(𝑔2, 𝑔1) (17) 

In the above instance 𝑜(𝑔1, 𝑔2) is the joint distribution determined by the 

following layer RBM, and 𝑜(𝑢|𝑔1)  is defined by Equation (17). Keep in 

consideration that 𝑜(𝑢|𝑔1)  has been adjusted. It can quickly calculate an 

unnormalized likelihood 𝑜∗(𝑢, 𝑔1) = 𝑍𝑝(𝑢, 𝑔1)by directly adding up 𝑔2. Using the 

variation lower bound of Equation (15) and the approximate factorial distribution 𝑅, 

which obtain Equation (18) as a product of the greedy learning process. 

𝐼𝑛 ∑ 𝑜(𝑢, 𝑔1) ≥ ∑ 𝑅(𝑔1|𝑢)𝐼𝑛 𝑜∗(𝑢, 𝑔1) − 𝐼𝑛 𝑌 + 𝒢(𝑅(𝑔1|𝑢)) = 𝐴(𝑢)
𝑔1𝑔1

 (18) 

Given that 𝑅  is factorial, the entropy component 𝒢(. )  can be calculated 

analytically. Annealed Importance Sampling (AIS) is used to estimate the function of 

partition 𝑌 on the highest level RBM. Additionally, a straightforward Equation (19) 

can be used to estimate the expectation term. 

∑ 𝑅(𝑔1|𝑢)𝐼𝑛 𝑜∗(𝑢, 𝑔1) ≈
1

𝑁
∑ 𝐼𝑛 𝑜∗(𝑢, 𝑔1(𝑗))

𝑁

𝑗=1𝑔1
 (19) 

where 𝑔1(𝑗)~𝑅(𝑔1|𝑢) this Equation (19) estimator’s variance will be equivalent to 
1

𝑁
 

as long as in 𝑜∗(𝑢, 𝑔1(𝑗)) has a finite variance. In general, to determine the lower 

bound averages across the test set of 𝑀𝑠 samples, Equation (20) is presented. 
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1

𝑀𝑠
∑ 𝐴(𝑢𝑚) ≈

1

𝑀𝑠
∑ [

1

𝑁
∑ 𝐼𝑛 𝑜∗(𝑢𝑚, 𝑔1(𝑗)) +  𝒢(𝑅(𝑔1|𝑢𝑚))

𝑀

𝑗=1
] − 𝐼𝑛 �̂� = 𝑞𝐴 − 𝐼𝑛 �̂� = �̂�𝐵𝑜𝑢𝑛𝑑

𝑀𝑠

𝑚=1

𝑀𝑠

𝑚=1
 (20) 

Asynchronously, the variation of the estimate caused by the approximation will 

scale as
1

 𝑀𝑠𝑁
. The experimental findings section demonstrates that if 𝑀𝑠 is big, the 

number of 𝑁  might be small. The error in the estimation of �̂�  will primarily 

dominate the error spectrum of the total estimate �̂�𝐵𝑜𝑢𝑛𝑑 in Equation (20). To obtain 

impartial estimations of �̂�  and its standard deviation �̂�  as well as 𝐼𝑛(�̂� ± �̂�)  are 

reported. It is currently simple to estimate this lower bound for DBN using additional 

layers. Consider a DBN that has 𝐾  hidden layers. The estimated probability 

distribution 𝑅 and joint distribution of the model are provided in Equation (21). 

𝑜(𝑢, 𝑔1, … . . , 𝑔𝐾) = 𝑜(𝑢|𝑔1) … 𝑜(𝑔𝐾−2|𝑔𝐾−1)𝑜(𝑔𝐾−1, 𝑔𝐾) 

𝑅(𝑔1, … . , 𝑔𝐾|𝑢) = 𝑅(𝑔1|𝑢)𝑅(𝑔2|𝑔1) … 𝑅(𝑔𝐾|𝑔𝐾−1) 
(21) 

It is at the moment possible to derive the bound using Equation (18). The 

majority of the computational resources will be used to estimate the top-level RBM’s 

partition function 𝑌. 

3.4.2. MRKO 

MRKO enhances iterative computational methods by refining approximation 

accuracy in dynamic systems, enabling more precise modeling of dissemination of 

health information in IPE, especially in Biosensing technology applications. Despite 

being a promising optimization method, the RKO has certain drawbacks, including 

slow convergence, getting trapped in suboptimal areas, and an unbalanced 

exploration and exploitation phase. To address the drawbacks of RKO, an effective 

substitute variation known as ERKO is developed. Specifically, MRKO employs the 

following three techniques to keep the algorithm from being trapped in local 

minimum regions: 

• To improve the exploration and exploitation stages of classical RKO, non-linear 

operators (NO) are introduced in recently updated candidate solutions. 

• This results in comparison better transition from the exploration to the 

exploitation stage and turns the appropriate time of the search. 

• In early versions, implement chaotic local searching (CLS) to adequately 

explore the specified search space. The following provides specifics on the 

MRKO algorithm’s mathematical formulation. 

The non-linear operators 

The distribution of recently updated coordinates in the traditional RKO 

algorithm is based on two motion phases: Exploration and exploitation. Random 

transfers between them have the potential to isolate every individual in local optima. 

The NO, which is non-linear and capable of handling more complicated issues than 

linear operators, is suggested here for successfully transitioning from exploration to 

exploitation. Additionally, rather than turning the signal stage in the standard RKO 

algorithm at random, the NO performs so at a reasonable search time. Where ∅ ≥ 1 

is constant. The given NO is shown in Equation (22). 
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𝑁𝑂 = sin (∅ −
𝑠

𝑆
) (22) 

Various configurations for recently updated candidate solutions 

In both exploitation and exploration search, the RKO algorithm operates in 

static behavior, updating candidate solutions solely based on the positions of other 

agents without adjusting parameters to the present stage of the search, such as 

consuming time. This implies that the agents do not transition gradually from 

exploitation to exploration, and it may waste approximately half of the search in 

every stage without dynamic changes. By adding a non-linear operator (NO) to 

update candidate solutions in the manner described below, this disadvantage can be 

avoided. The exploration stage is given in Equation (23) and the exploitation stage is 

given in Equations (24)–(29). 

𝑤𝑚+1 = 𝑞 × 𝑤𝑚 + 𝑁𝑂 × (1 − 𝑞) × 𝑤𝑞1 + 𝑆𝐹 × 𝑆𝑀 + 𝜇 × 𝑤𝑡 (23) 

𝑤𝑚+1 = 𝑞 × 𝑤𝑏𝑒𝑠𝑡 + 𝑁𝑂 × (1 − 𝑞) × 𝑤𝑘𝑏𝑒𝑠𝑡 + 𝑆𝐹 × 𝑆𝑀 + 𝜇 × 𝑤𝑡′  (24) 

𝑤𝑡 = 𝑟𝑎𝑛𝑑𝑚(𝑤𝑛 − 𝑤𝑑) (25) 

𝑤𝑡′ = 𝑟𝑎𝑛𝑑𝑚(𝑤𝑞1 − 𝑤𝑞2) (26) 

𝜇 = 0.5 + 0.1 × 𝑟𝑎𝑛𝑑𝑚 (27) 

𝑆𝐹 = 2(0.5 − 𝑟𝑎𝑛𝑑) × 𝑒 (28) 

𝑒 = 𝑏 × exp (−𝑎 ×
𝑠

𝑆
)) (29) 

where  𝑏 and 𝑎  are constants, 𝑤𝑏𝑒𝑠𝑡  is the global ideal, and 𝑤𝑘𝑏𝑒𝑠𝑡  is the ideal 

position at each iteration. 

Phase of exploration with CLS 

One method for creating randomized behavior for potential solutions at the 

start of the search is chaos. This makes it possible to effectively search the specified 

area. There are several types of chaotic maps, including Sine, Piecewise, Logistic, 

and Circle. Depending on the logistic map, it present a chaotic map here. With 

randomly produced solutions(𝐷𝑞), the suggested map is associated with the non-

linear operation that is adaptable to the goal solution(𝐷𝑞). The recommended chaotic 

map is provided in Equations (30)–(32). 

𝐷 = (1 − 𝜔) × 𝑤𝑆 + 𝜔 × 𝐷𝑞 (30) 

𝜔 = 𝑁𝑂 × 𝑟𝑎𝑛𝑑 (31) 

𝐷𝑞 = 𝑟𝑎𝑛𝑑 × (𝑉 − 𝐾) + 𝐾 (32) 
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4. Result 

The experimental design involved data collecting biosensing data, including 

heart rate, skin conductance, and EEG activity to evaluate students’ engagement and 

cognitive response during health education sessions. Wearable sensors were used to 

collect data in class, while engagement, learning outcomes, and students’ feedback 

were also recorded. The analysis was conducted using Python 3.12 operated on 

Windows 11 with an 11th-generation Core i7 processor and 32 gigabyte (GB) of 

random access memory (RAM). The MRKO-DBN model applied to the analysis of 

the physiological indicators, including qualitative data such as student feedback and 

health knowledge acquired, to determine the effectiveness of biosensing technology 

in enhancing the dissemination of health information in ideological and political 

education. 

4.1. Physiological data parameters 

The integration of Biosensing technology enhances the dissemination of health 

information in IPE by offering real-time physiological data parameters. The results 

indicate that the MRKO-DBN model significantly outperforms the standard DBN in 

analyzing various physiological parameters, Table 1 and Figure 2 show that the 

MRKO-DBN model outperforms the standard DBN in the analysis of physiological 

data. It attains accuracy in HRV (55% to 75%), SCL also improves (from 62% to 

80%), EEG Alpha Waves Wave Power increases (from 58% to 72%), and EEG Beta 

Waves rises (from 65% to 82%), thereby showing its improved capability in the 

personalization of health information dissemination in ideological and political 

education. 

Table 1. Physiological data parameters result. 

Physiological Data Parameters Standard DBN MRKO-DBN (Proposed) 

HRV 55% 75% 

SCL 62% 80% 

EEG Alpha Wave Power 58% 72% 

EEG Beta Wave Power 65% 82% 

 
Figure 2. Physiological data parameters result. 
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4.2. Engagement and learning outcome 

The combination of MRKO-DBN in student engagement and learning outcome 

prediction demonstrates significant improvements over the standard DBN model. 

The results indicate that the MRKO-DBN model significantly outperforms the 

standard DBN in analyzing various physiological parameters, Table 2 and Figure 3 

highlights superior performance of the MRKO-DBN model in contrast to the 

standard DBN as far as students’ involvement is concerned (68% to 85%), levels of 

attention (63% to 80%), cognitive load (70% to 85%), learning outcomes (72% to 

88%), and emotional response (71% to 87%). This progress underscores the efficacy 

of MRKO-DBN in improving health education dissemination in ideological and 

political education. 

Table 2. Engagement and learning outcome result. 

Engagement and Learning Outcome Standard DBN MRKO-DBN (Proposed) 

Student Engagement Prediction 68% 85% 

Attention Level 63% 80% 

Cognitive Load (via HRV and SCL) 70% 85% 

Learning Outcomes 

Improvement 
72% 88% 

Emotional Response (Positive) 71% 87% 

 
Figure 3. Engagement and learning outcome result. 

4.3. Student and qualitative feedback 

The data compares student and qualitative feedback between the standard DBN 

and the proposed MRKO-DBN. In terms of perceived engagement, the MRKO-DBN 

showed a significant improvement, Table 3 and Figure 4 present the substantial 

gains in student feedback between the MRKO-DBN model and the standard DBN. 

There was a perceived engagement from (68% to 85%). The percentage of real-time 

monitoring feedback increased from (70% to 87%). The percentage of positive 

emotional experiences also increased from (69% to 84%). Students’ experience with 

the biosensing technology improved from 66% to 81%. Behavioral responses rose 
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from (72% to 88%). These results indicate how MRKO-DBN increases interest, 

emotional involvement, and overall satisfaction, thereby improving the effectiveness 

of health education in ideological and political education. 

Table 3. Student and qualitative feedback result. 

Parameter Standard DBN Proposed MRKO-DBN 

Perceived Engagement 68% 85% 

Feedback on Real-Time Monitoring 70% 87% 

Emotional Experience (Positive) 69% 84% 

Experience with Biosensing Technology 66% 81% 

Behavioral Response 72% 88% 

 
Figure 4. Student and qualitative feedback result. 

4.4. Health knowledge acquisition 

The use of biosensing technology enhances the distribution of dissemination 

health information in IPE by providing real-time health knowledge acquisition. The 

MRKO-DBN model outperforms the standard DBN model, Table 4 and Figure 5 

illustrate that the MRKO-DBN model outperforms the standard DBN model in 

health knowledge acquisition. Students’ engagement in health issues increased from 

(70% to 85%), and the enhancement of health behavior rose from (50% to 70%). 

Emotional responses increased from (60% to 75%), and data retention improved 

from (50% to 70%). Classroom engagement with health information also increased 
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from (65% to 80%), which reflects the effectiveness of the MRKO-DBN model in 

enhancing health education within ideological and political education. 

Table 4. Health knowledge acquisition. 

Health Knowledge Acquisition Standard DBN MRKO-DBN (Proposed) 

Involvement of students with 

health-related topics 
70% 85% 

Effects on health and social 

behavior 
50% 70% 

Emotional response to health-

related issues 
60% 75% 

Retention of health data over time 50% 70% 

Classroom engagement with 

health-related information 
65% 80% 

 
Figure 5. Health knowledge acquisition result. 

5. Discussion 

The combination of the MRKO-DBN approach and the application of 

biosensing technologies in the promotion of dissemination of health information 

within IPE has produced promising results. Based on the data, it can be noted that 

the MRKO-DBN model produces a noticeably higher performance than the standard 

DBN model for several parameters, including physiological data parameters, 

learning outcomes, engagement levels, students, and qualitative feedback regarding 

the model, as well as the increased general health information. In physiological data 

parameters, the MRKO-DBN model outperforms the standard DBN model, 

achieving 75% accuracy in HRV compared to standard DBN at 55%. SCL increased 

from 62% to 80%, while EEG alpha wave power improved from 58% to 72%, 

showcasing the model’s enhanced ability to analyze physiological data for a more 

personalized learning experience. In engagement and learning outcomes, the 

MRKO-DBN improves student engagement prediction accuracy to 85%, compared 

to the standard DBN of 68%. Learning outcomes increased from 72% to 88%, 

significantly boosting learning outcomes and emotional responses, which represents 

from 71% to 87%. In student and qualitative feedback, the MRKO-DBN model 



Molecular & Cellular Biomechanics 2025, 22(2), 1093.  

17 

shows an increase in perceived engagement (85% to 68% with standard DBN), an 

increase in real-time monitoring satisfaction (87% to 70%), and an improvement in 

behavioral response (88% to 72%). In health knowledge acquisition, the MRKO-

DBN model increases students with health-related topics from 70% to 85%, 

classroom engagement with health information from 65% to 80%, and emotional 

responses to health issues from 60% to 75%, illustrating its effectiveness in health 

education dissemination.  

The proposed MRKO-DBN model outperforms the traditional models with a 

significant improvement in the accuracy of analyzing physiological data, including 

HRV, SCL, and EEG alpha waves, thereby enhancing the personalized learning 

experience. It further improves student engagement prediction accuracy, learning 

outcomes, and emotional responses. The MRKO-DBN further boosts real-time 

monitoring satisfaction, behavioral responses, and health knowledge acquisition. 

Therefore, it can prove more effective in disseminating health information in the 

ideological and political education context. 

6. Conclusion 

The integration of biosensing technology into the dissemination of health 

information within IPE offers a promising new approach to enhancing student 

engagement and learning outcomes. Data collection involved monitoring 

physiological responses, such as HRV, SCL, and EEG activity, using wearable 

biosensors. The collected physiological data were pre-processed through signal 

filtering techniques, including the Savitzky-Golay Filter, and feature extraction was 

performed using the KF. The MRKO-DBN classifier was employed to predict 

student engagement levels based on these features, achieving high predictive 

accuracy. The results revealed a strong correlation between physiological responses; 

the model achieved the highest improvements in physiological data, with EEG beta 

wave power at (82%), student engagement prediction at (85%) in engagement and 

learning outcome, behavioral response ratings at (88%) in student and qualitative 

data, and health-related topic engagement at (85%) in health knowledge acquisition. 

Despite the promising outcomes, a limitation of this research lies in the static nature 

of the data, which may not fully capture dynamic changes in physiological responses 

during class. Future research could address this limitation by incorporating real-time 

physiological data streaming and considering additional factors, such as individual 

learning preferences, emotional states, and stress levels, to improve the model’s 

personalization and applicability across diverse educational contexts. 
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