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Abstract: Background: Biosensing technology has developed as a capable tool for the rapid 

and perfect recognition of pathogenic microorganisms, determining real-time recognition 

capabilities that are crucial for early disease diagnosis and management. Purpose: This 

research investigates the integration of biosensors with Machine Learning (ML) techniques 

for the efficient detection of pathogens. Approaches: Data collection involved using various 

biosensors, including electrochemical, optical, and mass-based sensors, to capture the 

microbial signature of different pathogens. The collected data was pre-processed using 

adaptive filtering (AF) to remove noise and ensure signal clarity. Z-score normalization is 

utilized to standardize the dataset. Feature extraction was performed using the discrete 

wavelet transform (DWT) technique to reduce the dimensionality of the data while retaining 

crucial information. Results: This research proposes an Enhanced Snow Ablation Optimized 

Adaptive Support Vector Machine (ESAO-ASVM) model designed to enhance the accuracy 

and effectiveness of classifying complex biological data, such as microbial signatures. The 

proposed ESAO-ASVM model demonstrated optimal performance with an execution time of 

0.58 s, memory usage of 42%, Root mean squared error (RMSE) of 0.01, Mean squared error 

(MSE) of 0.019, accuracy loss of 0.06, Structural similarity index measure (SSIM) of 80.4, 

accuracy of 98.5%, precision of 95%, recall of 94%, and an F1-score of 96%. This approach 

suggests a robust solution for rapidly identifying pathogenic microorganisms, making it an 

effective clinical diagnostic tool for food safety, and environmental monitoring. Conclusion: 

The incorporation of Biosensing technology with ML methods contains potential significant 

improvement in pathogen recognition, enabling faster and more consistent health 

involvements. 

Keywords: pathogenic microorganisms; biosensor; machine learning (ML); discrete wavelet 

transform (DWT); enhanced snow ablation optimized adaptive support vector machine 

(ESAO-ASVM) 

1. Introduction 

Biosensing is an emerging analytical discipline that uses transducing 

technologies to detect biological markers. These transduction pathways convert 

biological fluctuations into readable and measurable visual, thermal, electrical, or 

electrochemical signals [1]. Numerous biological targets, including cells, bacteria, 

viruses, and bio macromolecules like nucleic acids, peptides, proteins, and enzymes, 

as well as tiny biomolecules like uric acid, h2o2, and glucose, can be detected via 

biosensing [2]. Very extensive possibilities for clinical trials of the biological 

indicators and the treatment of various illnesses with highly selective and sensitive 

biosensors equipped with responded promptly [3].  
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1.1. Biosensing technology in rapid identification 

Biosensing technology has transformed several industries, including food safety, 

environmental monitoring, and healthcare. This technique offers major benefits in 

the quick detection of substances like viruses, poisons, or even disease indicators by 

using sensors that detect biological markers in real time [4]. Information technology, 

biochemistry, nanotechnology, and microelectronics make biosensors very sensitive; 

and provide quick and accurate information required for responding rapidly to any 

situation [5]. Biosensors enhance disease control, environmental monitoring, and 

public health management by identifying indicators quickly, improving efficiency, 

and promoting early diagnosis, environmental protection, and food safety [6]. These 

components interact with target analytes, generating measurable signals that can be 

processed, emphasized, and displayed on a device for monitoring, identification, and 

decision-making purposes [7]. Table 1 provides an in-depth analysis of biosensors’ 

applications, including disease diagnosis, environmental protection, food safety, 

biodefense, agricultural monitoring, and personalized medicine.  

Table 1. Key applications of biosensing technology. 

Application Area Description 
Types of Biosensors 

Used 
Target Analytes Key Benefits 

Healthcare and 

Disease Diagnosis 

Detect biochemical reactions of 

biomolecules linked to diseases like 

cancer, cardiovascular diseases, and 

infections. 

Electrochemical, 

Optical, Enzymatic, 

DNA sensors 

Tumor markers, glucose, 

cholesterol, pathogens, 

DNA 

Rapid identification, timely 

interventions, personalized 

treatment, portable diagnostics 

Environmental 

Monitoring 

Detect pollutants, toxic chemicals, or 

pathogens in water, soil, and air. 

Optical, 

Electrochemical, Mass-

sensitive sensors 

Heavy metals, 

pesticides, VOCs, 

microorganisms 

Prevention of disasters, 

protection of health, safe 

water and air quality 

Food Safety and 

Quality Control 

Identify toxicological bacteria or 

pathogens in food. 

Optical, 

Electrochemical, 

Immunosensors 

Salmonella, E. coli, 

allergens, chemical 

residues 

Ensures safety, reduces 

contamination risks, monitors 

shelf life 

Biodefense and 

Security 

Detect bioterrorism agents or 

biological threats in various 

environments. 

Immunosensors, 

Electrochemical sensors 

Anthrax, botulinum 

toxin, ricin, smallpox 

virus 

Fast detection of biothreats, 

enhances safety, national 

security 

Agriculture and 

Livestock 

Monitoring 

Detect diseases in crops and 

livestock. 

Enzymatic, Optical, 

Electrochemical 

Plant pathogens, viruses, 

bacteria, hormones 

Early disease detection, 

improves yield and health, 

cost-effective 

Personalized 

Medicine 

Evaluate health parameters and aid in 

precise medical treatment. 

Wearable sensors, 

Electrochemical, 

Optical 

Glucose, blood pressure, 

lactate, hormone levels 

Continuous monitoring, real-

time data, personalized health 

insights 

1.2. Technological advancements and challenges  

Advancements in materials science, microelectronics, and nanotechnology have 

enabled the development of more precise, affordable, and smaller biosensors for 

identifying environmental pollutants or biomarkers [8]. Micro-fabrication 

advancements enable real-time diagnostic devices for environmental monitoring and 

healthcare, transforming wearable biosensors into continuous monitoring, and 

enabling personalized medical procedures [9]. Despite advancements in sensor 

calibration, manufacturing costs, regulatory barriers, and scalability, widespread 

acceptance of biosensors remains hindered by scalability, regulatory barriers, and 

strong validation procedures [10]. Biosensing technology is positioned to improve 
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some sectors, including food safety, environmental protection, and illness detection, 

as long as research into these issues continues.  

Research purpose: The research investigates the efficient use of Biosensing 

techniques in the detection of pathogens.  

1.3. Research contribution 

⚫ The research explores the integration of biosensors with ML techniques for 

efficient pathogen detection; 

⚫ Data collection includes various biosensors, including electrochemical, optical, 

and mass-based sensors, which were used to capture microbial signatures of 

pathogens; 

⚫ The noise is removed using an AF, and z-score normalization was applied to 

standardize the dataset for data preprocessing; 

⚫ Feature extraction using DWT is employed to reduce data dimensionality while 

retaining essential information; 

⚫ The ESAO-ASVM model was developed to improve the correctness and 

effectiveness of classifying complex biological data; 

⚫ The ESAO-ASVM model compared metrics like execution time, accuracy, 

precision, memory usage, RMSE, MSE, accuracy loss, SSIM, recall, and F1-

score. 

Research organization: Section 2 contains the research’s review of the literature, 

and section 3 explains the methodology of this research. The results of the research 

are illustrated in section 4. Section 5 demonstrates the discussion, and the research’s 

conclusion is presented in section 6.  

2. Literature survey 

Table 2 denotes a comprehensive overview of the literature on Biosensing 

technology in rapid identification, outlining data, research objectives, proposed 

method, and limitations of each research. Refer to the Appendix for relevant 

abbreviations (Table A1. Abbreviations and corresponding full forms). 

Table 2. Collection of various articles related to biosensing technology. 

Ref Objective Data  Proposed Method Limitations 

[11] 

To use nanosensor arrays with 

aggregation-induced emissive 

nanosilicons for pathogen 

identification in food. 

Tested on eight pathogens, 

including C. sakazakii and L. 

monocytogenes in milk at specific 

concentrations. 

ANN for rapid and accurate 

pathogen identification. 

Requires specific pathogen 

concentrations; validation is 

limited to milk samples. 

[12] 

To develop a DL-enhanced digital 

microfluidic platform for 

multiplex detection of viable 

foodborne pathogens. 

Tested on four bacterial species 

with detection limits of 63 

CFU/mL. 

TLENTNet for bacterial typing 

and quantification. 

Detection time: 7 h; detection 

limit: 63 CFU/mL; requires a 

specialized microfluidic chip. 

[13] 

To improve biosensor 

performance by ensuring DL 

classification model predictions 

align with domain knowledge for 

rapid and accurate biosensing. 

Validation using the dynamic 

response of cantilever biosensors to 

quantify microRNA across the 

nanomolar to femtomolar 

concentration range. 

TGRNN with cost function 

supervision for improved 

classification performance and 

consistency with experimental 

observations. 

Requires data augmentation, 

cost function supervision, and 

model tuning, adding 

complexity to real-world 

applications. 
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Table 2. (Continued). 

Ref Objective Data  Proposed Method Limitations 

[14] 

To investigate the efficiency of 

wearable technology for audio 

meditation and real-time stress 

detection in lowering levels of 

stress during academic engagement. 

Physiological data was collected 

during the MIST. 

Bayesian optimization for 

hyperparameter tuning, and GB 

algorithm for stress classification. 

Limited to academic stress 

context; depends on feature 

selection and ML model 

performance for accuracy. 

[15] 

To develop a novel T-shaped 

square SRR-based biosensor for 

early and accurate detection of 

brain tumors using ML. 

Investigated variations in 

materials as resonators for 

optimal response characteristics. 

ML for parameter improvement 

and in-depth analysis, using the T-

shaped SRR-based biosensor for 

real-time, label-free monitoring of 

brain tumor cells. 

Accuracy depends on 

material selection and 

wavelength range; limited 

specificity for multi-sclerosis 

and brain tissues. 

[16] 

Research aimed to predict detection 

times for rotating microfluidic 

biosensors designed for detecting 

CRPs using input variables. 

The data included input 

variables such as 𝜔, 𝑋𝑆, 𝜃, and 

RD for predicting the response 

time of a lab-on-a-CD device. 

The proposed method is a hybrid 

model, PSO-ANN, which 

combines ANN with PSO. 

Evaluated using MAE, 

RMSE, VAF, and R2 metrics. 

[17] 

The research involved designing 

and evaluating a THz metasurface 

biosensor for malaria detection 

using plasmonic materials and AI 

for early and accurate diagnosis. 

The data includes sensor 

performance metrics such as 

sensitivity, detection accuracy, 

and figure of merit, optimized 

through electromagnetic 

simulations. 

The proposed method integrates a 

multi-layer structure of graphene, 

gold, and silver for SPR effects 

with the XGBoost ML algorithm 

for performance prediction. 

Achieved up to 100% R2, but 

real-world limitations include 

variability in parasite 

concentrations and 

environmental conditions. 

[18] 

The research introduced an 

approach integrating SPR 

biosensing with ML to enhance fuel 

adulteration detection and improve 

fuel quality control. 

The data includes sensor 

performance metrics such as 

sensitivity, figure of merit, and 

predictions achieved through 

electromagnetic simulations. 

The proposed method combines 

SPR biosensing with the 

CatBoostGB algorithm. 

Achieved 100% R2, but 

challenges in real-world 

applications with complex 

fuel mixtures and 

environmental conditions. 

[19] 

The research represented DL-based 

architecture for designing an IAM 

to enhance trace detection of THz 

molecular fingerprints, specifically 

for α-lactose sensing. 

The meta grating’s sensing 

structure and resonance 

frequency were enhanced 9.3 

times using THz fingerprint 

spectra. 

It utilized a bidirectional neural 

network DL architecture for THz 

fingerprint sensing, utilizing angle 

multiplexing to stimulate guided-

mode resonances. 

Enhanced THz fingerprint 

detection but faces challenges 

in scaling design and 

optimizing fabrication for 

broader analyte applications. 

[20] 

Research presented a metasurface-

based biosensor integrating 

graphene, gold, and silver for 

enhanced hemoglobin detection. 

The data included performance 

metrics such as peak sensitivity, 

quality factor, sensor resolution, 

and an R2 of 1.0 for predictive 

accuracy. 

Research integrated a metasurface 

design with graphene, gold, and 

silver, optimized using the GB 

Algorithm for behavior prediction. 

Achieved perfect predictive 

accuracy, but challenges 

remain in scaling and 

biomolecule detection for 

broader applications. 

[21] 

Research developed a portable, DL-

assisted smartphone-based ECL 

sensing platform for cost-effective 

and selective lactate detection. 

The data included ECL images 

used to train DL models, with 

performance metrics such as 

linear range and limit of 

detection. 

The proposed method uses DL 

models trained on ECL images, 

integrated with a smartphone, and 

low-cost components for portable 

lactate sensing. 

Demonstrated good 

performance in controlled 

environments, but field-

testing and accuracy across 

diverse conditions remain 

challenging. 

[22] 

Research determined the design, 

simulation, and performance 

analysis of a terahertz-based 

biosensor for hemoglobin detection, 

utilizing graphene, gold, and silver 

metasurfaces. 

The data included performance 

metrics such as sensitivity, 

figure of merit, and detection 

range. 

The proposed method employs a 

terahertz-based sensor with ML 

optimization using a DTR, 

achieving an optimal R2 score of 

100%. 

High sensitivity and 

optimized performance, but 

scaling and application 

challenges for diverse 

biological analyses in real-

world scenarios. 

[23] 

Research demonstrated the novel 

terahertz-based biosensing platform 

for SARS-CoV-2 detection, 

utilizing a hybrid architecture of 

TiO2, black phosphorus, and 

graphene-based metasurfaces. 

The data included sensitivity, 

figure of merit, minimum 

detection threshold, and 

coefficient of determination. 

The proposed method integrates 

ML using the K-NN regression 

algorithm with computational 

electromagnetics for predicting 

absorption coefficients and sensor 

optimization. 

High sensitivity, but 

challenges in adapting 

platform for large-scale, real-

world applications and 

diverse analytes. 

 

 



Molecular & Cellular Biomechanics 2025, 22(3), 1155.  

5 

Table 2. (Continued). 

Ref Objective Data  Proposed Method Limitations 

[24] 

Research provides a terahertz-based 

biosensor that is calibrated for the 

0.1–0.6 THz bandwidth and uses 

SPR principles for direct dopamine 

identification. 

The data included sensitivity, 

figure of merit, detection limit, 

and KNN regression over test 

cases with R2 values of up to 

1.0.  

The biosensor integrates SPR with 

KNN regression to predict 

absorption values based on 

structural parameters for enhanced 

sensitivity and detection limits. 

Integration into clinical 

settings can face scalability, 

cost, and sample adaptation 

challenges. 

[25] 

It develops a cost-effective OFET-

based biosensor for detecting 

lactate and troponin using a carrier 

transport electronic model and ML 

optimization. 

Key data includes sensitivity for 

lactate and troponin and 

polyaniline’s lower power 

consumption with a threshold 

voltage of −170 mV. 

RF model is employed to optimize 

the OFET biosensor, incorporating 

polyaniline and pentacene as active 

layers for improved sensitivity and 

lower power usage. 

Scalability of the OFET 

biosensor for clinical use and 

potential variability in 

performance across biological 

samples. 

Research gap 

Biosensing technology has made progress in identifying pathogenic 

microorganisms, but gaps remain in sensitivity, specificity, scalability, operational 

stability, and real-time data analysis. Addressing these challenges can improve 

pathogen identification effectiveness, accessibility, and disease control tactics.  

3. Methodology 

This research investigates the well-organized utilization of biosensors and ML 

techniques in the detection of pathogens. This research uses biosensors to recognize 

pathogens from blood, saliva, and urine samples. These sensors are correlated to ML 

algorithms to analyze data, classify patterns, and predict infection spread. A real-

time detection model is qualified using a dataset of various diseases, using 

preprocessing methods to ensure data features. Feature extraction is utilized to 

capitalize the approach capability to correctly categorize pathogens. The research’s 

overview is demonstrated in Figure 1. 

 

Figure 1. Research outline. 
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3.1. Data collection 

Research gathers the Biosensing Technology for Pathogen Detection [26] 

dataset from Kaggle. The system uses biosensor information to improve pathogen 

safeguard suitability in clinical diagnostics, food safety, and ecological monitoring, 

focusing on harmful microorganism determination using biosensing technologies. 

Pathogenic microorganisms, which include a wide range of bacteria, viruses such as 

influenza and HIV, and fungi such as Candida and Aspergillus, are significant 

contributors to human diseases and impose substantial public health risks. Detecting 

these pathogens early and correctly is important in preventing the outbreak and 

ensuring public health safety. Biosensing technologies are promising as allow for 

rapid, sensitive, and non-invasive detection methods, which are of utmost 

importance for monitoring the presence of pathogens in, food, clinical, and 

environmental surroundings. 

3.2. Data Preparation 

This research highlights the significance of data preprocessing in biosensor data 

quality and reliability, using AF and Z-score normalization to eliminate noise and 

enhance detection accuracy.  

3.2.1. Adaptive filtering (AF) 

By removing unnecessary signals from harmful microbes, noise reduction in 

biosensor data improves signal intelligibility. Methods such as signal denoising, 

smoothing, and filtering safeguard relevant data for precise analysis, principally in 

real-time biosensor monitors where data consistency is important. AF is a dynamic 

method for removing noise in biosensor data, adjusting filter parameters based on 

input and output differences, and removing artifacts like motion and power line 

interference while discarding useless ones. This is best illustrated by the utilization 

of Equation (1). 

𝑧[𝑚] = ∑ 𝑥𝑗

𝑁−1

𝑗=0

[𝑚]. 𝑤[𝑚 − 𝑗] (1) 

Modify the rule  

𝑥𝑗[𝑚 + 1] = 𝑥𝑗[𝑚] + 𝜇. 𝑓[𝑚]. 𝑤[𝑚 − 𝑗] 

The filtered signal is represented by  𝑧[𝑚] , with adaptive filter 

coefficients 𝑥𝑗[𝑚], and step size 𝜇[𝑚], where 𝑓[𝑚] is the desired signal. The system 

dynamically adjusts filter parameters in real-time to eliminate noise, such as motion 

artifacts and power line interference, ensuring cleaner signals for accurate analysis. 

3.2.2. Z-score normalization  

After collecting the dataset, pre-processing is done by normalizing and fixing 

errors, which constitute certain ways that preprocessing assists in clearing up the 

data. Z-score normalization is a procedure that transforms biosensor data by focusing 

on a zero mean and scaling it based on SD. The method improves pathogenic 

microorganism uncovering by eliminating biases due to sensor sensitivities or 
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environmental conditions and normalizes the calculated SD and mean for each signal 

feature. The signal quality alteration is provided as in Equation (2). 

𝑍 =
(𝑦 −𝑚𝑒𝑎𝑛(𝑌))

𝑠𝑡𝑑(𝑌)
 (2) 

The technique minimizes the impact of outliers on data by scheming the mean 

and SD of the attributes. The regularity of biosensor data reduces biases and 

enhances the accuracy of pathogenic microorganism recognition by achieving zero 

mean and unit variance.  

3.3. Feature extraction using discrete wavelet transform (DWT)  

DWT is a technique used to extract features from biosensor data, particularly 

for detecting pathogenic microorganisms. It decomposes time-series data into 

frequency components, identifying rapid and slow trends. DWT enhances biosensor 

sensitivity by capturing transient microbial activity and subtle fluctuations, reducing 

data dimensionality, and detecting finer details. DWT pre-processing, the DWT 

technique converts remote sensing noises into frequencies with several resolutions, 

boosting feature extraction, preserving spatial information, and lowering noise to 

improve analysis. A wavelet is a function ψ ̂ that satisfies the following admissibility 

condition in Equation (3). 

𝐷𝜓 = ∫
|𝜓̂(𝜉)|

2

|𝜉|
 𝑐𝜉 < +∞

+∞

−∞

 (3) 

𝑤(𝑠) =∑ 𝑑(𝑙)
∞

𝑙=−∞
𝜙(𝑠 − 𝑙) +∑ ∑ 𝑐(𝑖, 𝑙)

∞

𝑙=−∞

∞

𝑖=0
2
𝑗
2𝜓(2𝑖𝑠 − 𝑙) (4) 

In Equation (4) 𝐷𝜓 Must be determinate safeguarding the function, 𝜙(𝑠 − 𝑙) is 

the function of scale, and 𝑐(𝑖, 𝑙) includes the high-energy element of the image, 

using the WS 𝜓(2𝑖𝑠 − 𝑙).𝑤(𝑠) is represented individually, with all signal analogous, 

a quantity of shifted and opened wavelet functions 𝜓  ( 𝑠 ) and removed scale 

meanings 𝜙(𝑠) can be used to decay limited influence. 

𝑑(𝑙) = ∫ 𝑤(𝑠)
+∞

−∞

𝜙(𝑠 − 𝑙)𝑐𝑠 (5) 

Equation (5) is a DWT version where 𝑑(𝑙) represents scale coefficients and 

𝑐(𝑖, 𝑙) represents wavelet coefficients. Equation (6) computes the wavelet and scale 

coefficients using scalar products. 

𝑐(𝑖, 𝑙) = 2
𝑗
2∫ 𝑤(𝑠)

+∞

−∞

𝜓(2𝑖𝑠 − 𝑙)𝑐𝑠 (6) 

By connecting high-pass and low-pass filters to wavelet and scale functions, the 

DWT may be built efficiently, utilizing filters with perfect reconstruction properties. 

The research investigates the efficient use of biosensors and ML techniques in the 

detection of pathogens. 
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3.4. Enhanced snow ablation optimized adaptive support vector machine 

(ESAO-ASVM) 

This research introduces an ESAO-ASVM model, aimed at improving the 

classification accuracy and efficiency of intricate biological datasets. The ESAO-

ASVM model uses snow ablation processes for optimal performance by 

energetically adjusting SVM parameters. The advance utilizes adaptive learning 

mechanisms to handle biological data unpredictability, ensure robust classification, 

and demonstrate potential for advancing computational biology and bioinformatics 

application.  

3.4.1. Adaptive support vector machine (ASVM) 

ASVM is an advanced ML method designed to adaptively adjust its 

hyperparameters for optimal classification presentation in dynamic or complex data 

environments. In biosensing technology, ASVM excels in identifying microbial 

signatures by efficiently handling nonlinear associations and multidimensional data. 

It uses adaptive learning to refine decision boundaries for better separation of 

pathogenic microorganisms from benign ones. The ASVM classifier is an ML 

algorithm for swift pathogen detection, enhancing pattern recognition and analysis, 

and can categorize high-dimensional attacks, The vector input signal (𝑥) is present 

in the input layer. In the hidden layer (𝑦), it is considered between the vector of the 

input signal (𝑥) and the assistance vector (𝑠). The linear outputs 𝑂 of the buried 

layer neurons are added together by the output neuron. The detection of DDoS 

attacks utilizes the ASVM algorithm’s advantages, switching information for 

training characteristic values, determining effective hyperplanes for categorization, 

and validating the research model with test data shown in Equation (7). Figure 2 

depicts how the input signal vector (𝑥 ) passes through the hidden layer, where 

interactions with support vectors (𝑠) occur, and how the output neuron computes the 

final classification. 

𝑂 =∑𝑊𝑖𝑘(𝑥𝑖𝑠𝑖) (7) 

 

Figure 2. Framework for ASVM architecture. 
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The ASVM, based on the decision function or hyperplane, addresses 

unbalanced binary categorization issues as described in Equation (8), 

𝑧(𝑦) = 𝑢𝐷𝑦 + 𝑝 = 0 (8) 

With bias denotes 𝑝𝜖𝐾 and weighted vector 𝑢𝜖𝐾𝑀 . The following represents 

the constrained issue of an ASVM having a maximum margin hyperplane Equation 

(9): 

𝑚𝑖𝑛
𝑢, 𝑝, 𝛽−, 𝛽+

1

2
‖𝑢‖2 + 𝑏−𝛽− + 𝑏+𝛽+𝑠. 𝑡. 𝑌−𝑢 + 𝑏−𝑝 ≤ 𝑏− − 𝛽−𝑌+𝑢 + 𝑏+𝑝 ≤ 𝑣+ − 𝛽+𝛽− ≥ 0 (9) 

where the maximal margins of two parallel hyperplanes are represented by the 

regularization term
 1

2
‖𝑢‖2, and the penalty parameters for controlling the weights 

between components for the positive and negative classes are 𝑏+  and  𝑏− , 

respectively. Slack variables for the negative classes and the positive class are 

𝛽 −and 𝛽 + . The training matrix for the negative classes and positive class are 

denoted by 𝑌− and 𝑌+, and the vectors used for the negative classes and the positive 

class are, respectively, 𝑏− and 𝑏+. 

3.4.2. Enhanced snow ablation optimized (ESAO) 

ESAO is an optimization algorithm inspired by the natural process of snow 

ablation, where environmental factors influence the melting and reshaping of snow. 

In biosensing, ESAO fine-tunes model parameters by simulating this adaptive 

reshaping to navigate complex search spaces effectively. It is applied to enhance the 

precision of microbial detection by optimizing the hyperparameters. ESAO balances 

exploration and exploitation for efficient pathogen identification systems, while 

snowfall reduces unwanted elements in remedy areas through environmental factors.  

i. Initial stage 

In ESAO, the iterative procedure starts from a randomly formed swarming. 

Usually, the complete swarming can be seen as a matrix containing 𝑀 rows, and 

𝐷𝑖𝑚 columns where 𝑀 represents the swarm dimensions and 𝐷𝑖𝑚 is the number of 

measurements present in the approached areas as shown in Equation (10). 

𝑌 = 𝐾 + 𝜃 × (𝑉 − 𝐾) =  

[
 
 
 
 
𝑌1,1
𝑌2,1
⋮

𝑌𝑀−1,1
𝑌𝑀,1

𝑌1,2
𝑌2,2
⋮

𝑌𝑀−1,2
𝑌𝑀,2

⋯
⋯
⋮
⋯
⋯

𝑌1,𝐶 𝑖𝑚−1
𝑌1,𝐶 𝑖𝑚−1

⋮
𝑌𝑀−1,𝐶 𝑖𝑚−1
𝑌𝑀,𝐶 𝑖𝑚−1

𝑌1,𝐷𝑖𝑚
𝑌2,𝐷𝑖𝑚
⋮

𝑌𝑀−1,𝐶 𝑖𝑚
𝑌𝑀,𝐷𝑖𝑚 ]

 
 
 
 

𝑀×𝐷𝑖𝑚

 (10) 

𝐾 Along with 𝑉  indicates, accordingly, the bottom and higher boundaries of the 

resulting area. In [0, 1], a number produced at random is denoted through 𝜃. 

ii. Exploration stage 

ESAO’s exploratory strategy involves modeling the unpredictable travel of 

agents during snow melt or water transformation, using the Brownian motion method. 

The approach studies events like animal behavior and particle movement using a 

distribution of normality, mean, and variability to determine the increment size for 

average Brownian movement (Equation 11). 

𝑒𝐵𝑀(𝑤; 0,1) =
1

√2𝜋
× 𝑒𝑥𝑝(−

𝑤2

2
) (11) 
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The procedure for calculating locations during the exploration phase works as 

follows in Equation (12), 

𝑌𝑗(𝑠 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑠) + 𝐵𝑀𝑗(𝑠) ⊗ (𝜃1 × (𝐻(𝑠) − 𝑌𝑗(𝑠)) + (1 − 𝜃1) × (𝑌̅(𝑠) − 𝑌𝑗(𝑠)) (12) 

Symbols of ⊗ determined entry-level multiplying 𝜃1represents a figure chosen 

at randomness by [0, 1] 𝑌𝑗(𝑠) detects 𝑗𝑡ℎ entity beyond the 𝑠𝑡ℎ iterations, as well as 

𝐵𝑀𝑗(𝑠). Furthermore, 𝑌̅(𝑠) determines the location of the whole swarm’s 

center, 𝐸𝑙𝑖𝑡𝑒 (𝑠) represents a single of the numerous experts within the swarms who 

were selected at erratic, as well as 𝐻(𝑠) represents the most suitable answer available 

at the moment as shown in the Equations (13) and (14),  

𝑌̅(𝑠) =
1

𝑀
∑𝑌𝑗 (𝑠)

𝑀

𝑗=1

 (13) 

Elite(s)  ∈  [H(s), 𝑌 𝑠𝑒𝑐𝑜𝑛𝑑(𝑠), 𝑌 𝑡ℎ𝑖𝑟𝑑(𝑠),  𝑌𝑑(𝑠)] (14) 

where  𝑌𝑡ℎ𝑖𝑟𝑑(𝑠) along with  𝑌𝑠𝑒𝑐𝑜𝑛𝑑(𝑠)  represent correspondingly. The center of 

gravity location is chosen for individuals with the highest health scores within the 

second and third best in the current population, as shown in Equation (15),  

𝑌𝑑(𝑠) =
1

𝑀1
∑𝑌𝑗(𝑠)

𝑀1

𝑗=1

 (15) 

where 𝑌𝑑(𝑠) represents 𝑗𝑡ℎ finest boss as well and 𝑀1 one is a set of administrators or 

half the swarm’s total population. 𝐸𝑙𝑖𝑡𝑒 (𝑠)are chosen randomly from a collection of 

the top three center locations, most effective solutions, second-best job performer, 

and third-best job throughout the process.  

iii. Exploitation stage 

The exploiting aspects of ESAO are introduced in the following paragraphs. 

Instead of expanding with an extremely dispersed characteristic in the remedy region 

consider using excellent solutions around the present optimal approach when the 

precipitation evaporates and turns into solid water. A number of the commonly 

prevalent models for melting snow involve the degree-day method, which shows the 

procedure for melting as shown in Equation (16), 

𝑁 = 𝐶𝐶𝐸 × (𝑆 − 𝑆1) (16) 

wherein 𝐶𝐶𝐸  differs with the value from 0.35 to 0.6, denotes the degree-days 

factories. Equation (17) illustrates the iterative values of 𝐶𝐶𝐸 as follows, 

𝐶𝐶𝐸 = 0.35 + 0.25 ×
𝑓

𝑠
𝑠𝑚𝑎𝑥 − 1

𝑓 − 1
 (17) 

where 𝑠max  represents the terminated regulations, a melt space for ESAO is as 

shown in Equation (18), 



Molecular & Cellular Biomechanics 2025, 22(3), 1155.  

11 

𝑁 = (0.35 + 0.25 ×
𝑓

𝑠
𝑠𝑚𝑎𝑥 − 1

𝑓 − 1
) × 𝑆(𝑠), 𝑆(𝑠) = 𝑓

−𝑠
𝑠𝑚𝑎𝑥 (18) 

Throughout the ESAO exploitation phase, Equation (19) is displayed in the 

following manner for changing the location.  

𝑌𝑗(𝑠 + 1) = 𝑁 × 𝐻(𝑠) + 𝐵𝑀𝑗(𝑠) ⊗ (𝜃2 × (𝐻(𝑠) − 𝑌𝑗(𝑠)) + (1 − 𝜃2) × (𝑌̅𝑗(𝑠) − 𝑌𝑗(𝑠)) (19) 

The randomized integers 𝜃2  and 𝑁  indicate snow melting ratings, making 

communication easier and allowing people to take advantage of potential places 

during this time.  

iv. Dual population mechanism  

Metaheuristic computations compromise between snow accumulation and heat 

generation, using dual-population techniques to maintain combined investigation and 

utilization in complex human-like behavior. Research refers to each of these 

subgroups as 𝑂𝑏 𝑎𝑛𝑑 𝑂𝑎  correspondingly, and the whole populations 

as  𝑂 additionally  𝑂, 𝑂𝑏 as well as  𝑂𝑎  dimensions 𝑀,  𝑀𝑏 , 𝑎𝑛𝑑 𝑀𝑎  correspondingly. 

𝑂𝑏  Seems trustworthy to the investigation when 𝑂𝑎  indicates trustworthiness with 

exploitations. A dimension  𝑂𝑏  through the steady decline in  𝑂𝑎  as shown in the 

Equation (20), 

𝑌𝑗(𝑠 + 1) =

{
 
 

 
 Elite(s) + 𝐵𝑀𝑗(𝑠) ⊗ (𝜃1 × (𝐻(𝑠) − 𝑌𝑗(𝑠))

+(1 − 𝜃1) × (𝑌̅(𝑠) − 𝑌𝑗(𝑠))

𝑁 × 𝐻(𝑠) + 𝐵𝑀𝑗(𝑠) ⊗ ((𝜃2 × (𝐻(𝑠) − 𝑌𝑗(𝑠))

−(1 − 𝜃2) × (𝑌̅(𝑠) − 𝑌𝑗(𝑠))

 (20) 

As mentioned, the community as a whole is a position matrix in Equation (20). 

𝑖𝑛𝑑𝑒𝑥𝑏 𝑎𝑛𝑑 𝑖𝑛𝑑𝑒𝑥𝑎 Add the individuals’ numbers to the lines in 𝑂𝑏 𝑎𝑛𝑑 𝑂𝑎 . The 

ESAO algorithm enhances optimization efficiency by utilizing snow ablation 

techniques, enhancing convergence speed and global search capabilities, and 

ASVMs are highly effective in complex biosensing tasks. By combining ESAO-

ASVM, the method provides a hybrid solution that optimizes parameter selection 

while maintaining adaptive flexibility, resulting in highly accurate and rapid 

identification of pathogenic microorganisms in biosensing technology. Algorithm 1 

represents the ESAO-ASVM. 
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Algorithm 1 Enhanced snow ablation optimized adaptive support vector machine (ESAO-ASVM) 

1: Initialize parameters for ESAO and Adaptive SVM 

2: Input: Training dataset {(xi, yi)}, SVM parameters (C, kernel type, tolerance),  

3:        ESAO parameters (Population size M, MaxIter, exploration θ1, exploitation θ2) 

4:  

5: Adaptive SVM Initialization 

6: Initialize SVM weights (w) and bias (b) 

7: Define the decision function: f(x) = sign (w.T * x + b) 

8:  

9: Snow Ablation Optimization 

10: Initialize swarm particles with random positions and velocities 

11: For iter = 1 to MaxIter: 

12:     For each particle i in swarm: 

13:         Evaluate fitness function based on SVM classification error 

14:         Update personal best and global best positions 

15:         Update positions using exploration factor θ1 and refine with exploitation factor θ2 

16:     End For 

17: End For 

18: ESAO-ASVM  

19: For each data point (xi, yi): 

20:     Solve SVM quadratic optimization problem: Minimize ||w||^2 subject to yi(w.T * xi + b) ≥ 1 

21:     If misclassification rate > threshold: 

22:         Adjust SVM parameters (C, kernel) based on ESAO-optimized values 

23:     End If 

24: End For 

25: Return: Optimized Adaptive SVM model (w, b) with ESAO-tuned parameters 

4. Performance analysis 

To achieve an efficient detection of pathogens, this research focuses on the 

biosensors fused with ML algorithms. The ESAO-ASVM model evaluated metrics 

such as execution time, memory usage, RMSE, MSE, accuracy loss, SSIM, accuracy, 

precision, recall, and F1-score. 

4.1. Experimental setup 

This research uses an HP laptop with a 2.10 GHz Intel Core i7-8250U and i7-

13700 CPU, 16GB RAM, Windows 10 Pro, and Python 3.12 to implement 

biosensing technology for rapid identification of pathogenic microorganisms (Table 

3). 

Table 3. Experimental setup. 

Processor Intel(R) Core (TM) i5-8250U 

Laptop Brand HP 

CPU Intel Core i7-13700 

CPU Speed 2.10 GHz 

RAM 16 GB 

Operating System Windows 10 Pro 

Python Version 3.12 

L3 Cache 6 MB 
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Table 4 presents performance metrics for biosensing technology, assessing 

accuracy, efficiency, and resource utilization, comparing the proposed approach with 

existing methodologies, and supporting real-world biosensing technology. Table 5 

summarizes the findings of performance metrics. 

Table 4. Performance metrics and equations. 

Equation number Metrics Equations 

21 RMSE RMSE = √𝑛1∑(

𝑛

𝑖=1

𝐴𝑖 − 𝐹𝑖)2 

22 Accuracy Loss 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 = 1 −
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑥𝑒𝑙𝑠
 

23 Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

24 Precision Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

25 Recall Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

26 F1-score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

27 Memory Usage 𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑠𝑎𝑔𝑒 =  𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 −  𝑀𝑒𝑚𝑜𝑟𝑦 𝐹𝑟𝑒𝑒𝑑 

28 Execution Time  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐸𝑛𝑑 𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 

29 MSE MSE = √𝑛1∑(

𝑛

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)2 

30 SSIM 𝑆𝑆𝐼𝑀(𝑤, 𝑤̂) =
(2𝜇𝑦𝜇𝑦̅ + 𝐷1)(2𝜎𝑤𝑤̂ + 𝐷2)

(𝜇𝑦
2 + 𝜇𝑦̂

2 + 𝐷1)(𝜎𝑤
2 + 𝜎𝑤̂

2 + 𝐷2)
 

Table 5. Outcomes of performance analysis. 

Metrics Values 

Execution time 0.58 s 

Memory Usage 42% 

RMSE 0.01 

MSE 0.019 

Accuracy loss 0.06 

SSIM 80.4 

Accuracy 98.5 

Precision 95 

Recall 94 

F1-score 96 

4.2. Mean squared error (MSE) 

MSE quantifies the mean squared discrepancy between expected and actual 

values. In biosensing, MSE helps to evaluate the accuracy of predictions made by 

models that estimate the concentration or presence of pathogens (Equation 29). A 
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lower MSE indicates that the model has better precision in detecting pathogens 

accurately (Figure 3a). The MSE value of the ESAO-ASVM model is 0.019, 

showing minimal squared prediction error. 

 

Figure 3. Graphical outcomes of (a) MSE and (b) RMSE.  

4.3. Root mean squared error (RMSE) 

RMSE is a metric employed to measure the change and observed principles in 

biosensing technology (Equation 21). It quantifies the error magnitude, where a 

lower RMSE indicates better model accuracy in detecting pathogenic 

microorganisms. This metric is especially relevant when comparing continuous data 

values such as sensor readings for pathogen detection. The model achieves an RMSE 

value of 0.01, indicating a low prediction error. Figure 3 despite an extensive 

investigation of how the RMSE value of 0.001 indicates the model’s high precision 

in pathogen detection.  

4.4. Accuracy loss 

Accuracy loss refers to the difference between the theoretical accuracy of the 

framework and its actual performance in a biosensing system (Equation 22). The 

model experiences an accuracy loss of only 0.06 during execution. In rapid 

pathogenic microorganism detection, accuracy loss helps to evaluate the reliability of 

the sensor in providing correct identifications, with a focus on minimizing the 

discrepancy between expected and observed outcomes. Figure 4 illustrates in detail 

the evolution of accuracy loss in the model performance over iterations in the 

process of pathogen detection. 

 

Figure 4. Graphical outcomes of accuracy loss. 
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4.5. Accuracy 

Accuracy is a crucial factor in biosensing systems, as it measures the proportion 

of correctly identified pathogenic microorganisms in a system, ensuring rapid and 

reliable real-time diagnostics of pathogens (Equation 23). Figure 5 depicts that the 

ESAO-ASVM model reaches a cross-validation accuracy of 98.5%, which means 

that it correctly identifies 98.5% of all the instances present in the dataset. That is, high 

accuracy ensures that for real-time pathogen diagnostics, the system is not to 

frequently misidentify pathogens.  

 

Figure 5. Graphical outcomes of performance analysis. 

4.6. Precision 

Precision measures a biosensor’s ability to accurately identify pathogenic 

microorganisms, reducing false positives and minimizing the risk of 

misidentification during detection, as shown in (Equation 24). Figure 5 shows 95% 

precision, meaning that the model correctly predicted the positive pathogen 

predictions. This high precision reduces the false positives and limits the possibility 

of a false report of the existence of a pathogen when none is actually there, which 

can be important for avoiding unnecessary treatments or interventions. 

4.7. Recall  

Recall, also known as sensitivity, measures the ability of the biosensing 

technology to correctly identify all true pathogenic microorganisms (Equation 25). 

The system’s high recall value indicates its effectiveness in the detecting most 

pathogens, even in complex environments or at lower concentrations. The ESAO-

ASVM model recognizes all of the real pathogens in the dataset, as seen by the 94% 

recall shown in Figure 5. The high recall in the model ensures detection of the 

majority of pathogens, including those that are available in low numbers or in 

complex conditions, thereby minimizing the possibilities of false negatives. 

4.8. F1-score 

The F1-score is a statistic that combines accuracy and recall to provide an 

accurate evaluation of a biosensor’s performance, especially crucial in the rapid 

identification of pathogenic microorganisms, where both missed and incorrect 



Molecular & Cellular Biomechanics 2025, 22(3), 1155.  

16 

detections must be minimized (Equation 26). Figure 5 displays a 96% F1-score 

indicating a balance between recall and accuracy. Therefore, it confirms that the 

model is well performing in minimizing false positives as well as avoiding missed 

detections. 

4.9. Memory usage 

Memory usage refers to the amount of computer memory required to process 

the data from biosensing devices in real-time (Equation 27). Efficient memory usage 

is crucial for pathogen detection in biosensing systems to handle large sensor data 

volumes without performance degradation, especially in portable or embedded 

systems. Figure 6 demonstrates that ESAO-ASVM utilizes 42% of the available 

memory when executed. The usage is thus balanced and allows for the processing 

without degradation in system performance. 

 

Figure 6. Graphical outcomes of memory usage. 

4.10. Execution time 

Execution time measures how quickly the biosensing system processes data to 

deliver results. For rapid identification of pathogenic microorganisms, minimizing 

execution time is crucial for ensuring that diagnostic results are delivered on time, 

allowing for quick decision-making and action in clinical or field settings (Equation 

28). The ESAO-ASVM model has an execution time of 0.58 seconds, as depicted in 

Figure 7. It can effectively process large amounts of data to provide real-time results. 

 

Figure 7. Graphical outcomes of execution time. 
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4.11. Structural similarity index measure (SSIM) 

SSIM is a statistic that evaluates the similarity of two images or signals. It 

evaluates structural information, luminance, and contrast. In biosensing for pathogen 

detection, SSIM helps to compare the similarity between original and predicted 

images of microorganisms (Equation 30). As illustrated in Figure 8, the SSIM value 

of 80.4 clearly indicates that there is a strong correlation between the predicted and 

actual pathogen images, thereby demonstrating the efficacy of the model for 

pathogen identification. 

 

Figure 8. Graphical outcomes of SSIM. 

5. Discussion 

The limitations with previous research of biosensing systems integrated with 

ML integration from the numerous challenges are as follows, the generalizability in 

realistic settings was significantly limited because it relies heavily on specific 

experimental conditions, including concentration of pathogen and control over the 

environment. Furthermore, the complexity incurs significant amounts of data pre-

processing and augmentation together with parameter tuning before model use. 

Moreover, detection performances were not stable for different analyses because 

sensor sensitivities differ in response to a sample type or conditions. Some more 

problems associated with long detection time, high expense, and the necessity of 

expensive devices also affect its widespread acceptance and practical 

implementation in real applications. All these combined factors together affect the 

scaling-up and in-situ applications of biosensing systems for wide-scale applications. 

The proposed ESAO-ASVM model presents several advantages compared to the 

previously developed models: higher accuracy (98.5%), precision (95%), and recall, 

(94%), which ensure for accurate pathogen detection in real-time scenarios. It 

integrates ESAO for enhanced optimization and ASVM for accurate classification 

resulting in faster execution times of (0.58s) and lower memory usage of (42%), 

thereby making it more efficient for processing large-scale data. Compared to other 

models, suggested ESAO-ASVM reduces false positives and increases sensitivity, 

and balances precision and recall, thereby making it appropriate for use in clinical 

diagnostics, food safety, and environmental monitoring. This is because the proposed 

model has a higher capacity for handling complex biological data effectively. 
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6. Conclusion 

Biosensing technology has revolutionized the identification of pathogenic 

microorganisms, offering speed, accuracy, and sensitivity. The integration of 

nanotechnology, microfluidics, and genetic-based sensors further enhances 

recognition capabilities. Biosensing technology is crucial for timely diagnostics, 

patient intervention, food safety, and environmental monitoring. Challenges include 

standardization, validation, and the development of robust sensors. Despite these 

challenges, biosensors are expected to continue evolving as a cornerstone of 

microbial detection in various sectors. The ESAO-ASVM achieved the best 

outcomes with Execution Time (0.58 s), Memory Usage (42%), RMSE (0.01), MSE 

(0.019), Accuracy Loss (0.06), SSIM (80.4), Accuracy (98.5%), Precision (95%), 

Recall (94%), and F1-Score (96%).  

Drawbacks and future scope: Despite its capable probability, biosensing 

equipment faces challenges such as limited sensitivity for low-concentration 

pathogens and the need for better integration with existing diagnostic systems; 

however, future advancement in nanomaterial, multiplexed sensing, and Artificial 

Intelligence (AI) incorporation hold the promise of overcome these restrictions and 

attractive its applicability in dissimilar fields.  
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Appendix 

Table A1. Abbreviations and corresponding full forms. 

Abbreviation Full Form 

WT Wavelet Transform 

ESAO-ASVM Enhanced Snow Ablation Optimized Adaptive Support Vector Machine 

VOCs Volatile Organic Compounds 

E. coli Escherichia coli 

DNA Deoxyribonucleic Acid 

VOCs Volatile Compounds 

ANN Artificial Neural Network 

CFU/mL Colony Forming Units per milliliter 

TLENTNet Time-Lapse images driven EfficientNet-Transformer Network 

TGRNN Theory-guided Recurrent Neural Network 

GB Gradient Boosting 

SRR Split-Ring Resonator 

PSO-ANN Particle Swarm Optimization - Artificial Neural Network 

MAE Mean Absolute Error 

RMSE Root Mean Square Error 

VAF Variance Accounted For 

R2 Coefficient of Determination 

XGBoost Extreme Gradient Boosting 

CatBoost Categorical Boosting 

DL Deep Learning 

IAM Inverted All-Dielectric Metagrating 

SPR Surface Plasmon Resonance 

K-NN K-Nearest Neighbors 

OFET Organic Field-Effect Transistor 

SVR Support Vector Regression 

AI Artificial Intelligence 

ML Machine Learning 

AF Adaptive Filtering 

SD standard deviation 

DWT discrete Wavelet Transform 

ESAO Enhanced Snow ablation optimization 

ASVM Adaptive Support vector machine 

QP Quadratic Programming 

DDoS Distributed Denial-of-Service 

XS biosensor position 

ω rotational velocity 

θ angular alignment 

RF random forest 

RD radial displacement 
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Table A1. (Continued). 

Abbreviation Full Form 

CRP Complex reactive proteins 

THz TunablSe terahertz 

ECL Electrochemiluminescence 

DTR Decision tree regressor 

TiO2 Titanium dioxide 

KNN K-nearest neighbors 

MIST Montreal Imaging Stress Task 

 


