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Abstract: Traditional methods for predicting investment trends often rely on macroeconomic 

data, overlooking the influence of individual biomechanical characteristics on decision-making, 

particularly in the health and medical fields. This paper seeks to enhance the accuracy of 

healthcare investment trend predictions by integrating high-precision biomechanical data 

acquisition technology with advanced quantitative analysis methods. High-precision sensors 

and smart wearable devices are employed to collect individual biomechanical data, 

encompassing dynamic features such as sports performance, joint angles, and gait. To ensure 

data quality, a rigorous preprocessing procedure is implemented. Principal component analysis 

(PCA) is utilized for feature extraction, minimizing redundant information and isolating the 

most representative biomechanical features. During the data analysis phase, a hybrid model 

combining random forests and support vector machines (SVM) is employed to predict 

healthcare investment trends. Random forests are applied for feature selection and regression 

analysis, while SVMs address classification tasks for trend prediction. The results indicate that 

the proposed model achieves an accuracy and precision exceeding 0.9, with healthcare 

investment returns on investment (ROI) ranging from 20% to 50%. The findings underscore 

the potential of biomechanical data in providing valuable insights for healthcare investment 

trend predictions, ultimately driving innovation and progress in the industry. 

Keywords: biomechanical data; quantitative analysis; machine learning; investment prediction; 

time series 

1. Introduction 

With the aging of the global population and increasing awareness of health, the 

medical and healthcare industry is experiencing unprecedented growth opportunities 

[1,2]. However, as technology continues to advance, investment trends in this field 

have become increasingly intricate, particularly with the incorporation of 

biomechanics and health data [3,4]. Biomechanics, which focuses on human 

movement and mechanical behavior, has made notable strides in areas such as sports 

medicine, rehabilitation therapy, and personalized health management [5,6]. The rapid 

development of smart wearable devices and sensor technology has led to the 

accumulation of vast amounts of biomechanical data. Yet, traditional analytical 

methods face significant limitations, especially in terms of data collection precision, 

analytical depth, and interdisciplinary integration [7,8]. Consequently, effectively 

utilizing this data to predict trends in healthcare investment has emerged as a critical 

challenge. 

Recent years have witnessed growing scholarly interest in applying 

biomechanical data to health management and medical fields [9,10]. For instance, 

some researchers analyze athletes’ biomechanical data to evaluate sports performance 
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and predict injury risks [11,12], while others predict fall risks among the elderly using 

biomechanical analysis combined with smart devices [13,14]. However, despite these 

initial achievements, several limitations remain evident [15,16]. First, existing studies 

often rely on conventional data collection methods, constrained by the capabilities of 

limited sensors and analysis tools, thereby failing to comprehensively capture the 

complex biomechanical characteristics of the human body [17,18]. Second, many 

studies focus on individual-level health interventions without addressing broader 

cross-industry trends or large-scale market demands [19,20]. As a result, traditional 

research in the application of biomechanical data to healthcare investments suffers 

from inadequate accuracy, simplified analytical frameworks, and insufficient support 

for predicting future trends [21,22]. 

To address these challenges, researchers have increasingly turned to advanced 

quantitative analysis methods, such as machine learning and big data analytics, to 

enhance the accuracy and depth of biomechanical data analysis [23,24]. For example, 

deep learning algorithms have been used for real-time analysis of athletes’ 

biomechanical data, significantly improving injury prediction accuracy [25,26]. 

Similarly, regression analysis and time series forecasting have been employed to 

combine multi-source biomechanical data with patient health histories, enabling 

predictions of rehabilitation progress and treatment needs [27,28]. While these 

methods have improved analytical precision, they still fall short in establishing 

comprehensive correlations between biomechanical data and healthcare investment 

trends [29,30]. 

This paper aims to address these gaps by leveraging advanced biomechanical data 

acquisition technologies and cutting-edge quantitative analysis methods. Specifically, 

it proposes a framework that integrates high-precision biomechanical data collection 

with machine learning and big data analytics to analyze the biomechanical 

characteristics of diverse populations (e.g., athletes, the elderly) and predict their needs 

in health management and rehabilitation. The study further connects these insights 

with investment trends in the medical and healthcare industry. Through this approach, 

the study aspires to provide investors with more accurate predictions of healthcare 

trends, thereby fostering innovation and driving development in the industry. 

By solving the challenges of data accuracy, analytical depth, and interdisciplinary 

integration in traditional research, this paper aims to establish a novel framework that 

bridges biomechanical data analysis and healthcare investment decisions, ultimately 

contributing to the sustainable growth of the medical and healthcare industry. 

2. Biomechanical data acquisition 

2.1. Application of motion sensors 

Inertial measurement units are a combination of accelerometers, gyroscopes and 

magnetometers to achieve real-time monitoring of the three-dimensional acceleration, 

angular velocity and direction of the human body during movement. In this study, IMU 

(Inertial Measurement Unit) is mainly used to monitor the dynamic characteristics of 

individual movement patterns, gait cycles, stride length, and step frequency. The 

advantages of IMU are its high accuracy, low latency and ability to collect data in real-

time, which is essential for capturing rapidly changing motion processes. By fixing 
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the IMU sensor on the ankle, waist or shoulder of an individual, it is possible to obtain 

all-round data during the movement process, thereby analyzing key indicators such as 

the intensity of each step, gait asymmetry, and changes in joint movement angles. 

During the data acquisition process, the accuracy of the IMU sensor is solved by 

regular calibration and multi-sensor fusion algorithms. By using the Kalman filter 

algorithm for sensor data fusion, the accuracy and stability of the data are further 

improved, and the measurement error of a single sensor is reduced. Especially during 

rapid turns or intense movements, the IMU can provide accurate dynamic feedback. 

2.2. Application of force plates 

To obtain data related to body load, this paper uses force plates in the experiment. 

The force plate can accurately measure the vertical force applied by an individual in 

standing, walking, running, and other motion states, as well as the resulting dynamic 

changes. The vertical impact force and ground reaction force measured by the force 

plate can further analyze the individual’s muscle load and joint stress. The force plate 

captures the instantaneous force changes each time the sole of the foot contacts the 

ground through high-frequency sampling, and records the impact of landing, standing 

stability, and the force distribution of gait. Especially in rehabilitation medicine and 

sports injury assessment, the data provided by the force plate can help doctors evaluate 

the force on joints and bones during exercise, and thus provide a basis for personalized 

treatment plans. 

To overcome the challenge of low accuracy of the force plate in dynamic 

movement, this study adopted a combination of force plate and IMU data. By 

synchronizing the time and aligning the data of the two in space, more comprehensive 

biomechanical data can be obtained, making gait analysis and load monitoring more 

accurate. The specific method is to fuse the vertical force data of the force plate with 

the angular velocity data of the IMU through a complementary filtering algorithm, 

thereby eliminating the error of the force plate in the dynamic process. 

2.3. Application of smart wearable devices 

In addition to motion sensors and force plates, wearable devices such as smart 

bracelets and smart insoles are also used to collect biomechanical data. The advantages 

of these devices are their convenience of wearing, feasibility of long-term use, and 

support for real-time health monitoring. Smart bracelets can monitor individual 

physiological status data such as heart rate, cadence, and sleep quality. Smart insoles 

monitor gait and stride in real-time through built-in pressure sensors, and can 

effectively capture details such as the pressure distribution of the sole of the foot and 

the dynamic changes of the sole of the foot at each step. The data collection of smart 

bracelets uses photoelectric volume pulse wave sensing technology to monitor heart 

rate, current sensing technology to monitor gait, and combined with built-in 

accelerometers to analyze movement parameters such as cadence and stride. Smart 

insoles measure the pressure changes of the foot in contact with the ground through 

pressure sensor distribution, and then analyze important indicators such as the center 

of gravity distribution and plantar support force of the individual when walking and 

running. 
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The data advantage of these devices is that they can provide real-time monitoring, 

and the data transmission is convenient, which can achieve long-term tracking. 

Through the wireless sensor network, all collected data can be uploaded to the cloud 

platform in real-time for further analysis. In sports medicine and health management, 

the popularity of smart devices makes it possible to dynamically monitor the health 

status of individuals, especially in long-term monitoring and personalized health 

management. It has great application potential. 

2.4. Data synchronization and fusion 

To effectively integrate the data of various sensors, this study adopted data 

synchronization and fusion technology. Since the timestamps and sampling 

frequencies of data collected by different devices may be different, the data must be 

synchronized. This paper uses timestamp alignment technology to time align data with 

different sampling rates through interpolation methods, thereby ensuring the 

consistency of data from all sensors in the time dimension. In addition, a weighted 

fusion algorithm is used to integrate the measurement results of different devices in 

order to provide more comprehensive and accurate biomechanical parameters in the 

data analysis stage. 

Table 1 records the biomechanical data collected at intervals of 1 min, covering 

the key parameters of individuals during exercise. 

Table 1. Acquisition of motion parameters. 

Time Interval (min) Gait Cycle (s) Step Length (m) Step Frequency (steps/min) Joint Angle (°) Heart Rate (bpm) 

0 1.2 0.75 100 45 72 

1 1.1 0.74 105 46 75 

2 1.3 0.76 98 44 78 

3 1.1 0.72 110 47 80 

4 1.2 0.73 102 45 76 

5 1.4 0.78 95 48 82 

6 1.1 0.75 108 46 74 

7 1.3 0.77 99 44 77 

In the data fusion process, Kalman filtering and complementary filtering 

algorithms are used. The former is used to process the dynamic data of IMU and force 

plate, and the latter is mainly used to combine the physiological data of the smart 

bracelet and insole. Kalman filter can effectively suppress noise, optimize sensor 

measurement error, and provide more accurate dynamic motion analysis results, while 

complementary filtering effectively fuses low-frequency IMU data and high-

frequency force plate data to ensure the timeliness and accuracy of data. 

3. Data preprocessing and cleaning 

3.1. Outlier detection and denoising 

Outliers are extreme values in the data that deviate from the normal range, which 

may be caused by sensor failure or environmental interference. This paper uses outlier 
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detection based on statistical methods to identify and eliminate unreasonable data 

points. The specific steps are as follows: 

For each biomechanical indicator (such as gait cycle, stride, joint angle, etc.), first 

calculate its mean and standard deviation in the entire data set. Assuming that the data 

follows a normal distribution, when a data point exceeds the mean ±3 times the 

standard deviation, the point is considered an outlier. For these outliers, choose to 

remove them or replace them with neighboring data. Based on the box plot method, 

the quartiles (Q1, Q3) and interquartile range (IQR = Q3−Q1) of each variable are 

calculated, and the outliers are defined as values less than Q1−1.5IQR or greater than 

Q3 + 1.5IQR. This method helps to identify relatively outlier data points and avoid the 

influence of extreme data points on the results of subsequent analysis. Through the 

above method, this paper effectively identifies and removes noise in the data and 

improves the accuracy of the data set. 

In the original data of Figure 1, the outliers are widely distributed, and the 

extreme outliers have a significant impact on the distribution of the data. After 

removing the outliers, the volatility and discreteness of the data are effectively reduced, 

and the distribution of the data is more concentrated and stable. After removing the 

outliers, the data is more representative and suitable for further analysis. 

 

Figure 1. Outlier detection and denoising. 

3.2. Missing value filling 

Due to sensor failure or environmental factors, the collected biomechanical data 

often have missing values. The existence of missing data will lead to deviations in the 

analysis results, so it must be filled. This study used linear interpolation to fill in the 

missing values in the data. The specific process is as follows: 

For each variable containing missing values, the data is first sorted in 

chronological order to ensure the temporal nature of the data. For the case where the 
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missing value is between two known data points, the linear interpolation method is 

used to fill it. For multiple missing data points, the method of multiple interpolation 

before and after is used for recursive filling to ensure that the filled data can be 

consistent with other data points. Using linear interpolation to fill missing values can 

retain the temporal nature and trend of the data to the greatest extent, avoiding the 

reduction of sample size or distortion of analysis results due to the direct deletion of 

missing data. 

3.3. Data standardization 

Since different types of biomechanical data (such as gait analysis, muscle load, 

joint angle, etc.) may have different dimensions (for example, the unit of angle is 

degree and the unit of load is Newton), the z-score standardization method is used to 

process the data during data analysis. The standardized data can effectively eliminate 

the dimensional differences between different features, avoid the excessive influence 

of some features with larger dimensions on the analysis results, and improve the 

stability and reliability of the subsequent analysis model. 

4. Feature extraction and selection 

4.1. Feature extraction 

First, based on multiple variables in biomechanical data, this paper extracts 

several core features that can effectively reflect the individual’s sports performance 

and health status. 

The moment when the foot contacts the ground is captured by the IMU sensor, 

and the duration of a complete gait cycle is calculated, that is, the time interval from 

one foot landing to the same foot landing again. The gait cycle reflects the individual’s 

movement frequency and is usually used to analyze the stability and movement 

efficiency of the gait. Stride refers to the horizontal distance between the feet in each 

step, and the step frequency is the number of steps per unit time. Through the 

acceleration data of the IMU sensor and the pressure data of the force plate, this paper 

can accurately calculate the stride length and step frequency. These two features are 

important indicators for analyzing individual gait and exercise intensity. The IMU 

sensor is used to measure the bending angle of the joints during exercise, especially 

the angle changes of the knee and ankle joints. This feature is crucial for assessing the 

risk of sports injuries, exercise ability, and joint function. The electrical activity of the 

muscle is monitored by the electromyographic sensor, reflecting the activity of the 

muscle during exercise. Changes in muscle activity can be used to assess exercise load 

and fatigue. By analyzing the symmetry of the gait of both legs (including differences 

in step length, step frequency, landing time, etc.), the asymmetry during movement 

can be evaluated, which is of great significance for evaluating gait abnormalities, 

sports injuries, and rehabilitation. 

These features are obtained through precise calculations by combining motion 

sensors (including IMU and force plates), electromyography sensors, and smart 

wearable devices (including insoles and bracelets), providing basic data for subsequent 

feature selection and trend prediction. 
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4.2. Feature selection and dimensionality reduction 

There may be a large number of redundant features in biomechanical data, which 

will affect the efficiency and accuracy of the analysis. Therefore, feature selection and 

dimensionality reduction are key links to improve model performance. 

To solve the problem of feature redundancy, this study used the principal 

component analysis method to reduce the dimensionality of the extracted features. 

PCA (Principal Component Analysis) is a linear transformation method that extracts 

new features with the largest variance in the data by calculating the covariance matrix 

between features. These new features are called principal components. Principal 

components can effectively retain the main information in the data while removing 

unnecessary redundant features. 

The specific steps of PCA are as follows: First, all biomechanical features are z-

score standardized to ensure that features of different dimensions are processed under 

the same standard. The standardized data has zero mean and unit standard deviation, 

eliminating the deviation caused by different dimensions. According to the 

standardized feature data, the covariance matrix between them is calculated. The 

covariance matrix reflects the linear relationship between features. The larger the 

covariance value, the stronger the correlation. Through eigenvalue decomposition, the 

eigenvalues and corresponding eigenvectors of the covariance matrix are obtained. 

The larger the eigenvalue, the larger the proportion of the corresponding eigenvector 

in the data variance. According to the size of the eigenvalue, the first few principal 

components are selected, usually the first n principal components with the most 

explained variance. The selected principal components can retain more than 95% of 

the information in the original features. Finally, the original data is projected onto these 

principal components to obtain the reduced dimensionality data set. In this way, this 

paper compresses the high-dimensional feature space into a low-dimensional space 

while retaining the most representative information. In addition to PCA, this paper 

also uses feature selection methods based on tree models, such as random forests. By 

training a random forest model, this paper can obtain the importance score of each 

feature and select the features that contribute most to the prediction task. The random 

forest model uses the ensemble learning idea of multiple decision trees to effectively 

screen out features that have a greater impact on the prediction results by calculating 

the “split importance” of each feature in each tree. 

Figure 2 shows the correlation coefficients between different biomechanical 

features. The horizontal and vertical axes represent different features, and the cells 

represent the correlation between the two features. The correlation value between 

cadence and gait cycle is above 0.9, indicating that there is a strong positive correlation 

between the two features and high redundancy. We choose to retain cadence and 

remove gait cycle to avoid redundant data affecting model performance. 
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Figure 2. Feature correlation. 

5. Trend prediction model construction 

5.1. Data preparation and feature fusion 

In trend prediction, this paper combines two types of data: biomechanical data 

and market data in the medical and health fields. Biomechanical data comes from 

smart wearable devices and motion sensors, mainly including gait, joint angle, stride, 

and other features, reflecting individual health status and sports performance; while 

market data includes investment trends, market demand, policy changes, etc., in the 

medical and health industry, reflecting the overall development dynamics of the 

industry. This paper fuses these two types of data. Specifically, this paper uses the 

features of biomechanical data as input features, and the trend changes of medical and 

health market data as target variables. These features and target variables are integrated 

into a unified data set for training and testing trend prediction models. 

5.2. Random forest model construction 

Random forest models are widely used in feature selection and regression tasks 

of large-scale data sets. In this study, random forests are used to process large-scale 

biomechanical data and market data to predict investment trends in the healthcare field. 

First, this paper uses random forests for feature selection. By training a random forest 

model containing multiple decision trees, the contribution of each input feature to the 

prediction result can be evaluated. By calculating the “split importance” of each 

feature in each tree, the most representative features for predicting healthcare 

investment trends are screened out. Features with low importance scores are 

eliminated, reducing redundant information and improving the training efficiency of 

the model. 

Another important application of random forests is regression problems. This 

paper regards the prediction task of healthcare investment trends as a regression 

problem. By training a regression model, random forests can accurately predict the 
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future trend of market investment through the integrated results of multiple decision 

trees. By integrating the results of multiple trees, the model avoids the overfitting 

problem that may occur in a single model and improves the robustness of the 

prediction. During the training process, the random forest model is hyperparameter 

tuned, mainly including parameters such as the number of trees (n_estimators) and the 

maximum depth (max_depth). This paper uses the cross-validation method to evaluate 

the performance of the model and ensure its generalization ability. 

The horizontal axis of Figure 3 represents the number of model iterations during 

the training process, and the vertical axis represents the accuracy of the model after 

each training iteration. As the number of training times increases, the accuracy of the 

model gradually increases. Adjusting different hyperparameters (such as the number 

and depth of decision trees) can affect the learning efficiency, learning speed, and final 

accuracy of the model. 

 

Figure 3. Training process. 

5.3. Support vector machine model construction 

Unlike the regression model of random forest, support vector machine is mainly 

used for classification tasks. In this study, this paper uses SVM (Support Vector 

Machine) to build a classification model for medical and health investment trends. By 

analyzing biomechanical data and market data in different time periods, the direction 

of future market trends (such as rising, falling or flat) is predicted. 

Similar to random forest, this paper standardizes the data and selects features to 

ensure that SVM can perform effective classification in high-dimensional feature 

space. In particular, this paper uses RBF (Radial Basis Function) kernel function 

(radial basis function) to deal with nonlinear problems, because market trends often 

present complex nonlinear relationships. By selecting appropriate SVM 

hyperparameters (such as penalty parameter C and kernel function parameter gamma), 

this paper can train a classification model to predict the investment trend of the future 

market. SVM accurately classifies by finding an optimal hyperplane to maximize the 

interval between categories. 
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5.4. Model fusion 

In order to further improve the accuracy of trend prediction, this paper adopts the 

strategy of model fusion to combine the prediction results of random forest and SVM 

models. Model fusion can combine the advantages of both and improve prediction 

performance. In model fusion, this paper integrates the prediction results of random 

forest and SVM by weighted average. Specifically, this paper assigns different weights 

according to the performance of the two models. Generally speaking, models with 

better performance will receive higher weights, which will affect the final prediction 

results. 

6. Evaluation 

6.1. Logarithmic loss training 

Logarithmic loss is a metric used to evaluate the prediction performance of 

classification models, especially to measure the difference between the probability 

distribution of the classification model output and the actual label. It is usually used 

for binary and multi-classification problems, and is suitable for models with 

probabilistic output. Select a binary classification problem. The dataset should contain 

input and output. Divide the dataset into training set and validation set by 70%/30%. 

Set the training rounds of the model and monitor the changes in Log Loss (Logarithmic 

Loss) during each training cycle. After each training, the model is used to predict the 

data in the validation set and output the predicted probability value. 

The X-axis in Figure 4 represents the number of trainings, and the Y-axis 

represents the value of Log Loss. In the early stages of model training, Log Loss 

decreases because the model begins to gradually learn the patterns in the data. As the 

number of trainings increases, Log Loss gradually approaches the optimal value. 

 

Figure 4. Model training. 

The curve begins to rise after a certain stage, and the increase in the number of 

training rounds leads to an increase in Log Loss, which may be a signal of overfitting. 

Even if the Log Loss of the training set continues to decrease, the performance of the 

model on the validation set deteriorates. 
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6.2. Prediction performance 

Prediction performance includes prediction accuracy and precision. Prediction 

accuracy refers to the consistency between the model’s prediction results and the 

actual results. It is usually used for classification problems and indicates the proportion 

of correct predictions. Precision refers to the proportion of all instances predicted by 

the model as positive that are actually positive. The higher the precision, the more 

accurately the model predicts the positive instances. Compare the performance of the 

four models in terms of accuracy and precision. 

The X-axis in Figure 5 represents the names of the four models, and the Y-axis 

shows the accuracy and precision. The fusion model performs well in both accuracy 

and precision, which are greater than 0.9, and the bars are relatively high, indicating 

that the fusion model has good performance in both aspects. 

 

Figure 5. Prediction performance. 

6.3. Error assessment 

Mean square error is a commonly used evaluation indicator in regression models, 

which represents the square average of the difference between the predicted value and 

the true value. The smaller the MSE (Mean Squared Error), the better the prediction 

effect of the model. The root mean square error represents the error of the model in 

the regression task. To compare the performance of different regression models in 

prediction, the mean square errors and root mean square errors are used as evaluation 

indicators. 

Table 2 shows the three experimental errors of different regression models in 

prediction. The fusion model performs best and has the smallest prediction error, so it 

is recommended. Random forest also performs very well, with a prediction error 

second only to the fusion model, and is suitable for most regression tasks. The decision 

tree performs poorly and may require further optimization to improve its prediction 

performance. 
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Table 2. Errors of different models. 

Model MSE (1) MSE (2) MSE (3) RMSE (1) RMSE (2) RMSE (3) 

Decision Tree 0.045 0.043 0.047 0.213 0.208 0.217 

Support Vector Machine 0.038 0.036 0.04 0.195 0.19 0.2 

Random Forest 0.022 0.021 0.023 0.148 0.145 0.151 

Ensemble Model 0.018 0.017 0.019 0.134 0.13 0.138 

6.4. Financial return rate 

The financial return rate measures the ratio between the economic benefits 

generated by an investment and its costs. 

Table 3 shows the financial return rate of different healthcare investment projects, 

which is used to measure the relationship between the return and cost generated by 

each investment. Through ROI (Return on Investment), investors or decision-makers 

can evaluate which projects have better economic benefits and which projects have 

lower returns. See that ROI is between 20% and 50%. 

Table 3. Financial return rate. 

Investment Project Investment Cost Investment Return  Financial Return on Investment 

New Medical Equipment Purchase 500,000 600,000 20% 

Health Management Project Promotion 200,000 300,000 50% 

Elderly Care Center Construction 1,000,000 1,200,000 20% 

Medical Informatization Construction 300,000 450,000 50% 

Health Education Program 150,000 225,000 50% 

7. Conclusions 

This paper integrates biomechanical data with market data in the healthcare sector 

to construct a trend prediction model based on machine learning and time series 

analysis, achieving accurate predictions of healthcare investment trends. The study 

begins by collecting individual biomechanical data using high-precision sensors and 

smart wearable devices, ensuring data quality and representativeness through 

preprocessing techniques and feature extraction. These refined datasets are then 

combined with machine learning algorithms, including random forests and support 

vector machines, to perform regression and classification of investment trends, 

enhancing the stability and accuracy of long-term investment predictions. 

While the proposed model demonstrates promising results in trend prediction, it 

is not without limitations. The model’s training process relies heavily on high-quality 

data, and its performance may be sensitive to sudden market changes. Future research 

should explore the incorporation of advanced feature fusion techniques and deep 

learning methods to further improve prediction accuracy and model adaptability. 

Additionally, efforts to integrate real-time market dynamics could enhance the 

robustness of predictions and support intelligent investment decision-making in the 

healthcare industry. 
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