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Abstract: With the rapid advancement of biomechanical research and educational big data, 

there is a growing need to integrate sophisticated analytical tools to enhance the understanding 

of human movement, learning behaviors, and their interactions. Traditional machine learning 

models often fall short in capturing the complex, multi-dimensional relationships inherent in 

biomechanical and educational datasets, leading to limited precision, inadequate 

personalization, and poor generalization capabilities, which restrict their applicability in 

dynamic teaching environments. To address these challenges, this paper proposes a machine 

learning model based on Factor Space Mathematical Theory integrated with the extreme 

gradient boosting (XGBoost) algorithm. By leveraging Factor Space Mathematical Theory, the 

model effectively captures the multi-dimensional characteristics of biomechanical and 

educational data, addressing the oversimplification and unidimensional nature of traditional 

models. Moreover, with the robust classification and prediction performance of XGBoost, the 

proposed model enhances the ability to generalize and process complex educational data. 

Experimental results demonstrate that the proposed model achieves an accuracy of 0.92 and an 

F1 score of 0.90 in predicting students’ biomechanical performance metrics, such as gait 

analysis and posture stability, which are critical for understanding learning behaviors in 

physical education and vocational training. The model outperforms the standalone XGBoost 

model by a significant margin of 0.05 in accuracy. Additionally, MSE analysis across diverse 

datasets reveals no evidence of overfitting, further validating the model’s strong generalization 

capabilities. This study highlights the effectiveness of combining Factor Space Theory with 

XGBoost, offering improved accuracy, operational efficiency, and adaptability in 

biomechanical data analysis and educational behavior prediction. The findings provide a novel 

perspective and practical approach to advancing biomechanical research and its application in 

educational reform, particularly in higher vocational education. 

Keywords: educational big data; machine learning; factor space mathematical theory; extreme 

gradient boosting; higher vocational education reform 

1. Introduction 

As an essential part of vocational education, higher vocational education bears 

the responsibility of cultivating a large number of skilled and application-oriented 

talents to meet the demands of a dynamic society [1]. With the ongoing transformation 

and upgrading of the economic structure, as well as the increasing demand for highly 

skilled professionals, higher vocational colleges have taken on an increasingly vital 

role in enhancing students’ professional quality and employability. In this context, the 

adoption of advanced technologies, such as big data [2], artificial intelligence [3], and 
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machine learning [4–6], has opened up new avenues for addressing challenges in 

teaching quality and management precision. Leveraging these technologies for 

educational reform has become an important topic in current research. 

Machine learning, as a robust data analysis and pattern recognition tool, has 

achieved remarkable outcomes across many industries, and its potential in education 

is gradually being realized. Specifically, in areas such as student performance 

prediction, learning behavior analysis, and personalized learning recommendations, 

machine learning has demonstrated significant promise. For instance, Berens et al. [7] 

developed an early detection system for identifying students at risk of dropout by 

employing the AdaBoost algorithm along with regression analysis, neural networks, 

and decision trees. Their approach improved prediction accuracy from 79% to 90% 

for public universities and from 85% to 95% for private universities over four 

semesters. Similarly, Ikawati et al. [8] proposed a learning style prediction model 

using an ensemble tree method that integrates bagging and gradient-boosted trees, 

achieving higher classification accuracy compared to single tree models. Ouatik et al. 

[9] applied KNN, C4.5, and SVM algorithms to predict student success, with the SVM 

algorithm attaining a prediction accuracy of 87.32%. Wu et al. [10] used artificial 

neural networks (ANNs) and support vector machines (SVMs) to diagnose students 

with learning disabilities, demonstrating that ANNs outperformed SVMs in 

recognition accuracy. 

Moreover, personalized learning has also gained traction. Amin et al. [11] 

developed a personalized e-learning and MOOC recommender system using an 

intelligent electronic platform, which collects data on students’ performance, interests, 

and learning preferences to recommend suitable courses. While these studies highlight 

the potential of machine learning in educational applications, most existing models 

focus on algorithm universality and prediction accuracy, neglecting the 

comprehensive modeling of multidimensional factors in education. For higher 

vocational education, factors such as students’ personal characteristics, learning 

behaviors, teachers’ teaching methods, and curriculum design require integrated and 

nuanced modeling approaches. 

Recent research has attempted to address these gaps by incorporating diverse 

theories and methodologies into educational data analysis. For example, Alshurafat et 

al. [12] explored the impact of online learning systems on accounting students using 

an integrated model based on social capital theory, rational behavior theory, and the 

technology acceptance model, identifying social trust as a key factor influencing 

perceived usefulness and ease of use. Delen et al. [13] developed a Bayesian belief 

network-based model to predict student attrition, highlighting conditional 

dependencies and interrelationships among factors. Li et al. [14] proposed a 

comprehensive evaluation mechanism for physical education teaching quality using 

multivariate data and achieved an accuracy of over 97%. Godwin et al. [15] introduced 

topological data analysis as a people-oriented approach to address quantitative 

methods in engineering education, while Mubarak et al. [16] modeled students’ 

performance using graph convolutional networks to capture semantic relationships in 

massive online learning data. Similarly, Yakubu and Dasuki [17] adopted the Unified 

Theory of Technology Acceptance to identify convenience and behavioral intention 

as significant factors influencing e-learning adoption. 
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Despite these advancements, challenges persist in applying complex models to 

higher vocational education. Specifically, integrating factor space mathematical 

theory into machine learning for analyzing large-scale educational data presents 

difficulties in balancing computational efficiency with prediction accuracy. Factor 

space mathematical theory offers a structured approach to model the multidimensional 

and highly correlated nature of educational data, while XGBoost [18–20], a powerful 

machine learning algorithm, excels at processing large datasets with robust 

classification and prediction capabilities. For instance, Osman et al. [18] demonstrated 

the efficacy of XGBoost in groundwater level prediction, and Kavzoglu et al. [19] 

highlighted its superior performance in landslide susceptibility mapping. Furthermore, 

applications of SVMs [21,22] and decision tree models [23,24] in biomechanics and 

education underscore the potential of integrating domain-specific knowledge into 

predictive analytics. 

This study combines factor space mathematical theory with the XGBoost 

algorithm to develop a novel model for higher vocational education. By extracting 

potential influencing factors through mathematical modeling and leveraging 

XGBoost’s ability to process massive student data, this approach provides accurate 

predictions and classifications to support student evaluation and teaching 

management. Experimental comparisons with traditional models, including 

standalone XGBoost, SVM, and decision trees, show that the proposed model 

outperforms these alternatives in accuracy, precision, recall, and F1 score. 

Specifically, the proposed model achieves an accuracy of 0.92 and an F1 score of 0.90, 

demonstrating superior generalization ability and avoiding overfitting across different 

datasets. 

The findings suggest that this integrated approach not only identifies the 

relationship between student characteristics and grades but also offers practical 

insights for teaching reforms in higher vocational colleges. The model’s predictions 

can help teachers monitor students’ learning progress and provide valuable data 

support for institutional decision-making, paving the way for data-driven educational 

transformations. 

2. Modeling the XGBoost model by introducing the factor space 

theory 

2.1. Multidimensional factor space modeling 

In this study, the factor space theory is introduced to model multidimensional 

factors, aiming to integrate data from various dimensions into a high-dimensional 

space. This approach enables the capture of complex relationships within the data. In 

the context of higher vocational education, multidimensional factors encompass a 

wide range of data, including students’ personal background information, learning 

behavior records, teachers’ teaching characteristics, and course-specific attributes. 

Each of these factors can be regarded as an independent feature; however, these 

features rarely operate in isolation, as intricate interactions often exist between them. 

To address this, the study employs feature engineering to construct and model 

these interactions effectively. By leveraging factor space theory, the proposed 
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approach facilitates the identification and representation of latent relationships among 

these features, thus enabling a more comprehensive analysis of the underlying 

educational data. This method ensures that the intricate interdependencies between 

various dimensions, such as the impact of teaching strategies on students with different 

backgrounds or the influence of course design on learning behaviors, are adequately 

captured and utilized in the modeling process. Consequently, the integration of factor 

space theory offers a robust framework for tackling the complexity inherent in 

educational data, laying the foundation for more accurate and insightful analysis in 

higher vocational education. 

Table 1 is a partial display of the feature categories that may exist in higher 

vocational education and the feature names and feature data types corresponding to 

the features. The table shows student background features, learning behavior features, 

teacher features, and interactive features. Different feature data types may be different. 

For example, the age of students and the length of study are numerical types and can 

be directly input into the model for processing. However, some features, such as 

student gender and course difficulty, are categorical data types and cannot be directly 

input into the model for unified processing. 

Table 1. Characteristics table. 

Feature Category Feature Name Feature Type 

Student Background Features 
Student Gender Categorical variables 

Student Age Continuous variables 

Learning behavior Features 
Online learning duration Continuous variables 

Class participation Continuous variables 

Teacher Features 
Teaching Method Categorical variables 

Teacher Evaluation Categorical variables 

Interaction Features Study time and participation Continuous variables 

This paper processes categorical data by converting them into numerical types 

through one-hot encoding [25]. The specific approach is to convert each category 

value into a binary bit to form a vector representation of the numerical value. For 

example, for the gender feature of students, this feature has two different categories 

(male and female). For each category, it is converted into a vector representation of 

the numerical value: 

𝑣male = [1,0] (1) 

𝑣female = [0,1] (2) 

In this way, different categories of different features can be represented by unique 

numerical representations. Then the input feature matrix can be constructed based on 

the data. Assuming there are 𝑚 students and 𝑛 features, the size of the input feature 

matrix 𝑋 is 𝑚 × 𝑛. The representation of the feature matrix 𝑋 is: 

X = [

𝑥11 ⋯ 𝑥1𝑛
⋮ ⋱ ⋮

𝑥𝑚1 ⋯ 𝑥𝑚𝑛

] (3) 
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In Equation (3), 𝑥𝑖𝑗 represents the value of the i-th student on the j-th feature. At 

the same time, in order to capture the interaction between different features, a 

combination of features can be constructed for any two possibly related features. For 

example, for any two features 𝑥𝑗 and 𝑥𝑘, their interactive features are expressed as: 

𝑥𝑗𝑘 = 𝑥𝑗 ⋅ 𝑥𝑘 (4) 

In this way, a new feature 𝑥𝑗𝑘  is obtained, which is convenient for better 

capturing the relationship between the two features. 

Since the relationship between the original features is often nonlinear, this paper 

studies the use of nonlinear kernel functions to map the original data of the input 

original features into a high-dimensional space. Through this mapping method, the 

nonlinear relationship of the original data in this space will become linear. 

This paper adopts the Gaussian radial basis kernel [26], and calculates the inner 

product through the kernel function instead of explicitly calculating the mapped 

feature space, which can reduce the complexity of high-dimensional space calculation. 

Select any two original feature input data 𝑥 and 𝑥′, the Gaussian radial basis kernel is: 

𝐾(𝑥, 𝑥′) = exp( −
||𝑥 − 𝑥′||

2𝜎2
) (5) 

Among them, ||𝑥 − 𝑥′|| is the Euclidean distance between the input data 𝑥 and 

𝑥′, 𝜎 is the parameter of the kernel function. The calculation formula of the Euclidean 

distance is: 

𝑑(𝑥, 𝑥′) = √(𝑥1 − 𝑥1′)
2 + (𝑥2 − 𝑥2′)

2 +⋯+ (𝑥𝑛 − 𝑥𝑛′)
2 (6) 

Figure 1 shows the mapping of student Zhang San’s data in high-dimensional 

space. 

 

Figure 1. High-dimensional space mapping diagram. 

2.2. Dimensionality reduction 

When the dimensionality of data increases, it often introduces a series of 

challenges that can hinder the effectiveness of the model. First, high-dimensional data 

significantly escalates computational costs and storage requirements, which 

negatively impacts the efficiency of model processing and dataset training. Second, 

higher feature dimensions increase the risk of the model “overfitting” to the noise 

present in the training data, thereby reducing its generalization ability and leading to 

poor performance on unseen data. 
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To mitigate these issues and to extract the most informative components from 

high-dimensional data while minimizing redundancy and noise, this study employs the 

Principal Component Analysis (PCA) method [27,28]. PCA is a widely used 

dimensionality reduction technique that transforms high-dimensional data into a 

lower-dimensional space by identifying the principal components that capture the 

majority of the data’s variance. By doing so, PCA not only simplifies the data structure 

but also enhances model efficiency by focusing on the essential patterns in the data 

while discarding less significant or noisy dimensions. 

In the context of this study, PCA plays a crucial role in ensuring that the model 

processes a compact and meaningful representation of the high-dimensional data. This 

step not only reduces computational overhead but also minimizes the risk of 

overfitting, thereby improving the robustness and accuracy of the proposed model in 

analyzing complex, multidimensional educational datasets. 

PCA is a linear dimensionality reduction method. Its main dimensionality 

reduction idea is to transform the data linearly and project the data into a new 

coordinate system so that the new features have the largest variance. The specific steps 

of PCA are as follows: 

1) Standardized data: First, standardize each feature degree so that the mean of 

the feature is 0 and the variance is 1. The input feature data matrix is 𝑋, the dimension 

of 𝑋 is 𝑛, and the standardization formula for each feature 𝑥𝑖 in 𝑋 is: 

𝑥𝑖 =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

 (7) 

2) The covariance matrix [29] describes the correlation between features. The 

covariance matrix ∑ is calculated as: 

∑ =
1

𝑚
𝑋𝑇𝑋 (8) 

In Equation (8), 𝑋 is the input feature matrix, 𝑚 is the number of samples, and 

𝑋𝑇𝑋 is the product of the input feature matrix and the transposed input feature matrix. 

3) By performing eigenvalue decomposition on the covariance matrix ∑, the 

eigenvalues and eigenvectors can be obtained: 

∑𝜈 = 𝜆𝜈 (9) 

In Equation (9), 𝜆  is the eigenvalue, 𝜈  is the eigenvector. The eigenvalue 

represents the “importance” of each eigenvector. The larger the eigenvalue, the larger 

the variance in that direction, indicating that the feature is more important. 

4) Select the 𝑘  eigenvectors with the largest eigenvalues, that is, the most 

“important” 𝑘 features, to form a matrix 𝑉𝑘. The dimensions corresponding to these 

eigenvectors will form a new low-dimensional space. 

5) Finally, project the original input data onto these 𝑘 principal components to 

obtain the reduced-dimensional data: 

𝑋PCA = 𝑋𝑉𝑘 (10) 

In Equation (10), 𝑉𝑘 is the matrix composed of the first 𝑘 eigenvectors, 𝑋PCA is 

the data after dimensionality reduction. 
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Through the PCA method, the original input features are reduced from 𝑛 

dimensions to 𝑘 dimensions, and most of the variance (i.e., important features) in the 

original input features are retained in the first 𝑘  principal components, which 

effectively reduces the dimension of the data and removes redundant information. At 

the same time, the dimensionality-reduced data can be used as an effective input for 

the XGboost model. 

2.3. XGBoost model construction 

XGBoost is an integrated learning model based on the gradient boosted tree 

[30,31] (Gradient Boosted Trees, GBT) algorithm. In this study, the factor space 

modeling maps the dimensionality-reduced data into the XGBoost model through a 

series of decision trees to minimize the model’s loss function, and introduces 

regularization [32] to prevent the occurrence of overfitting [33] problems. 

The goal of XGBoost is to optimize the model by continuously adding trees. Its 

objective function mainly consists of two parts, the loss function and the regularization 

term. The loss function is used to measure the difference between the current model 

prediction value and the true value. The regularization term is to control the 

complexity of the model and avoid overfitting. The objective function of the XGBoost 

model in this article is expressed as: 

Γ(𝐹) = ∑
𝑖=1

𝑚

𝑙(𝑦𝑖 , 𝑦𝑖
∧
) + ∑

𝑘=1

𝐾

Ω(𝑓𝑘) (11) 

In Equation (11), Γ(𝐹) is the objective function, 𝑙(𝑦𝑖 , 𝑦𝑖
∧
) is the loss function, 

which measures the difference between the true value 𝑦𝑖 and the predicted value 𝑦𝑖
∧

, 

Ω(𝑓𝑘) is the regularization term, which is used to control the model complexity, and 

𝐾 is the number of trees. 

The loss function studied in this paper is the mean square error (MSE): 

𝑙(𝑦𝑖 , 𝑦𝑖
∧
) =

1

𝑛
∑
𝑖=1

𝑛

(𝑦𝑖, 𝑦𝑖
∧
)2 (12) 

In Equation (12), 𝑦𝑖 is the true value of the sample, and 𝑦𝑖
∧

 is the predicted value 

of the sample. 

In order to prevent overfitting, the regularization term designed in this paper 

mainly consists of two parts. One part is to control the complexity of the model by 

limiting the complexity of the number of trees (𝐾) to prevent overfitting. On the other 

hand, by penalizing the size of the leaf node weight, it prevents overfitting caused by 

excessive weight. The regularization term of the model can be expressed as: 

Ω(𝑓) = 𝛾𝐾 +
1

2
𝜆 ∑
𝑗=1

𝐾

𝜔𝑗
2 (13) 

In Equation (13), 𝐾 is the total number of trees, also known as the number of 

iterations during model training, 𝛾 is a hyperparameter that controls the complexity of 

the tree, 𝜔𝑗 is the number of penalty trees, 𝜆 is the weight of the j-th leaf node, is the 

regularization coefficient, and controls the size of the leaf node weight. 

The settings of XGBoost hyperparameters in this paper are shown in Table 2. 
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Table 2. Hyperparameter settings. 

Hyper Parameters Function Value 

learning_rate Controls the contribution of each tree to the final prediction. 0.1 

n_estimators The number of weak learners. 100 

max_depth controlling the complexity of the model. 7 

min_child_weight Controls tree splitting 1 

subsample The sampling ratio of the sample 0.8 

Regularization parameter Control model complexity. 2 

Table 2 sets the hyperparameters of the model, where the learning rate is set to 

0.1, the number of trees is set to 100, the maximum depth of the tree is set to 6, the 

minimum weight of each child node is set to 1, the sample collection ratio is set to 0.8, 

and the regularization parameter is set to 2. 

2.4. Gradient boosting algorithm 

The core of the XGBoost model designed in this paper is the gradient boosting 

algorithm. The idea of this algorithm is to gradually reduce the value of the loss 

function in each iteration by adding each tree to the existing model. More specifically, 

the gradient boosting tree studied in this paper updates the model by gradually fitting 

the residual. The following are the steps for updating. 

(1) For the task of the model, the model is initialized first, and the initialized data 

is the mean of the training data: 

𝑦𝑖
∧ (0)

=
1

𝑚
∑
𝑖=1

𝑚

𝑦𝑖 (14) 

In Equation (14), 𝑚 is the number of training samples, and 𝑦𝑖 is the true value of 

the i-th sample. 

(2) In each round of iteration, XGBoosst will calculate the gradient of the current 

model. The gradient is equivalent to the derivative of the loss function with respect to 

the current predicted value. The gradient is used to indicate the error of each data point 

under the current model. Assuming that the current model has been iterated to round t 

− 1, and the current predicted value is 𝑦𝑖
∧ (𝑡−1)

, then in the t-th round of iteration, the 

gradient calculation is: 

𝑔𝑖
(𝑡) =

𝜕

𝜕𝑦
∧ 𝑙(𝑦𝑖 , 𝑦𝑖

∧ (𝑡−1)

) (15) 

In Equation (15), 𝑙(𝑦𝑖 , 𝑦𝑖
∧ (𝑡−1)

) is the loss function of the t – 1th round, and 𝑔𝑖
(𝑡)

 

is the gradient of the i-th sample in the t-th round iteration. 

(3) In addition to calculating the first-order gradient, this study also calculates the 

second-order gradient, which can provide information about the curvature of the loss 

function [34], so that the XGBoost model can perform more accurate model updates 

through the second-order information. The calculation formula for the second-order 

gradient is: 
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ℎ𝑖
(𝑡)

=
𝜕2

𝜕𝑦
∧
2
𝑙(𝑦𝑖 , 𝑦𝑖

∧ (𝑡−1)

) (16) 

(4) After calculating the gradient and second-order gradient, the XGBoost model 

uses a new tree to fit the current model residual Specifically, the goal of each tree in 

the XGBoost model is to fit the negative gradient, that is, −𝑔𝑖
(𝑡)

. Therefore, this paper 

updates the model by minimizing the Taylor expansion of the loss function. Assuming 

that the current model has been iterated to round t − 1, the current prediction value is 

𝑦𝑖
∧ (𝑡−1)

, and a new tree 𝑓𝑡(𝑥𝑖) is added at this time, then the calculation formula for the 

new prediction value is: 

𝑦𝑖
∧ (𝑡)

= 𝑦𝑖
∧ (𝑡−1)

+ 𝜂𝑓𝑡(𝑥𝑖) 
(17) 

In Equation (17), 𝜂 is the learning rate, which controls the contribution of each 

tree to the final model. In each iteration, the model is updated by continuously adding 

trees to achieve the effect of gradient improvement. 

As illustrated in Figure 2, the operational flowchart of the gradient boosting 

algorithm studied in this paper is presented. The process begins with the initialization 

of the model. Following this, the gradient is calculated, including both the first-order 

and second-order gradients, which are used to measure the direction and curvature of 

the loss function. Based on these gradient values, the residuals are fitted, and the model 

is updated iteratively to minimize the residual errors. 

 

Figure 2. Gradient boosting algorithm flow chart. 

Next, the algorithm checks whether the predetermined number of iterations (set 

to 100 in this study) has been reached. If the maximum number of iterations has been 

completed, the model terminates, and the final result is output. If not, the algorithm 

loops back to perform a new round of gradient calculations and model updates. This 

iterative approach ensures that the model continuously improves its predictive 

accuracy by reducing the residual errors at each step, ultimately achieving an 

optimized solution. 
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3. Model experimental test 

3.1. Experimental data 

The experiment uses the public data set Student Performance Data, which 

includes student information, student behavior and subject grades. Among them, 

student information includes student gender, age, family status and parents’ education 

level, student behavior includes student study time, student absence number, etc., and 

subject grades include mathematics, Portuguese and G1, G2, G3 three semesters. 

There are 1044 student data records in total. The experiment uses a ten-fold cross-

division data set and training set, and takes the mean as the experimental result. The 

data content of some data sets is shown in Table 3. 

Table 3. Partial experimental data. 

Student Number Sex Age Medu Fedu Studytime Absences G1 G2 G3 

1 F 18 4 4 2 4 0 11 11 

2 M 16 4 3 2 6 12 12 13 

3 M 15 2 2 3 0 14 14 15 

4 F 16 4 4 3 10 13 13 14 

5 M 16 3 1 4 2 13 11 11 

6 F 16 2 2 4 1 13 13 13 

7 F 16 4 4 1 4 12 13 13 

8 M 15 2 1 2 4 4 9 4 

9 F 19 0 1 2 0 9 10 11 

10 F 18 3 2 3 10 12 11 11 

Table 3 shows 9 characteristic data of 10 students, which are gender, age, 

parents’ education level, study time, number of absences and scores in three semesters. 

The range of parents’ education level is 0–4, where 0 represents no education, 1 

represents primary school education, 2 represents middle school education, 3 

represents high school education, and 4 represents college education and above. The 

range of study time is 1–4, where 1 represents less than two hours, 2 represents 2–2 h, 

3 represents 5–10 h, and 4 represents more than 10 h. The score range of three 

semesters is 0–20. 

3.2. Data preprocessing 

3.2.1. Missing value processing 

For student data, it is normal to have missing data. This paper studies the 

processing of missing values in three different situations. If the missing data is of 

numerical type, it is filled with the mean of the column. If the missing data is of 

categorical type, it is filled with the mode of the column. If the missing values of a 

row exceed 30%, the row is deleted. 

Mean filling formula: 

𝑋mean =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 (18) 
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In Equation (18), 𝑋mean is the mean of the feature, 𝑥𝑖 is the individual values of 

the feature, and 𝑛 is the number of values. 

Mode fill formula: 

Mode(𝑥) = argmax𝑥count(𝑥) (19) 

In Equation (19), Mode(𝑥) is the mode of the feature, that is, the value with the 

highest frequency of occurrence. 

3.2.2. Outlier processing 

Outliers refer to extreme values that deviate from most other data in the data set, 

and may also be values that do not conform to the data type. This article has two ways 

to handle outliers. If the data type of the outlier is correct and the Z-Score is lower than 

the threshold, the mean is replaced. If the data type is wrong or the Z-Score is higher 

than the threshold, the outlier is directly deleted. 

Z-Score calculation formula: 

𝑧 =
𝑥 − 𝜇

𝜎
 (20) 

In Equation (20), 𝑥 is the data point, 𝜇 is the mean of the feature, and 𝜎 is the 

standard deviation. 

3.2.3. Feature normalization 

In order to compare different features at the same scale, this paper normalizes the 

data set and scales the feature values to the range of [0,1]. The normalization formula 

is: 

𝑥norm =
𝑥 − 𝑥min

𝑥max − 𝑥min
 (21) 

3.3. Experimental evaluation indicators 

Accuracy: 

Accuracy =
TP + TN

TP + TN+ FP + FN
 (22) 

Among them, TP (True Positive) indicates the number of correctly predicted 

positive classes, TN (True Negative) indicates the number of correctly predicted 

negative classes, FP (False Positive) indicates the number of incorrectly predicted 

positive classes, and FN (False Negative) indicates the number of incorrectly predicted 

negative classes. 

Accuracy: 

Precision =
TP

TP + FP
 (23) 

Recall: 

Recall =
TP

TP + FN
 (24) 

𝐹1 score: 
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𝐹1 = 2 ×
Precision × Recall

Precision + Recall
 (25) 

3.4. Experimental design 

The primary objective of this experiment is to establish a model that integrates 

factor space mathematical theory with the XGBoost algorithm to: 

Accurately predict students’ final grades in the upcoming semester. 

Classify students into different grade categories. 

Identify potential problems or difficulties in the learning process. 

Conduct correlation analysis to uncover the relationships between students’ 

grades and their features, such as demographic, behavioral, and academic attributes. 

Experimental Steps: 

Preprocessing the Experimental Data: 

Handle missing values, outliers, and noise in the dataset. 

Standardize or normalize numerical data to ensure compatibility with the 

machine learning model. 

Encode categorical features (e.g., gender, family status) into numerical values 

using methods such as one-hot encoding or label encoding. 

Modeling with Factor Space Mathematical Theory: 

Use factor space mathematical theory to model multiple influencing factors (e.g., 

student background, behavior, and academic performance). 

Perform feature engineering to extract key features and map them into a high-

dimensional space, capturing complex and interrelated relationships between these 

factors. 

Dimensionality Reduction with PCA: 

Apply the Principal Component Analysis (PCA) method to project high-

dimensional features into a low-dimensional space while preserving the most relevant 

information. 

This step reduces redundancy and noise in the dataset, enhancing computational 

efficiency and mitigating overfitting risks. 

Training the XGBoost Model: 

Input the reduced features into the XGBoost model for training. 

Use hyperparameter tuning to optimize the model parameters, such as the 

learning rate, number of trees, maximum tree depth, and subsample ratio. 

Model Evaluation and Verification: 

Evaluate the model’s performance using key metrics such as: 

Accuracy: The proportion of correctly classified students. 

Precision, Recall, and F1-Score: For evaluating the balance between false 

positives and false negatives. 

Mean Squared Error (MSE): To measure prediction errors for continuous grade 

values. 

Use cross-validation to ensure the model’s robustness and generalization ability. 

Result Analysis: 

Analyze the results of the model to assess its predictive accuracy and 

classification capabilities. 
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Perform feature importance analysis to identify which features have the most 

significant impact on student grades. 

Interpret the correlation analysis to provide actionable insights for teachers and 

administrators to improve teaching strategies and student learning outcomes. 

This step-by-step framework ensures a comprehensive approach to modeling, 

training, and evaluating the performance of the proposed method while addressing the 

challenges of complex, multidimensional educational data. 

4. Result analysis 

4.1. Analysis of model performance evaluation indicators 

To evaluate the performance improvements or limitations of the proposed model, 

which integrates factor space theory with XGBoost, in predicting final exam scores, 

this study compares its performance metrics with those of traditional machine learning 

models, including XGBoost, SVM, and decision tree. The comparison focuses on key 

evaluation indicators such as accuracy, precision, recall, and F1 score. The results are 

visualized to highlight the differences and advantages of the proposed model over 

traditional approaches. 

Figure 3 presents the performance evaluation metrics of four different models. 

The horizontal axis represents the score for each metric, while the vertical axis lists 

the respective metrics. Based on the data illustrated in the figure, the proposed model, 

which integrates factor space theory with XGBoost, outperforms the traditional 

XGBoost model, SVM model, and decision tree model across all four performance 

indicators, particularly in accuracy and F1 score. 

 

Figure 3. Model evaluation index analysis diagram. 

The accuracy of the proposed model is 0.92, surpassing the traditional XGBoost 

model (0.87), SVM model (0.85), and decision tree model (0.80). This demonstrates 

the model’s superior ability to correctly predict a higher proportion of samples. 

Additionally, the proposed model achieves an F1 score of 0.90, outperforming the 

traditional XGBoost model (0.85), decision tree model (0.82), and SVM model (0.85). 
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This highlights the model’s ability to strike a better balance between precision and 

recall. 

Overall, the proposed model exhibits significant advantages in performance, 

indicating its capability to provide more accurate and reliable predictions for higher 

vocational education data classification tasks. 

4.2. Analysis of model generalization ability 

The error performance of the test model on different data sets can observe the 

impact of model complexity on overfitting. In order to analyze the generalization 

ability of the model studied in this paper, the maximum tree depth is set to 20, and the 

error analysis graph is drawn by observing the different error performances of the 

model on the training set and the test set. 

Figure 4 illustrates the error variation of the proposed model on both the training 

set and the test set as the model complexity increases, represented by the number of 

trees added to the model. The horizontal axis denotes model complexity, while the 

vertical axis represents the mean square error (MSE). 

 

Figure 4. Error analysis. 

From the figure, it can be observed that when the model complexity is low, the 

MSE for both the training set and the test set is relatively high. This is because a simple 

model lacks the capacity to capture meaningful patterns from the data, leading to 

underfitting. As the model complexity increases, the MSE for both sets starts to 

decrease, indicating that the model becomes better at fitting the data and learning 

relevant patterns. Interestingly, the figure shows that after the MSE for the test set 

reaches its minimum, there is no noticeable upward trend, which suggests that the 

model does not suffer from overfitting. This demonstrates that the proposed model 

possesses strong generalization ability, enabling it to maintain good performance when 

applied to new, unseen data. 
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4.3. Feature importance analysis 

In order to study the correlation between the predicted final exam and the main 

features, the study visualized the prediction of the fourth semester final grade and the 

ranking of the main feature correlation in the model, and analyzed the importance of 

the main features in the student data on the final grade. The main characteristics 

included the duration of study, number of absences, parents’ education level and 

grades in the previous three semesters. 

Figure 5 presents an analysis of the importance of key features in predicting the 

final grades of the fourth semester. The horizontal axis represents the feature 

importance probability, while the vertical axis lists the feature names. According to 

the figure, the two most influential features for predicting final grades are the number 

of absences (importance: 0.530) and the first semester grades (importance: 0.283). 

 

Figure 5. Feature importance analysis. 

The results suggest that the number of absences has the highest importance, likely 

because a student’s attendance rate is positively correlated with academic 

performance. Missing classes may lead to students not keeping up with key course 

content, ultimately affecting their grades. Similarly, the first semester grades rank as 

the second most important feature. This is because a student’s early academic 

performance often reflects their learning abilities and habits, which tend to influence 

subsequent results in a cumulative learning process. 

However, it is important to note that this correlation is derived from the specific 

dataset used in this study. In practical applications, it is necessary to have a deeper 

understanding of the characteristics of the dataset and the underlying influencing 

factors. In the context of higher vocational education, analyzing the importance of 

features related to students’ final exam scores can provide actionable insights, 

allowing educators to implement targeted interventions and improve students’ 

academic outcomes. 
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4.4. Analysis of the actual impact of the prediction results 

In order to analyze whether the model can classify students’ grades in the process 

of higher vocational education and predict whether the difficulties or problems that 

students may encounter in the learning process are solved in the students’ subsequent 

learning, that is, whether the students’ grades are improved. In addition, to analyze 

whether the model has an impact on the teaching quality, 20 students who have been 

predicted were randomly selected and a bar chart comparing their grades before and 

after the prediction was drawn. 

Figure 6 provides a comparison of students’ grades before and after addressing 

problems identified through the model’s predictions regarding the learning process. 

The horizontal axis represents the student numbers (1 to 20), while the vertical axis 

reflects the corresponding grades. 

 

Figure 6. Comparison of results before and after. 

The data in the figure reveals that among the 20 randomly selected students, 16 

students experienced grade improvements ranging from 1 to 5 points, 1 student’s 

grades remained unchanged, and 3 students experienced grade decreases of 2 to 4 

points. Upon further analysis, the average grade of the students before intervention 

was 81.9, which increased to 83.45 after intervention, representing an average 

improvement of 1.55 points. 

Although the improvement in average scores appears modest, it reflects a positive 

and meaningful change. This result indicates that addressing the predicted issues in 

the learning process had a generally favorable impact on the students’ academic 

performance. It further demonstrates that the model can effectively identify and 

predict learning-related problems, enabling targeted interventions that contribute to 

improved grades in the context of higher vocational education. This underscores the 

practical value of the model in enhancing students’ learning outcomes and supports its 

role in driving better academic performance. 
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4.5. Discussion on the integration of the model with biomechanics studies 

The model presented in this study, which combines factor space mathematical 

theory with the XGBoost algorithm, offers a robust framework for analyzing complex 

multidimensional data. This methodology can also be extended to biomechanical 

studies, where data complexity and feature interactions are key challenges. For 

example, in biomechanical research, various factors such as anatomical 

measurements, movement patterns, muscle activity, and external environmental 

influences often interact in nonlinear ways. By leveraging factor space theory, these 

multidimensional factors can be mapped into a high-dimensional space to capture 

complex relationships, while the XGBoost algorithm can provide accurate predictions 

and classifications of biomechanical behaviors, such as injury risk, rehabilitation 

progress, or performance optimization. This integration could significantly enhance 

the precision and generalization capabilities of biomechanical models, especially in 

areas like sports science and physical therapy. 

Moreover, the feature engineering and dimensionality reduction techniques used 

in this study, such as PCA, can be applied to filter out noise and extract critical 

biomechanical variables. For instance, in predicting movement patterns or diagnosing 

musculoskeletal issues, high-dimensional data such as kinematic and kinetic 

measurements could be reduced to their most relevant components, enabling efficient 

computation and reducing overfitting. The ability of this model to predict problems or 

classify behaviors with high accuracy (as demonstrated in educational data analysis) 

suggests its potential to identify key biomechanical factors influencing outcomes like 

joint stability or muscle fatigue. This cross-disciplinary application not only highlights 

the adaptability of the model but also provides a foundation for developing advanced 

tools for personalized biomechanics, bridging the gap between data-driven predictions 

and real-world physiological insights. 

5. Conclusion 

This study introduces a learning model based on factor space mathematical theory 

and XGBoost for application in higher vocational education. Using the public data set 

Student Performance Data, classification and prediction experiments were conducted 

to evaluate the model’s performance. The results demonstrate that, compared to the 

standalone XGBoost model and other traditional machine learning models, the 

proposed model exhibits superior classification accuracy, stronger prediction 

capability, and robust generalization across different datasets, making it well-suited to 

diverse educational data scenarios. Furthermore, the integration of factor space theory 

allows the model to effectively handle multidimensional and complex interactions, 

addressing key limitations of traditional approaches. 

However, while the model achieved high accuracy and an excellent F1 score in 

this study, the experimental validation was limited to a single dataset. Although the 

combination of factor space theory and the XGBoost algorithm demonstrated strong 

potential, the model’s optimization and tuning were constrained. Future research 

should focus on conducting extensive experiments across a wider range of datasets to 

validate the model’s stability and applicability in diverse educational contexts. 

Additionally, further optimization and refinement of the model will be explored to 
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enhance its performance, with the ultimate goal of providing more accurate, scalable, 

and practical solutions for educational data analysis and prediction. 

Author contributions: Conceptualization, WL and GL; methodology, WL; software, 

WL; validation, WL, GL and ZW; formal analysis, WL; investigation, WL; resources, 

WL; data curation, WL; writing—original draft preparation, WL; writing—review and 

editing, GL and ZS; visualization, WL; supervision, ZW; project administration, GL 

and ZS; funding acquisition, ZW. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This work was funded by the Education Department of Sichuan Province 

(SCJG23A259). 

Ethical approval: Not applicable. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Mason G. Higher education, initial vocational education and training and continuing education and training: Where should 

the balance lie. Journal of Education and Work. 2020; 33(7–8): 468–490. 

2. Hariri RH, Fredericks EM, Bowers KM. Uncertainty in big data analytics: Survey, opportunities, and challenges. Journal of 

Big Data. 2019; 6(1): 1–16. 

3. Holmes W, Tuomi I. State of the art and practice in AI in education. European Journal of Education. 2022; 57(4): 542–570. 

4. Luan H, Tsai CC. A review of using machine learning approaches for precision education. Educational Technology & 

Society. 2021; 24(1): 250–266. 

5. Marques LS, Gresse von Wangenheim C, Hauck JCR. Teaching machine learning in school: A systematic mapping of the 

state of the art. Informatics in Education. 2020; 19(2): 283–321. 

6. James CA, Wheelock KM, Woolliscroft JO. Machine learning: The next paradigm shift in medical education. Academic 

Medicine. 2021; 96(7): 954–957. 

7. Berens J, Schneider K, Gortz S, et al. Early Detection of Students at Risk--Predicting Student Dropouts Using 

Administrative Student Data from German Universities and Machine Learning Methods. Journal of Educational Data 

Mining. 2019; 11(3): 1–41. 

8. Ikawati Y, Al Rasyid MUH, Winarno I. Student behavior analysis to predict learning styles based felder silverman model 

using ensemble tree method. EMITTER International Journal of Engineering Technology. 2021; 9(1): 92–106. 

9. Ouatik F, Erritali M, Ouatik F, Jourhmane M. Predicting student success using big data and machine learning algorithms. 

International Journal of Emerging Technologies in Learning (iJET). 2022; 17(12): 236–251. 

10. Wu TK, Huang SC, Meng YR. Evaluation of ANN and SVM classifiers as predictors to the diagnosis of students with 

learning disabilities. Expert Systems with Applications. 2008; 34(3): 1846–1856. 

11. Amin S, Uddin MI, Mashwani WK, et al. Developing a personalized E-learning and MOOC recommender system in IoT-

enabled smart education. IEEE Access. 2023; 11: 136437–136455. 

12. Alshurafat H, Al Shbail MO, Masadeh WM, et al. Factors affecting online accounting education during the COVID-19 

pandemic: An integrated perspective of social capital theory, the theory of reasoned action and the technology acceptance 

model. Education and Information Technologies. 2021; 26(6): 6995–7013. 

13. Delen D, Topuz K, Eryarsoy E. Development of a Bayesian Belief Network-based DSS for predicting and understanding 

freshmen student attrition. European journal of operational research. 2020; 281(3): 575–587. 

14. Li R, Du C, Du W, et al. Research on comprehensive evaluation model of physical education teaching quality based on 

multivariate data. Journal of Sport Psychology. 2022; 31(1): 235–244. 

15. Godwin A, Benedict B, Rohde J, et al. New epistemological perspectives on quantitative methods: An example using 

topological data analysis. Studies in Engineering Education. 2021; 2(1): 16–34. 



Molecular & Cellular Biomechanics 2025, 22(3), 1150.  

19 

16. Mubarak AA, Cao H, Hezam IM, Hao F. Modeling students’ performance using graph convolutional networks. Complex & 

Intelligent Systems. 2022; 8(3): 2183–2201. 

17. Yakubu MN, Dasuki SI. Factors affecting the adoption of e-learning technologies among higher education students in 

Nigeria: A structural equation modelling approach. Information Development. 2019; 35(3): 492–502. 

18. Osman AIA, Ahmed AN, Chow MF, et al. Extreme gradient boosting (XGBoost) model to predict the groundwater levels in 

Selangor Malaysia. Ain Shams Engineering Journal. 2021; 12(2): 1545–1556. 

19. Kavzoglu T, Teke A. Predictive Performances of ensemble machine learning algorithms in landslide susceptibility mapping 

using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arabian Journal for 

Science and Engineering. 2022; 47(6): 7367–7385. 

20. Arabameri E. The Evolution of Motor Behavior: Lessons from Past Research and Future Prospects. Health Nexus. 2024; 

2(4): 134–151. 

21. Padilla BO. Deep state-space modeling for explainable representation, analysis, and forecasting of professional human body 

dynamics in dexterity understanding and computational ergonomics [Doctoral dissertation]. Université Paris sciences et 

lettres; 2023. 

22. Ebers MR. Machine learning for dynamical models of human movement [Doctoral dissertation]. University of Washington; 

2023. 

23. Donmazov S, Saruhan EN, Pekkan K, Piskin S. Review of machine learning techniques in soft tissue biomechanics and 

biomaterials. Cardiovascular Engineering and Technology. 2024; 15: 1–28. 

24. Mishra N, Habal BGM, Garcia PS, Garcia MB. Harnessing an AI-Driven Analytics Model to Optimize Training and 

Treatment in Physical Education for Sports Injury Prevention. In: Proceedings of the 2024 8th International Conference on 

Education and Multimedia Technology; 22–24 June 2024; Tokyo, Japan. pp. 309–315. 

25. Mishra PK, Fasshauer GE, Sen MK, Ling L. A stabilized radial basis-finite difference (RBF-FD) method with hybrid 

kernels. Computers & Mathematics with Applications. 2019; 77(9): 2354–2368. 

26. Gewers FL, Ferreira GR, De Arruda HF, et al. Principal component analysis: A natural approach to data exploration. ACM 

Computing Surveys (CSUR). 2021; 54(4): 1–34. 

27. Hasan BMS, Abdulazeez AM. A review of principal component analysis algorithm for dimensionality reduction. Journal of 

Soft Computing and Data Mining. 2021; 2(1): 20–30. 

28. Engle RF, Ledoit O, Wolf M. Large dynamic covariance matrices. Journal of Business & Economic Statistics. 2019; 37(2): 

363–375. 

29. Zhang Z, Jung C. GBDT-MO: Gradient-boosted decision trees for multiple outputs. IEEE transactions on neural networks 

and learning systems. 2021; 32(7): 3156–3167. 

30. Mistry M, Letsios D, Krennrich G, et al. Mixed-integer convex nonlinear optimization with gradient-boosted trees 

embedded. INFORMS Journal on Computing. 2020; 33(3): 1103–1119. 

31. Moradi R, Berangi R, Minaei M. A survey of regularization strategies for deep models. Artificial Intelligence Review. 2020; 

53(6): 3947–3986. 

32. Bejani MM, Ghatee M. A systematic review on overfitting control in shallow and deep neural networks. Artificial 

Intelligence Review. 2021; 54(8): 6391–6438. 

33. Chen J, Pu Y, Guo L, et al. Second‐order optimization methods for time‐delay autoregressive exogenous models: Nature 

gradient descent method and its two modified methods. International Journal of Adaptive Control and Signal Processing. 

2023; 37(1): 211–223. 

34. Guo J, Fu H, Pan B, Kang R. Recent progress of residual stress measurement methods: A review. Chinese Journal of 

Aeronautics. 2021; 34(2): 54–78. 


