
Molecular & Cellular Biomechanics 2025, 22(3), 1163. 

https://doi.org/10.62617/mcb1163 

1 

Article 

Bifurcation analysis of nonlinear probability model for resting potential and 

theoretical calculation of human ventricular myocardium elastic modulus 

Rui Qu1,*, Xin Xia2,* 

1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China 
2 School of Medicine, Jiangsu University, Zhenjiang 212013, China 

* Corresponding authors: Rui Qu, 1000005286@ujs.edu.cn; Xin Xia, 1000005066@ujs.edu.cn 

Abstract: This paper focuses on the cardiac pulsation model. The first purpose is to explain 

the generation mechanism of myocardial resting potential from two aspects of nonlinear 

dynamics and physiology. The second objective is to establish the basic theoretical calculation 

method for ventricular muscle material parameters such as elastic modulus, Poisson’s ratio and 

shear modulus. The physiological essence of resting potential is ion channel blocking reaction 

to mismatched ions, which can be described by the probability model of fully misaligned 

arrangement. The calculation of the elastic modulus of ventricular muscle is based on the stress 

distribution characteristics at the end of diastole and the modified Laplace’ law. The 

correctness and effectiveness of the misaligned arrangement probability model for resting 

potential, the modified Laplace’s law of cardiac diastole and the three-dimensional pressure 

equalization theory of cardiac systole are also proved in detail. A theoretical calculation method 

for ventricular muscle elastic modulus is established relying solely on echocardiography data 

instead of costly measurement methods such as magnetic resonance imaging (MRI). The 

reference value for longitudinal elastic modulus of human ventricular muscle was calculated 

and compared with experimental data of isolated porcine heart. The echocardiography 

measurement method based on theoretical results may provide potential assistance for the 

initial screening and diagnosis of cardiogenic diseases as a routine physical examination item. 

Keywords: nonlinear dynamics; non-smooth; bifurcation; myocardial mechanical behavior; 

elastic modulus 

1. Introduction 

Myocardium mechanics has been a focus of research for decades because of its 

significant impact on cardiac physiology [1–5]. Measurement methods of myocardium 

mechanical properties are of vital importance in diagnosis and treatment of 

cardiogenic diseases. In recent years, research methods of constructing constitutive 

equations and deriving theoretical results from the physiological basis of myocardial 

dynamics have emerged as efficient tools for cardiac function analysis [6–8], which 

may develop new diagnostic techniques and therapies. In this paper, in order to explain 

the generation mechanism of myocardial resting potential and calculate the ventricular 

muscle material parameters, the mathematical model of bioelectricity as well as the 

mechanical model of myocardium vibration are established respectively based on 

physiological meanings.  

The discharge behaviors of myocardial cells have been widely studied [9–12]. 

Action potential is mainly caused by the difference in ion concentration inside and 

outside the cell membrane. However, ion channels have a special function of 

transporting ions against concentration differences. When the forward and reverse 
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concentration difference potentials reach equilibrium, the action potential remains a 

constant, namely the resting potential, which is of vital importance but often ignored 

in the establishment of bioelectrical models. As an important link between myocardial 

bioelectric models and cardiac mechanical vibration models, resting potential 

corresponds to the critical period from end systolic to end diastolic of the ventricle.  

In the first part of this paper, we introduce non-smooth terms into common 

bioelectric models and successfully reproduce the phase portrait of resting potential. 

Besides, through attractor and vector field analysis [13,14], the differences in action 

potentials affected by different non-smooth terms are also studied so as to reveal the 

generation mechanism of resting potential from the perspective of dynamics. In 

addition, based on the physiological basis of mismatched ions blocked by ion channels, 

a probability model of fully misaligned arrangement was established to estimate the 

duration of resting potential, which plays an important role in evaluating the rationality 

of bioelectric models. 

Elastic modulus is an important index to evaluate the health of ventricular muscle. 

However, due to the lack of noninvasive detection methods, there are only a few 

limited options for the measurement of myocardial elastic modulus. The common 

simulation method is to reconstruct the finite element model of the heart employing 

the data obtained from magnetic resonance imaging (MRI). Its advantage is that the 

global stress distribution on the myocardium can be observed, while its disadvantages 

are the high price and long processing time due to the demand for a large amount of 

data, which makes it unsuitable as a routine physical examination item. The 

methodology introduced in this paper only needs the cardiac ultrasound data, which 

means that it has the advantages of low price, high efficiency and suitable for large-

scale screening in routine physical examination. 

The common experimental method is to measure the elastic modulus of isolated 

pig heart to estimate the value of human heart [15–17]. Although the experimental 

measurement steps are not complicated, the shortcomings of this method are also 

obvious. Firstly, the isolated heart is bound to undergo organic damage to its 

physiological structure, and the measured value of its elastic modulus cannot 

accurately estimate the theoretical value of human heart in working state. Different 

experimental designs and equipment will have a significant impact on the 

measurement, which leads to a great difference in the data measured by experimental 

methods in different references [18–22]. Secondly, experimental methods can only 

obtain estimated value for elastic modulus of human ventricular muscle, thus cannot 

provide personalized diagnosis for patients.  

In the second part of this paper, based on the static model of ventricular muscle 

at the end of diastole, the theoretical calculation method of the elastic modulus of 

human ventricular muscle is proposed employing the modified Laplace’s law. The 

limitation of this theoretical method is that it is only applicable to the calculation of 

radial elastic modulus (myocardium itself is an anisotropic material), while the 

longitudinal modulus has to be approximated through elasticity theory and linear 

assumption. However, because only cardiac ultrasound data are needed, it has the 

advantages of low price, high efficiency and suitable for large-scale screening in 

routine physical examination. 
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2. Mathematical model of bioelectricity  

Hindmarsh and Rose first proposed an neuron model named HR system which 

can be employed to describe bioelectrical activities of cells. Research shows that a 

single HR neuron can show different oscillation modes, such as quiescent state, 

spiking state, bursting and chaos. The equivalent circuit of HR neuron model is shown 

in Figure 1, and the three-dimensional non-autonomous mathematical model of HR 

neuron system considering external excitation can be expressed as: 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 − 𝑧 +𝑊

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑟[𝑠(𝑥 − 𝜒） − 𝑧]

 (1) 

The physiological meanings of state variables and parameters in the governing 

Equation (1) are as follows: 

𝑥—membrane potential; 𝑦—quick recovery current; 𝑧—slow-varying adaptive 

current; 

𝑊 = 𝐴𝑠𝑖𝑛( 𝛺𝑡)—external stimulation current; 𝜒—resting state adjustment 

parameter; 𝑟—rate of change related to calcium ion concentration; 𝑎, 𝑏, 𝑐, 𝑑—constant 

parameters without special physiological significance. It should be noted that due to 

the extensive theoretical derivation and numerous mathematical symbols involved in 

this paper, the supplementary theoretical content is provided in Appendix A, while the 

physical or physiological meanings of the mathematical symbols used are listed in 

Appendix B. 

 
 

(a) (b) 

Figure 1. Equivalent circuit with non-smooth term. (a) series connection; (b) parallel connection. 

2.1. Stability and bifurcations of autonomous system 

The equilibrium point 𝐸0(𝑥, 𝑦, 𝑧) of the system can be uniformly expressed as 

𝐸0(𝑥, 𝑦, 𝑧) = 𝐸0 (𝑋0, 𝑐 − 𝑑𝑋0
2, 𝑠(𝑋0 − 𝜒)) (2) 

in which 0X satisfies the condition 
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𝑎𝑋0
3 − (𝑏 − 𝑑)𝑋0

2 + 𝑠(𝑋0 − 𝜒) − 𝑐 = 0 (3) 

Routh-Hurwitz criterion can be employed to analyze the stability of equilibrium 

point. The Jacobi matrix of system (1) can be expressed as: 

𝐽 = [
−3𝑎𝑥2 + 2𝑏𝑥 1 −1

−2𝑑𝑥 −1 0
𝑟𝑠 0 −𝑟

] (4) 

Therefore, the characteristic equation at the equilibrium point can be formed as: 

𝜆3 + 𝑘1𝜆
2 + 𝑘2𝜆 + 𝑘3 = 0, {

𝑘1 = 3𝑎𝑥
2 − 2𝑏𝑥 + 𝑟 + 1

𝑘2 = (3𝑎 + 3𝑎𝑟)𝑥
2 + (2𝑑 − 2𝑏𝑟 − 2𝑏)𝑥 + 𝑟𝑠 + 𝑟,

𝑘3 = 3𝑎𝑟𝑥
2 + (2𝑑𝑟 − 2𝑏𝑟)𝑥 + 𝑟𝑠

 (5) 

Based on the inference of Routh-Hurwitz stability criterion, the stable conditions 

of equilibrium points can be formed as 

𝑘1 > 0, |
𝑘1 1
𝑘3 𝑘2

| > 0,  𝑘3(𝑘1𝑘2 − 𝑘3) > 0 

⇕ 

𝑘1 > 0, 𝑘3 > 0, 𝑘1𝑘2 > 𝑘3

 

 

(6) 

Therefore, the stability conditions of the equilibrium point can be expressed as: 

{
 

 
3𝑎𝑥2 − 2𝑏𝑥 + 𝑟 + 1 > 0
3𝑎𝑥2 + (2𝑑 − 2𝑏)𝑥 + 𝑠 > 0, 𝑟 > 0

(3𝑎𝑥2 − 2𝑏𝑥 + 𝑟 + 1) × [(3𝑎 + 3𝑎𝑟)𝑥2 + (2𝑑 − 2𝑏𝑟 − 2𝑏)𝑥 + 𝑟𝑠 + 𝑟]

−[3𝑎𝑟𝑥2 + (2𝑑𝑟 − 2𝑏𝑟)𝑥 + 𝑟𝑠] > 0

 (7) 

When condition 𝑘3 > 0degenerates to 𝑘3 = 0, the characteristic equation has a 

zero-root corresponding to the Fold bifurcation conditions:  

FB: 

{
 
 

 
 
3𝑎𝑥2 − 2𝑏𝑥 + 𝑟 + 1 > 0

3𝑎𝑟𝑥2 + (2𝑑𝑟 − 2𝑏𝑟)𝑥 + 𝑟𝑠 = 0 ⇒
𝑟≠0

𝑥 =
𝑏−𝑑±√(𝑑−𝑏)2−3𝑎𝑠

3𝑎

(3𝑎𝑥2 − 2𝑏𝑥 + 𝑟 + 1) × [(3𝑎 + 3𝑎𝑟)𝑥2 + (2𝑑 − 2𝑏𝑟 − 2𝑏)𝑥 + 𝑟𝑠 + 𝑟]

−[3𝑎𝑟𝑥2 + (2𝑑𝑟 − 2𝑏𝑟)𝑥 + 𝑟𝑠] > 0

 (8) 

When condition 𝑘1𝑘2 > 𝑘3degenerates to 𝑘1𝑘2 = 𝑘3, a pair of pure imaginary 

roots appear in the solution of characteristic polynomial (5) indicating the occurrence 

of Hopf bifurcation. Therefore, the conditions of Hopf bifurcation are as follows:  

HB: 

{
 

 
3𝑎𝑥2 − 2𝑏𝑥 + 𝑟 + 1 > 0
3𝑎𝑥2 + (2𝑑 − 2𝑏)𝑥 + 𝑠 > 0, 𝑟 > 0

(3𝑎𝑥2 − 2𝑏𝑥 + 𝑟 + 1) × [(3𝑎 + 3𝑎𝑟)𝑥2 + (2𝑑 − 2𝑏𝑟 − 2𝑏)𝑥 + 𝑟𝑠 + 𝑟]

= [3𝑎𝑟𝑥2 + (2𝑑𝑟 − 2𝑏𝑟)𝑥 + 𝑟𝑠]

 (9) 

From the calculation results, it can be seen that the analytical expression of the 

bifurcation point is complicated. For simplicity, slow-varying adaptive current 𝑧 can 

be ignored when the external excitation amplitude is much larger. Therefore, HR 

neuron system (1) can be further simplified to a two-dimensional degenerate system 
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{

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 +𝑊

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦

 (10) 

The equilibrium point 𝐸0(𝑥, 𝑦) of the system can be uniformly expressed as  

𝐸0(𝑥, 𝑦) = 𝐸0(𝑋0, 𝑐 − 𝑑𝑋0
2) (11) 

in which 0X satisfies the condition 

𝑎𝑋0
3 − (𝑏 − 𝑑)𝑋0

2 − 𝑐 −𝑤 = 0 (12) 

The Jacobi matrix of system (10) can be expressed as 

𝐽 = [−3𝑎𝑥
2 + 2𝑏𝑥 1

−2𝑑𝑥 −1
] (13) 

the corresponding characteristic equation at the equilibrium point can be formed 

as 

𝜆2 + (3𝑎𝑥2 − 2𝑏𝑥 + 1)𝜆 + 3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 =0 (14) 

Therefore, the stability conditions of the equilibrium point can be expressed as 

{
3𝑎𝑥2 − 2𝑏𝑥 + 1 > 0
3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 > 0

 (15) 

The bifurcation condition corresponding to a characteristic polynomial having 

zero solutions or pure imaginary roots can be respectively expressed as:  

FB: {
3𝑎𝑥2 − 2𝑏𝑥 + 1 > 0,

3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 = 0.
⇒ {

𝑥 =
2(𝑏−𝑑)

3𝑎
, 0

2𝑑𝑥 < 1
 (16) 

and 

HB: {
3𝑎𝑥2 − 2𝑏𝑥 + 1 = 0,

3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 > 0.
⇒ {𝑥 =

𝑏±√𝑏2−3𝑎

3𝑎

2𝑑𝑥 > 1
 (17) 

It should be pointed out that the frequency of stable limit cycle generated by Hopf 

bifurcation is the natural frequency of system, which can be calculated by  

𝛺0 = √3𝑎𝑥
2 + 2(𝑑 − 𝑏) (18) 

2.2. Simulations with non-smooth terms 

The resting potential (sliding trajectory) has typical non-smooth characteristics, 

so the non-smooth term is bound to be introduced for its simulation. From the 

perspective of equivalent circuit shown in Figure 1, non-smooth circuit elements can 

function as a bidirectional diode to affect the potential of the system through series or 

parallel connections, which indicates that feedback caused by non-smooth terms can 

exist in various forms. 

The threshold feedback condition can be univariate or multivariable while the 

feedback term can be a constant term, a linear term, or a nonlinear term. In order to 

reveal the influence of non -smooth terms on the dynamic behaviors of the system, it 

is necessary to analyze the smooth case first. 
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The dynamics of smooth systems under threshold-free control described by 

Figure 2 are relatively simple. It can be seen from Figure 1a,b that the trajectory starts 

from and moves almost strictly along the stable branch 𝐸1− before the Fold bifurcation. 

Once the trajectory reaches the bifurcation point 𝐹𝐵2 = (3,−2), it will jump to the 

focal stable equilibrium branch 𝐸3+ due to Fold bifurcation. After convergence to +3E , 

the trajectory moves along the branch ++ 23 , EE and +1E before jumping phenomenon 

caused by Fold bifurcation point 𝐹𝐵1 = (−1,0). 

 
 

(a) (b) 

  
(c) (d) 

Figure 2. Smooth system with 𝑎 = 1.0, 𝑏 = 2.0, 𝑐 = 1.0, 𝑑 = 5.0, 𝐴 = 8.0, 𝛺 = 0.01. (a) transformed phase portrait; 

(b) equilibrium branches; (c) phase portrait; (d) time history. 

There are two special dynamic behaviors in the oscillation period that need to be 

supplemented. The first one is the delay effect between two bifurcation points
 
𝐻𝐵1 =

(−
17

27
,
1

3
)
 
and 𝐻𝐵2 = (3,1). To be specific, the trajectory moves along the unstable 

branch 𝐻𝐵2 instead of being attracted by the limit circle caused by Hopf bifurcation. 

The reason for this phenomenon is that the divergence speed of trajectory in the 

neighborhood of unstable equilibrium point is less than the changing velocity of 

equilibrium point due to external excitation. The second phenomenon worth noting is 

that the trajectory fails to move strictly along the stable branch 𝐸1− before reaching 

the bifurcation point 𝐹𝐵2 . The reason for the trajectory deviating from the stable 
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branch is that the external excitation is in the form of a sine function, which has a 

higher rate of change near zero. In other words, when the external excitation is close 

to zero, the convergence rate of the trajectory toward the stable equilibrium point is 

less than the change rate of the equilibrium point. To further verify this conclusion, 

the dynamic behaviors when the external excitation frequency Ω is reduced to 0.001 

are shown in Figure 3. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Smooth system with 𝛺 = 0.001. (a) transformed phase portrait; (b) equilibrium branches; (c) phase portrait; 

(d) time history. 

Comparing Figures 2a and 3a, it can be concluded that the topology of the 

trajectory may change under different external excitation frequencies although it is 

affected by the same equilibrium branch. To be specific, relatively lower external 

excitation frequency results in a smaller equilibrium point migration speed, thereby 

eliminating the delay effect and trajectory deviation phenomenon. 

It is not difficult to find that the governing equation of the HR system is smooth, 

so it is impossible to simulate the resting potential of the heart. Therefore, the feedback 

term 𝛥𝐼 is introduced as a non-smooth term to modify smooth HR systems: 
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𝑥 > 0: {

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 +𝑊 + 𝛥𝐼

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦

, 𝑥 < 0: {

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 +𝑊 − 𝛥𝐼

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦

. (19) 

The dynamic behaviors of the modified non smooth HR system are shown in 

Figure 4. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Non-smooth system with 𝛥𝐼 = −4.0. (a) transformed phase portrait; (b) equilibrium branches; (c) phase 

portrait; (d) time history. 

It can be seen from Figure 4a,b that the trajectory starts from and moves almost 

strictly along the stable branch 𝐸1− until it reaches the Fold bifurcation point 𝐹𝐵2 =

(3,−2). Then, the trajectory jumps towards and directly traverses the non-smooth 

boundary 𝑥 = 0. After that, the trajectory oscillates around the stable limit circle 𝐿𝐶1 

generated by the Hopf bifurcation point 𝐻𝐵1 = (3.3704,
1

3
). The collision between 

unstable limit cycle 𝐿𝐶2  bifurcated from 𝐻𝐵2 = (7,1)  and stable limit cycle 

𝐿𝐶1 results in their disappearance and leads to the convergence of the trajectory 

towards the stable focal equilibrium branch 𝐸3+ . This process is named LPC 

bifurcation, and its topological structure is shown in Figure 5. 
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Figure 5. The topological structure of LPC bifurcation. 

After the limit point bifurcation of cycles (LPC), the trajectory returns to the non-

smooth boundary along the branches 𝐸2+ and 𝐸3+ 
at the Fold bifurcation point 𝐹𝐵1+. 

On the non-smooth boundary, the trajectory slides from 𝐹𝐵1+ to 𝐹𝐵1−  
and finally 

converges to the stable branch 𝐸1−. From the perspective of geometric properties, 

there are three types of motion when the trajectory and non smooth interface come 

into contact, namely sliding, traversing, and jumping. Employing the vector field 

analysis method, the mechanism of motion patterns can be well explained. To be 

specific, sliding motion may occur when the inner product of the vector fields on both 

sides of the non-smooth boundary is negative (points towards the interface at the same 

time). On the contrary, if the inner product of the vector fields on both sides is positive, 

the trajectory will directly traverse the interface. Jumping phenomenon is a critical 

situation for sliding and traversing (one side vector field is zero).  

Although vector field theory can directly explain the local non-smooth dynamics 

of trajectory, it fails to solve the global non-smooth bifurcation problems of the system. 

In order to further elucidate the mechanism of resting potential from a dynamical 

perspective, the attractor structure has to be considered. In fact, the threshold control 

term may be a function of the state variable instead of remaining a constant. To 

simulate this situation, the dynamic behaviors of the non-smooth system with linear 

feedback term 𝛥𝐼 = −0.5𝑥
 
are shown in Figure 6. 

  
(a) (b) 
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(c) (d) 

Figure 6. Non-smooth system with 𝛥𝐼 = −0.5𝑥. (a) transformed phase portrait; (b) equilibrium branches; (c) phase 

portrait; (d) time history. 

In this case, two subsystems can be represented as: 

𝑥 > 1:{

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 +𝑊 + 𝑘𝑥

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦

, 𝑥 < 1:{

𝑑𝑥

𝑑𝑡
= 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 +𝑊 − 𝑘𝑥

𝑑𝑦

𝑑𝑡
= 𝑐 − 𝑑𝑥2 − 𝑦

 (20) 

Equilibrium condition (12) turns into: 

𝑎𝑋0
3 − (𝑏 − 𝑑)𝑋0

2 − 𝑘𝑋0 − 𝑐 −𝑊 = 0 (21) 

Jacobian matrix becomes: 

𝐽 = [−3𝑎𝑥
2 + 2𝑏𝑥 + 𝑘 1
−2𝑑𝑥 −1

] (22) 

The characteristic Equation (14) changes into: 

𝜆2 + (3𝑎𝑥2 − 2𝑏𝑥 + 1 − 𝑘)𝜆 + 3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 − 𝑘 (23) 

Therefore, two types of codimension-one bifurcation conditions can be expressed 

as: 

FB: {
3𝑎𝑥2 − 2𝑏𝑥 + 1 − 𝑘 > 0,

3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 − 𝑘 = 0,
⇒ {𝑥 =

−(𝑑−𝑏)±√(𝑑−𝑏)2+3𝑎𝑘

3𝑎

2𝑑𝑥 < 1
 

(24) 

and 

HB: {
3𝑎𝑥2 − 2𝑏𝑥 + 1 − 𝑘 = 0,

3𝑎𝑥2 + 2(𝑑 − 𝑏)𝑥 − 𝑘 > 0.
⇒ {𝑥 =

𝑏±√𝑏2+3𝑎(𝑘−1)

3𝑎

2𝑑𝑥 > 1
 

(25) 

The coordinates of the bifurcation point in the transformed phase portrait can be 

calculated as: 

{
 
 

 
 
𝐹𝐵1 = (−1.0203,0.0801)
𝐹𝐵2 = (4.0203,−2.0801)
𝐹𝐵3 = (−1.0214,−0.0871)
𝐹𝐵4 = (2.0215,−1.9129)
𝐻𝐵1 = (−1.0086,0.1396)
𝐻𝐵2 = (4.3790,1.1937)

 (26) 
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In order to analyze the attractor structure, the functions of inaccessible 

equilibrium branches are also ought to be considered. It should be pointed out that 

although the inaccessible equilibrium branches are not located within the domain of 

the corresponding subsystem, they can still affect the vector field structure within the 

domain. In other words, false equilibrium points can also control the dynamic 

behaviors of trajectory just like true equilibrium points.  

Specifically, the trajectory moves along the stable true branch 𝐸1− then jumps to 

the true stable branch 𝐸1+  due to the Fold bifurcation point 𝐹𝐵2 =

(4.0203,−2.0801). After converging to the stable focal branch 𝐸1+, the trajectory 

returns to the non-smooth boundary at point 𝑃1. The sliding motion occurred between 

point 𝑃1  and 𝑃2  can be explained by the alternating attraction of false stable 

equilibrium points in different phase regions. In the sliding interval, if the trajectory is 

located above the non-smooth boundary (𝑥 > 1), it will be attracted by the stable false 

branch 𝐹+. Meanwhile, if the trajectory is located below the non-smooth boundary, it 

will be attracted by the stable false branch 
−F (𝑥 < 1). The alternating attraction of 

false stable branches leads to a tendency for the trajectory to approach the boundary 

in its vicinity, which is the essential mechanism of sliding motion from the perspective 

of attractor structure. In order to further verify this conclusion, the threshold feedback 

parameters can be appropriately changed to observe the dynamic behavior of the 

system with different attractor structures as shown in Figure 7. 

  
(a) (b) 

  

(c) (d) 

Figure 7. Non-smooth system with 𝐼 = +0.5𝑥. (a) transformed phase portrait; (b) equilibrium branches; (c) phase 

portrait; (d) time history. 
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It can be seen from Figure 7a that a slight change in the threshold feedback term 

may cause a drastic change in the oscillation structure of the system even with the 

same equilibrium branches of Figure 6a. Specifically, after moving along the stable 

branch 𝐸1− and bifurcating due to the Fold point 𝐹𝐵4, the trajectory traverses the non-

smooth boundary due to the attraction of the stable false branch 𝐹−. Once it locates 

above the boundary, it will be attracted by the stable limit circle 𝐿𝐶1 generated by the 

Hopf bifurcation point 𝐻𝐵1 . Under the alternating attraction of 𝐹−  and 𝐿𝐶1 , the 

trajectory crosses the boundary repeatedly until 𝐿𝐶1 and the unstable limit circle 

𝐿𝐶2bifurcated from 𝐻𝐵2 coincide and vanish together due to the LPC bifurcation. 

Afterwards, the trajectory converges to the stable focal branch 𝐸1+ and returns to the 

boundary. Then, it crosses the boundary repeatedly resulted from the alternating 

attraction of 𝐿𝐶1 and stable branch 𝐸3−. Finally, it jumps back to 𝐸1− due to the Fold 

bifurcation 𝐹𝐵1.  

The threshold control conditions in all the above cases only involve a single state 

variable, while in reality, the threshold conditions may be constrained by multiple state 

variables, which should also be considered. For the sake of simplicity and intuitiveness, 

we assume the critical condition for threshold control to be the following linear 

relationship: 

{
𝑥 = 𝑊 − 2.0,
𝛥𝐼 = −2.0𝑥.

 (27) 

The simulation results for this case are shown in Figure 8. The coordinates of the 

bifurcation point in the transformed phase portrait can be calculated as: 

{
 
 

 
 
𝐹𝐵1 = (−1.3033,0.2910),
𝐹𝐵2 = (7.3033,−2.2901),
𝐹𝐵3 = (−1.3849,−0.4226),
𝐹𝐵4 = (−0.6151,−1.5774),
𝐻𝐵1 = (6.8108,1.5486),
𝐻𝐵2 = (−0.4405,−0.2153).

 
(28) 

  

(a) (b) 
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(c) (d) 

Figure 8. Non-smooth system with linear threshold control conditions. (a) transformed phase portrait; (b) equilibrium 

branches; (c) phase portrait; (d) time history. 

Intriguingly, the non-smooth boundary in the transformed phase portrait is a 

slanted line rather than a horizontal line. Therefore, it should be noted that when 

analyzing non-smooth phenomena with the vector field structure theory, one should 

use the normal component of the vector field instead of itself near the non-smooth 

boundary. By employing attractor structure analysis, this issue can be circumvented.  

To be specific, it can be clearly seen from Figure 8a,b that the trajectory moves 

along the stable branch 𝐸1+ and jumps to the stable focal branch 𝐸3+ due to the Fold 

bifurcation 𝐹𝐵4. Once the trajectory traverses the non-smooth boundary at point 𝑃1, 

the control branch will switch from 𝐸3+ to 𝐹3−. Then, in response to the attraction of 

the limit cycle 𝐿𝐶1 generated from the Hopf bifurcation, the trajectory is inclined to 

return to the boundary. In short, the alternating attraction of 𝐿𝐶1 and 𝐸3+ leads to the 

sliding motion between points 𝑃1 and 𝑃2. After the intersection point 𝑃3 of 𝐿𝐶1 and 

non-smooth boundary, the subsystem will no longer switch, and the trajectory is 

completely controlled by the true equilibrium branch 𝐸3−, ultimately converging to 

stable focal branch 𝐸4−.  

The dynamic behaviors of the other half of the oscillation cycle are relatively 

simple. The trajectory starts from 𝐸4− and moves along the unstable branch 𝐸3− due 

to the bifurcation delay effect. Based on previous analysis, it can be concluded that the 

sliding interval of the trajectory in this case is from point 𝑃1 to point 𝑃3. Therefore, the 

trajectory slides to 𝑃1 and moves along 𝐸3+ before jumping to 𝐸1+ caused by Fold 

bifurcation 𝐹𝐵3 . The sliding motion generated by threshold control conditions 

involving multiple state variables can also be reflected as the envelope of a sine 

function on the time history Figure 8d. 

3. The biological and mathematical significance of sliding time 

3.1. Probability model 

The mathematical meaning of the proportion of sliding time to the entire system 

cycle can be understood as the probability of a resting potential occurring within a 

single bursting discharge cycle. The generation of resting potential can be simplified 
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as the following probability model shown in Figure 9. Ion channels are selective to 

different ions, which means that one ion can only pass through well-matched ion 

channel. Therefore, the appearance of resting potential implies a completely 

misaligned arrangement of different ion channels. The core issue for this simplified 

probability problem is the analytical expression for the total number of completely 

misaligned permutations an of n elements. 

 

Figure 9. Probability model of resting potential. 

The core issue of the counting principle is classification. The classification of 

completely misaligned arrangements can be based on the number of elements 

participating in the closed-loop. Starting from the first element A, the second step is to 

select the next element. Assuming that the second step forms a second-order closed-

loop shown in Figure 10, the total number of classifications in this case can be 

expressed as: 

(𝑛 − 1) × 𝑎𝑛−2 (29) 
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Figure 10. The second-order closed-loop fully misaligned arrangement. 

Assuming that the third step forms a third-order closed-loop shown in Figure 11, 

the total number of classifications in this case can be expressed as (𝑛 − 1) × (𝑛 −

2) × 𝑎𝑛−3.  

 

Figure 11. The third-order closed-loop fully misaligned arrangement. 

By analogy, the total number of classifications which forms an nth-order closed-

loop in step n can be solved sequentially. Therefore, when 4n , the total number of 

completely misaligned permutations can be expressed as: 
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Thus, 
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Multiplying both sides by 1−n  to equation (31), it can be obtained that 
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Combined with initial value validation 

𝑎1 = 0, 𝑎2 = 1, 𝑎3 = 2 (33) 

the following recursive relationship can be obtained: 

𝑎𝑛 = (𝑛 − 1)(𝑎𝑛−1 + 𝑎𝑛−2), 𝑛 ≥ 3 
(34) 

Transforming the recursive formula, it can be concluded that  

𝑎𝑛 = (𝑛 − 1)(𝑎𝑛−1 + 𝑎𝑛−2) ⇒ 𝑎𝑛 − 𝑛𝑎𝑛−1 = −[𝑎𝑛−1 − (𝑛 − 1)𝑎𝑛−2] (35) 

Observing the correlation between two sides of the above equation (35), it can be 

assumed that  

𝑏𝑛 = 𝑎𝑛 − 𝑛𝑎𝑛−1 ⇒ 𝑏𝑛−1 = 𝑎𝑛−1 − (𝑛 − 1)𝑎𝑛−2. (36) 

Therefore, 

𝑏𝑛
𝑏𝑛−1

= −1 ⇒ 𝑏𝑛 = (−1)
𝑛, 𝑛 ≥ 3 (37) 

which indicates that 

𝑎𝑛 − 𝑛𝑎𝑛−1 = (−1)
𝑛 ⇒ 𝑎𝑛 = 𝑛𝑎𝑛−1 + (−1)

𝑛, 𝑛 ≥ 2. (38) 

After iteration, it can be organized into 
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Assuming that 
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𝑐𝑛 = [1 + (−1)
1 ×

1

1!
+ (−1)2 ⋅

1

2!
+. . . (−1)𝑛 ×

1

𝑛!
]
 

(40) 

combined with equation (39), it can be observed that 

𝑎𝑛 = 𝑛! × 𝑐𝑛 
(41) 

It should be noted that the expression of 𝑐𝑛 and the series expansion of 𝑓(𝑥) =

𝑒𝑥 have a high degree of similarity. In specific, 

𝑒𝑥 = 𝑥 +
𝑥2

2!
+. . . +

𝑥𝑛

𝑛!
+. ..

 

(42) 

Besides, the point corresponding to 𝑥 = −1 is within the convergence domain of 

its power series. Therefore, 

𝑒−1 = −1 +
(−1)2

2!
+. . . +

(−1)𝑛

𝑛!
+. . . = 𝑐𝑛 +

(−1)𝑛+1

(𝑛 + 1)!
+
(−1)𝑛+2

(𝑛 + 2)!
+. ..

 

(43) 

Comparing Equation (43) with Equation (41), one may find that  

𝑛!

𝑒
≈ 𝑎𝑛 (44) 

In another words, the expression of 
𝑛!

𝑒
 
is appropriate for the approximate 

calculation of 𝑎𝑛. Based on this, error estimation is necessary. It can be proved that  

|
𝑛!

𝑒
− 𝑎𝑛| < 1

 

(45) 

In specific, the difference between 
𝑛!

𝑒
 and 𝑎𝑛 can be expressed as 

𝑑𝑛 = 𝑛! × 𝑒
−1 − 𝑛! × 𝑐𝑛 = 𝑛! [

(−1)𝑛+1

(𝑛 + 1)!
+
(−1)𝑛+2

(𝑛 + 2)!
+. . . ]

=
(−1)𝑛+1

(𝑛 + 1)
+

(−1)𝑛+2

(𝑛 + 2)(𝑛 + 1)
+

(−1)𝑛+3

(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)
+. .. 

(46) 

It can be found that If n is an odd number, the sum of the first and second terms 

in the above equation is greater than zero, and the sum of the adjacent two terms 

thereafter is all positive. Therefore, 

0 < 𝑑𝑛 (47) 

Besides, the sum of the second and third terms is less than zero, and the sum of 

the adjacent two terms thereafter is all negative. Therefore, 

𝑑𝑛 <
1

𝑛 + 1
< 1 (48) 

In general, 

0 < 𝑑𝑛 <
1

𝑛 + 1
< 1 (49) 

If n is an even number, the following conclusion can be proved by similar 

methods: 
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−1 <
−1

𝑛 + 1
< 𝑑𝑛 < 0

 
(50) 

In summary,  

−1 < 𝑑𝑛 < 1 ⇒ |𝑑𝑛| < 1, q.e.d. (51) 

In addition, it can be also concluded from the above proof process that if n is an 

odd number, 

𝑛!

𝑒
> 𝑎𝑛 ⇒

|𝑑𝑛|<1

𝑎𝑛 = ⌊
𝑛!

𝑒
⌋ (52) 

If n is an even number, 

𝑛!

𝑒
< 𝑎𝑛 ⇒

|𝑑𝑛|<1

𝑎𝑛 = ⌈
𝑛!

𝑒
⌉ (53) 

Therefore, the analytic expression of the total dislocation permutation number 

can be written as 

𝑎𝑛 = {
⌊
𝑛!

𝑒
⌋ , 𝑛 = 2𝑘 − 1, 𝑘 ∈ 𝑁∗

⌈
𝑛!

𝑒
⌉ , 𝑛 = 2𝑘, 𝑘 ∈ 𝑁∗

 (54) 

3.2. Rationality verification  

The total number of ways for n different ions to freely select n ion channels is 

nn . Therefore, the probability of fully misaligned arrangement can be approximately 

expressed as: 

𝑃𝑛 =
1

𝑒
×
𝑛!

𝑛𝑛
 (55) 

It is not difficult to find that this probability monotonically decreases with respect 

to the number of ion channels n, which indicates that a greater number of ion channels 

can result in lower possibility of ion blockage. Note that the constant term 𝑃1 =
1

𝑒
 in 

the expression of this probability is independent of ion channels and can be regarded 

as the probability of resting potential preconditions, which is that cells are in a state of 

reverse potential transport of ions. On the basis of Equation (55), the average 

probability of a single ion channel being blocked by a concentration gradient can be 

represented as: 

�̄�𝑛 =
√𝑛!
𝑛

𝑛
 (56) 

From the biological point of view, the purpose of opening more ion channels is 

to achieve higher ion transport efficiency. In other words, the average probability of a 

single channel being blocked at a certain moment should be lower with more activated 

ion channels. Therefore, the rationality of the above probability model can be verified 

by the monotonicity proof of �̄�𝑛. 
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It should be noted that the sufficient condition for the monotonic increase of 

sequence �̄�𝑛 can be expressed as: 

�̄�𝑛+1
�̄�𝑛

< 1 ⇔ (𝑛 + 1) × √𝑛!
𝑛

> 𝑛 × √(𝑛 + 1)!
𝑛+1

= 𝑛 × √(𝑛 + 1) × 𝑛!
𝑛+1

 
(57) 

Taking the )1( +nn  power on both sides of the above equation, it can be 

reducible to: 

�̄�𝑛+1
�̄�𝑛

< 1 ⇔
𝑎∈𝑁+

(1 +
1

𝑛
)𝑛 >

𝑛

√𝑛！
𝑛 ⇔ 𝑛 𝑙𝑛( 1 +

1

𝑛
) > −

1

𝑛
[𝑙𝑛

𝑛

𝑛
+ 𝑙𝑛

𝑛 − 1

𝑛
+. . . 𝑙𝑛

1

𝑛
]

 
(58) 

It should be noticed that the expression on the right side of the above inequality 

has a special geometric meaning shown in Figure 12 based on the definition of definite 

integral.  

 Figure 12. The integration process of logarithmic functions. 

In specific, assuming that 

𝑆 = −
1

𝑛
[𝑙𝑛

𝑛

𝑛
+ 𝑙𝑛

𝑛 − 1

𝑛
+. . . 𝑙𝑛

1

𝑛
]
 

(59) 

its geometric meaning is areas sum of all blue rectangles. Therefore, it is easy to 

conclude that 

−∫ 𝑙𝑛 𝑥 𝑑𝑥 >
1

0

−
1

𝑛
[𝑙𝑛

𝑛

𝑛
+ 𝑙𝑛

𝑛 − 1

𝑛
+. . . 𝑙𝑛

1

𝑛
] = 𝑆 (60) 

Besides, 

−∫ 𝑙𝑛 𝑥 𝑑𝑥 =
1

0

− (𝑥 𝑙𝑛 𝑥 − 𝑥)|
0

1

= 1 + 𝑙𝑖𝑚
𝑥→0+

𝑥 𝑙𝑛 𝑥 = 1 + 𝑙𝑖𝑚
𝑥→0+

𝑙𝑛 𝑥

𝑥−1
= 1 + 0 = 1

 
(61) 
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which indicates that the area enclosed by the graph and coordinate axis of 

function xy ln=  equals to 1. The power series expansion of )1ln( x+  can be 

expressed as: 

𝑙𝑛( 1 + 𝑥) =
(−1)0

1
× 𝑥 +

(−1)1

2
× 𝑥2 +

(−1)2

3
× 𝑥3+. . . , 𝑥 ∈ (−1,1] (62) 

Therefore, 

𝑙𝑛( 1 +
1

𝑛
) =

(−1)0

1
×
1

𝑛
+
(−1)1

2
×

1

𝑛2
+
(−1)2

3
×

1

𝑛3
+. . . , 𝑛 ≥ 1 ⇒ 𝑛 𝑙𝑛( 1 +

1

𝑛
) =

(−1)0

1
× 1 +

(−1)1

2
×
1

𝑛
+

(−1)2

3

1

𝑛2
+. . . , 𝑛 ≥ 1

 

 
(63) 

It can be seen that the odd term in the above expression is greater than the next 

even term adjacent to it, which implies that 

𝑛 𝑙𝑛( 1 +
1

𝑛
) ⥂>

(−1)0

1
× 1 +

(−1)1

2
×
1

𝑛1
= 1 −

1

2𝑛 

(64) 

Thus,  

1 −
1

2𝑛
> 𝑆 ⇔ 1 − 𝑆 >

1

2𝑛
 (65) 

is the sufficient condition for Equation (57). The geometric meaning of 1 − 𝑆 is 

the sum of blank areas in Figure 12, while 
1

2𝑛
 represents the area of the yellow triangle 

in Figure 13. To be specific, 

1 − 𝑆 > 𝑆𝛥𝐴𝐵𝐶 =
1

2
× 𝐶𝐴 × 𝐶𝐵 =

1

2
×
1

𝑛
× ℎ (66) 

where the gradient k  of AB and the length h of line segment CB in Figure 13 

satisfying 

ℎ =
1

𝑛
× 𝑘,

𝑘 =
𝑑(𝑙𝑛 𝑥)

𝑑𝑥
|
𝑥=

1
𝑛

=
1

𝑥
|
𝑥=
1
𝑛

= 𝑛

}
 
 

 
 

⇒ ℎ = 1 ⇒ 𝑆𝛥𝐴𝐵𝐶 =
1

2𝑛 
(67) 

Therefore, 

𝑛 𝑙𝑛( 1 +
1

𝑛
) > 1 −

1

2𝑛
> 𝑆 ⇒

�̄�𝑛+1
�̄�𝑛

< 1
 

(68) 

This important theoretical result means that the average probability �̄�𝑛 of a single 

channel being blocked at a certain moment decreases with the increasing number of 

activated ion channels n, which successfully proves the rationality of the probability 

model employed. 
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 Figure 13. The unequal relationship of area micro-elements. 

4. Stress state analysis of myocardium 

The preceding analysis has elucidated the mathematical mechanisms and 

biological significance of the resting potential within the cardiac cycle. However, for 

clinical advancements in cardiac research, it is also imperative to take account for the 

mechanical vibrations of the heart. 

The elastic modulus and Poisson’s ratio of the myocardium are critical indicators 

of heart health. Existing studies have suggested methods for experimentally measuring 

the elastic modulus using precision medical equipment such as MRI, yet have seldom 

discussed theoretical calculations. Furthermore, the experimental methods are 

economically costly, precluding their widespread application. Therefore, it is of great 

clinical value to provide a theoretical method to calculate the elastic modulus, 

Poisson’s ratio, shear modulus and other material parameters of myocardium through 

low-cost measurement such as echocardiography. Based on this idea, several key 

issues to be solved in this chapter are as follows: 

1) Establish an approximate mechanical model of ventricular muscle at the end 

of diastole and contraction; 

2) Modify Laplace’s law for stress calculation of thick wall objects; 

3) Solve the three-dimensional stress state of the object under uniform pressure; 

4) Derive the theoretical expression of myocardial material parameters. 

4.1. Mechanical model of ventricular muscle  

The schematic diagram of blood flow of heart pump is shown in Figure 14. 

During the contraction of the left and right ventricles, oxygen-rich arterial blood and 

oxygen-poor venous blood are respectively pumped into aorta and pulmonary artery 

for systemic and pulmonary circulation. In this process, the mitral and tricuspid valves 

close, while the aortic and pulmonary valves open. Oxygen-poor venous blood from 

the systemic circulation flows into the right atrium through both the superior and 



Molecular & Cellular Biomechanics 2025, 22(3), 1163.  

22 

inferior vena cava, while the oxygen-rich arterial blood from the pulmonary 

circulation flows into the left atrium through the pulmonary vein. During the 

ventricular diastole, the aortic and pulmonary valves close, and the mitral and tricuspid 

valves open to facilitate the flow of blood from the atria into the ventricles. 

 

Figure 14. The schematic diagram of blood flow of heart pump. 

Due to the high mortality rate associated with acute heart diseases like ventricular 

fibrillation, the mechanical properties of ventricular myocardium must be a primary 

focus of research. The end diastolic and end systolic phases of ventricular muscle 

correspond to the two extreme points of linear strain, which should be discussed 

respectively. 

At the end of the diastolic phase, the ventricle’s inner diameter enlarges, 

resembling a balloon being inflated. Therefore, the mechanical model can be described 

approximately using a spherical shell subjected to uniform pressure difference, as 

illustrated in Figure 15. 

 

Figure 15. Spherical shell model under uniform pressure difference. 

4.2. Proof of Laplace’s law 

Laplace’s law is frequently employed to compute the normal stress in spherical 

shell models. For the sake of theoretical completeness, its brief proof is presented as 

follows. 

p
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Due to symmetry, the resultant force produced by the uniform pressure difference 

must be along the y-axis direction. Take the annular micro area dA marked in red as 

shown in the Figure 16, and its value can be expressed as: 

𝑑𝐴 = 𝑑𝑆 × 2𝜋𝑅 𝑐𝑜𝑠 𝜃. (69) 

 

Figure 16. Laplace’s law of thin-walled objects under uniform pressure. 

The resultant force ydF  on the area element can be expressed as: 
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 (70) 

Therefore, the resultant force acting on the hemisphere can be expressed as: 

𝐹𝑦 = ∫ 2𝜋𝑝𝑦𝑑𝑦
𝑟

0

= 𝜋𝑝𝑟2
 

(71) 

Ignoring the influence of thickness 𝑡  on the normal stress distribution, the 

equilibrium equation in the y-axis direction of the hemisphere can be expressed as: 

𝜋𝑝𝑟2 = 𝜎 × (2𝜋𝑟𝑡) (72) 

By simplifying the above Equation, the equivalent relationship between normal 

stress 𝜎 and pressure difference 𝑝 can be obtained as: 

𝜎 =
𝑝𝑟

2𝑡
⇔ 𝑝 =

2𝜎𝑡

𝑟
 (73) 

which is named for Laplace’s law.  

4.3. Modified Laplace’s law 

According to the proof process of Laplace’s law, its application scope is limited 

to thin-wall shells. However, the size of the ventricular wall cannot be ignored during 

the relaxation and contraction process of ventricular muscle. Therefore, in order to 
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study the stress distribution in ventricular wall, the Laplace’s law has to be modified 

by considering the change of thickness. 

The specific method is to employ the generalized Hooke’s law to analyze the 

stress state of the unit cell on the external surface of the ventricular wall shown in 

Figure 17. Actually, the unit cell on inner surface exhibits the maximum normal stress 

due to its largest linear strain considering the decrease in ventricular wall thickness 

during diastole, which is consistent with the stress concentration theory. In brief, the 

inner surface of the ventricular wall is a dangerous location during diastole. However, 

the unit cell on the external surface instead of inner surface is selected as the analysis 

target to simplify the derivation of mathematical expressions.  

 

Figure 17. The unit cell on the inner surface of the ventricular wall. 

As shown in Figure 17, there is no shear stress on the external surface. According 

to the reciprocal theorem of shear stress, there is no shear stress on each section of the 

unit cell. In fact, based on the centrosymmetry and axisymmetry of the sphere, any 

unit at any location on the spherical shell under uniform pressure experiences no shear 

stress. Symmetry also indicates that the normal stresses in both the cross and 

longitudinal sections are equal. 

The initial radius and wall thickness of the ventricle in its natural state (no 

contractility) can be denoted as 𝑟0 and 𝑡0, respectively. At a certain moment during 

diastole, the radius r of the ventricle should satisfy: 

𝑟 > 𝑟0 (74) 

which implies that ventricular muscles produce contractile force. The linear strain 

of a unit cell can be expressed by definition as: 

𝜀𝑥 = 𝜀𝑦 =
2𝜋𝑟 − 2𝜋𝑟0

2𝜋𝑟0
=
𝑟

𝑟0
− 1 > 0

 

(75) 

The expression of the generalized Hooke’s law can be written as: 
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{
 
 

 
 𝜀𝑥 =

1

𝐸
[𝜎𝑥 − 𝜇(𝜎𝑦 + 𝜎𝑧)]

𝜀𝑦 =
1

𝐸
[𝜎𝑦 − 𝜇(𝜎𝑥 + 𝜎𝑧)]

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝜇(𝜎𝑥 + 𝜎𝑦)]

 

(76) 

in which E denotes elastic modulus while 𝜇  represents Poisson’s ratio of 

ventricular muscle. By substituting the conditions:  

{
𝜎𝑥 = 𝜎𝑦,

𝜎𝑧 = 0
 (77) 

it can be obtained that: 

{
 
 

 
 
𝜎𝑥 = 𝜎𝑦 = 𝜎 =

𝐸(
𝑟
𝑟0
− 1)

1 − 𝜇

𝜀𝑧 = −
2𝜇𝜎

𝐸
=
2𝜇(1 −

𝑟
𝑟0
)

1 − 𝜇

 (78) 

Therefore, the Laplace’s law can be modified as: 
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 (79) 

It should be pointed out that if the thickness variation 𝜀𝑧𝑡 of ventricular wall is 

not considered, the recovery pressure p of ventricular muscle will monotonically 

increase with respect to radius r, which is obviously inconsistent with the experimental 

conclusion.  

4.4. Calculation of Poisson’s ratio based on the state of ventricular 

muscle at the end of diastole 

At the end of diastole, the recovery pressure of the ventricular muscle reaches its 

peak, corresponding to the extremum point of the modified Laplace’s law. Therefore, 

it is necessary to study its monotonicity. Through following substitution steps: 
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{
 
 
 
 

 
 
 
 𝐾1 = 2𝑡 +

4𝑡𝜇

1 − 𝜇

𝐾2 =
4𝑡𝜇

(1 − 𝜇)𝑟0

𝐾3 =
𝐸

(1 − 𝜇)𝑟0

𝐾4 =
𝐸

(1 − 𝜇)

 (80) 

the modified Laplace’s law can be simplified as follows: 

𝑝 = (
𝐾1
𝑟
− 𝐾2) × (𝐾3𝑟 − 𝐾4) = 𝐾1𝐾3 + 𝐾2𝐾4 − (

𝐾1𝐾4
𝑟

+ 𝐾2𝐾3𝑟) (81) 

where 𝐾𝑖 > 0, 𝑖 = 1,2,3,4. 
From the mean inequality, it can be obtained that 

𝑝 = 𝐾1𝐾3 + 𝐾2𝐾4 − (
𝐾1𝐾4
𝑟

+ 𝐾2𝐾3𝑟) ≤ 𝐾1𝐾3 + 𝐾2𝐾4 − 2√𝐾1𝐾2𝐾3𝐾4
 

(82) 

Therefore, the maximum point corresponding to the end diastolic dimension of 

the ventricular muscle should satisfy the following conditions: 

𝐾1𝐾4
𝑟

= 𝐾2𝐾3𝑟 ⇒ 𝑟 = √
𝐾1𝐾4
𝐾2𝐾3

= √
(2𝑡 +

4𝑡𝜇
1 − 𝜇

) ×
𝐸

1 − 𝜇
4𝑡𝜇
1 − 𝜇 ×

1
𝑟0
×

𝐸
1 − 𝜇 ×

1
𝑟0

= 𝑟0√1+
1 − 𝜇

2𝜇  
(83) 

This finding indicates that, once the Poisson’s ratio 𝜇 of the ventricular muscle is 

known, the original size 𝑟0 of the ventricle in its natural state can be calculated.  

According to the inference of generalized Hooke’s law, the following conditions 

should be met between the volume strain 𝛾
 
and the principal stress of the unit cell: 
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(84) 

Therefore, 

𝑟2𝑡

𝑟0
2𝑡0

− 1 ≈
2(1 − 2𝜇)(

𝑟
𝑟0
− 1)

1 − 𝜇
, 𝑟 > 𝑟0

 

(85) 

Substituting the transform process: 
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{

𝑟2𝑡 = 𝑥, 𝑟 = 𝑦,

𝐴 =
1

𝑟0
2𝑡0

, 𝐵 =
2(2𝜇 − 1)

(1 − 𝜇)𝑟0
, 𝐶 =

2(1 − 2𝜇)

(1 − 𝜇)
− 1

 

(86) 

Equation (85) can be simplified as: 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

 

(87) 

which is obviously a plane equation in a spatial coordinate system. As indicated 

by the formula above, merely three sets of measurements for the ventricular radius and 

wall thickness during diastolic period (𝑟 > 𝑟0) are required to determine the initial size 

of the ventricle. It is important to note that the necessary dimensional data can be 

acquired solely through echocardiography, eliminating the need for MRI. 

4.5. The three-dimensional uniform pressure state of ventricular muscles 

during the end of systole 

During systole, the external pressure on the ventricle exceeds its internal pressure, 

rendering modified Laplace’s law inapplicable. Based on the superposition principle 

of small deformations, the pressure differential between the interior and exterior is 

bound to lead to further contraction of the ventricle. Therefore, at the end of systole, 

the ventricular wall is approximately in a state of uniform internal and external 

pressure (no contractile restitution force). To solve the stress state of the ventricular 

muscle at this time, it is necessary to prove the following lemma: Any point within the 

object subjected to uniform pressure is in a state of three-dimensional uniform stress, 

which is named as theory of three directional uniform stress state. Its proof process is 

as follows. 

Firstly, the planar situation as shown in Figure 18 should be considered. To be 

specific, for any point A within the circle, two non-perpendicular symmetrical sections 

marked in purple can be taken (with the line connecting the point to the circle’s center 

as the axis of symmetry). From the symmetry, it is evident that the stress state on these 

two sections near the point can be represented in coordinates as (𝜎, 𝜏)
 
and (𝜎,−𝜏). 

From the balance equation of the rectangle represented by the black dotted line, it can 

be concluded that there must be a principal plane at point A where the normal stress is 

-p. 
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Figure 18. Schematic diagram of the two-dimensional pressure equalization theory. 

If the shear stress 𝜏 = 0, the pair of purple symmetrical section must be the 

principal planes near point A. According to the theory of stress circles, if the principal 

plane is not perpendicular, the unit cell must be in a state of uniform pressure (tension) 

in two directions, indicating that the radius of the stress circle is zero. If the shear stress 

𝜏 ≠ 0, the two cross-sections represented by (𝜎, 𝜏)
 
and (𝜎,−𝜏) must be perpendicular, 

which contradicts the assumption. In summary, any point within a circle subjected to 

uniform pressure is in a state of two-way uniform pressure, which means that the stress 

circle with a radius of zero degenerates into a point, and all cross-sections in all 

directions are the principal planes: 

√(
𝜎𝑥 − 𝜎𝑦

2
)2 + 𝜏𝑥𝑦

2 = 0 ⇒ 𝜎𝑥 = 𝜎𝑦, 𝜏𝑥𝑦 = 0 (88) 

For any shape of planar object subjected to uniform pressure, a circle subjected 

to uniform pressure can be employed as its envelope as shown in Figure 18. Any point 

inside the planar object must be located inside the pressure (tension) equalization 

envelope circle, therefore it must be in a pressure (tension) equalizing state as well.  

By means of similar approach, the theory of three-dimensional pressure 

equalization on space objects can also be proved. Specifically, any point A within a 

uniform pressure sphere can be represented as the intersection of two perpendicular 

intersecting chords marked in purple as shown in Figure 19. By combining the central 

symmetry and axial symmetry of the sphere, it can be proven that there is no shear 

stress in any unit cell at any position inside the uniformly pressurized sphere. The 

equilibrium equation of the prism represented by the yellow dashed line indicates that 

the normal stress at point A on the cross-section is - p. Each purple chord and the 

spherical center can form a plane about which two non-perpendicular symmetric 

sections (plane 𝛼 and 𝛽) passing through the chord can be introduced. Base on the 

proof process of the plane case shown in Figure 18, all points on the chord are in a 

two-way uniform pressure state on its normal plane. Similarly, it can be demonstrated 

that another chord perpendicular to this one also possesses this property. Therefore, 

the intersection point A of the two chords must be in the state of three-way uniform 

pressure.  
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Figure 19. Schematic diagram of the three-dimensional pressure equalization theory. 

The stress on any given cross-section of a spatial unit cell can be represented as: 

{
 
 

 
 (𝜎𝑛 −

𝜎2 + 𝜎3
2

)2 + 𝜏𝑛
2 = (

𝜎2 − 𝜎3
2

)2 + 𝑙2(𝜎1 − 𝜎2)(𝜎1 − 𝜎3)

(𝜎𝑛 −
𝜎3 + 𝜎1
2

)2 + 𝜏𝑛
2 = (

𝜎3 − 𝜎1
2

)2 −𝑚2(𝜎2 − 𝜎3)(𝜎1 − 𝜎2)

(𝜎𝑛 −
𝜎1 + 𝜎2
2

)2 + 𝜏𝑛
2 = (

𝜎1 − 𝜎2
2

)2 + 𝑛2(𝜎1 − 𝜎3)(𝜎2 − 𝜎3)

 (89) 

In above formulas, 𝜎𝑛 denotes the normal stress, 𝜏𝑛 represents the shear stress, 

while 𝑙,𝑚, 𝑛 describe the cosine values of the angles formed by the normal to the 

cross-section and the three axes of the rectangular coordinate system, which satisfying: 

𝑙2 +𝑚2 + 𝑛2 = 1. (90) 

Specifically, for the case of three-way uniform pressure (tension), the following 

conditions should be met: 

{
  
 

  
 (𝜎𝑛 −

𝜎2 + 𝜎3
2

)2 + 𝜏𝑛
2 = (

𝜎2 − 𝜎3
2

)2 + 𝑙2(𝜎1 − 𝜎2)(𝜎1 − 𝜎3)

(𝜎𝑛 −
𝜎3 + 𝜎1
2

)2 + 𝜏𝑛
2 = (

𝜎3 − 𝜎1
2

)2 −𝑚2(𝜎2 − 𝜎3)(𝜎1 − 𝜎2)

(𝜎𝑛 −
𝜎1 + 𝜎2
2

)2 + 𝜏𝑛
2 = (

𝜎1 − 𝜎2
2

)2 + 𝑛2(𝜎1 − 𝜎3)(𝜎2 − 𝜎3)

𝜎1 = 𝜎2 = 𝜎3 = 𝑝

⇒ 𝜎𝑛 = 𝑝, 𝜏𝑛 = 0 (91) 

Based on three-way uniform pressure state at the end of ventricular systole, it can 

be concluded that at this moment, the normal stress in the ventricular muscle is 

approximately equal to the aortic blood pressure. It should be noted that currently, 

aortic blood pressure cannot be precisely measured through non-invasive methods, but 

it can be roughly estimated by brachial artery blood pressure. 

5. Results 

5.1. Calculation method and reference value of human ventricular elastic 

modulus 



Molecular & Cellular Biomechanics 2025, 22(3), 1163.  

30 

Based on all existing conclusions, the theoretical calculation formula for the 

elastic modulus of ventricular muscle can be already derived. 𝑃𝑑 and 𝑃𝑠 are used to 

represent diastolic and systolic blood pressure of aorta. Besides, employing 𝜀𝑥
+ and 𝜀𝑧

− 

to denote the end diastolic circumferential strain and end systolic radial strain of the 

ventricle respectively, it can be concluded combing the generalized Hooke’s law and 

pressure equalization theory that: 
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(93) 

It should be noted that the numerator and denominator of Equation (92) are small, 

which has high requirements for measurement accuracy. Therefore, Equation (93) is 

more suitable for estimation. The aortic diastolic blood pressure 𝑃𝑑  can be 

approximated by brachial artery blood diastolic pressure. Besides, 𝑟+ can be obtained 

through echocardiography while 𝑟0 and 𝜇 can be calculated by Equation (85).  
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In fact, the systolic strain is influenced by various factors, including but not 

limited to blood pressure, myocardial function, mechanical bio-electric coupling 

behaviors, feedback mechanisms, abnormal structures under pathological conditions 

and so on. Besides, the pumping function of the heart involves the coordinated 

operation of multiple systems and can be influenced by various external factors, such 

as the differences in metabolic rate, hormone levels, and environmental force fields 

caused respectively by age, gender, and left ventricle load conditions. If all these 

individualized factors with significant differences are taken into account, the 

theoretical model will become exceptionally complex.  

In order to balance the accuracy and simplicity of the theoretical model, we 

choose the main factors to consider, which is the stress and deformation of the 

myocardium in its natural state at the end of diastole. Therefore, we abandon the end 

systolic based approach mainly due to the involvement of autonomous cardiac 

contraction function, while the natural myocardial function in the calculation model 

based on the end diastolic can be described by Poisson’s ratio. 

5.2. Reference value of human ventricular elastic modulus 

In order to verify the validity of the above theoretical calculation formula for 

elastic modulus of human ventricular muscle, for all variables involved, their median 

and boundary values of reference ranges based on echocardiography sampling data are 

employed to calculate the theoretical value so as to compare it with the experimental 

data. However, due to the lack of noninvasive detection methods for human hearts, the 

existing studies can only provide experimental measurement data of the elastic 

modulus of isolated pig hearts. The three-dimensional multivariate function image of 

ventricular muscle elastic modulus based on sampled data is shown in the Figure 20. 

 

Figure 20. The 3-D multivariate function image of ventricular muscle elastic 

modulus based on echocardiography sampling data. 
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It should be noted that the interval of the sampled data shown in Figure 20 

already includes simple pathological conditions, such as abnormal Poisson’s ratio and 

blood pressure. However, the reliability of these data is based on the absence of 

organic lesions and structural damage to the heart. Therefore, strictly speaking, this 

calculation method based on echocardiography data cannot replace personalized 

diagnosis and treatment methods such as MRI. However, due to its relatively low price 

and relatively simple examination procedure, it may become a routine physical 

examination screening item for cardiovascular diseases. Some boundary and median 

data with reference value in Figure 20 are listed in Table 1. 

Table 1. Characteristic boundary and median values from echocardiography 

sampling data. 

Poisson’s ratio 

(dimensionless) 
Brachial artery blood pressure (mmHg) 

Elastic modulus 

(kPa) 

0.2 60 8.7420 

0.2 75 10.9275 

0.2 90 13.1130 

0.45 60 16.3387 

0.45 75 20.4234 

0.45 90 24.5081 

0.5 60 17.7979 

0.5 75 22.2474 

0.5 90 26.6969 

By sampling a large number of echocardiography cases, the Poisson’s ratio range 

of human ventricular muscle can be estimated to be approximately [0.45,0.5) . 

Additionally, the reference range for human brachial artery diastolic pressure is 

[60,90] 𝑚𝑚𝐻𝑔 (or [8,12] 𝑘𝑃𝑎). The monotonicity of the elastic modulus function 

with respect to Poisson’s ratio can be determined by the following stagnation point 

conditions: 

𝑑𝐸

𝜇
=

(1 − √
1
2 (1 +

1
𝜇)) −

1
2 ×

−
1
2 ×

1
𝜇2

√
1
2 (1 +

1
𝜇)

(1 − 𝜇)

[√
1
2 (1 +

1
𝜇) − 1]

2

=
√
1
2
(1+

1
𝜇
)=𝑈

0 ⇒ 𝑈 = 1 ⇒ 𝜇 = 1 
(94) 

Therefore, in the reference range, the elastic modulus function monotonically 

decreases with respect to Poisson’s ratio. By means of substituting the boundary values 

of all involved variables into Equation (93), the reference range of the radial elastic 

modulus of human ventricular muscle can be obtained as [16.3387,26.6969]𝑘𝑃𝑎, 

which is consistent with the experimental data 20 kPa of isolated pig heart reported in 

literature [15–17], etc.  

6. Discussion 

6.1. The causes of differences in experimental data 
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There are great differences in the experimental data of the elastic modulus of 

isolated pig hearts in different references. The reasons are various, including sample 

selection, loading methods, etc. However, we believe that the main reason is the 

overload caused by the lack of clear external load limit in the tensile test. In other 

words, overload will cause irreversible damage to the physiological structure of the 

myocardium, so that the measured value of the elastic modulus is not the actual value 

of the myocardium in the working state. To be specific, the branched structure of 

cardiac muscle is shown in Figure 21. 

 

Figure 21. The branched structure of cardiac muscle. 

The two ends of myocardia are linked by intercalated disk. There are capillaries 

and loose connective tissues between myocardia. The loose connective tissues mainly 

consist of collagen fibers and elastic fibers. The collagen can constitute the myocardial 

collagen network. The elastic fibers can cross myocardia in various directions. 

Therefore, if excessive external load destroys other myocardial structures in vitro, the 

measured elastic modulus data is likely to correspond to the straightened fibers instead 

of actual value of myocardial working state. This conclusion is consistent with the 

experimental results in reference [17].  

6.2. Anisotropy of myocardium 

A single myocardial fiber itself should be a kind of isotropic material, but due to 

the structural characteristics, bundles of myocardial fibers as a whole can exhibit 

anisotropic material properties. Longitudinal strain is more reproducible indeed due to 

its higher sensitivity to damage. Therefore, we are ought to consider and estimate the 

difference between the longitudinal elastic modulus and the radial elastic modulus. 

The theoretical method we use is to approximate the longitudinal elastic modulus 

using the radial shear modulus: 

𝐸𝑟𝑎𝑑𝑖𝑎𝑙 ≈ 𝐺 =
𝐸𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

2(1 + 𝜇)
 (95) 

The specific calculation process of error is as follows: 
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(96) 

where t and D respectively represent the thickness and diameter of myocardial bundle. 

It can be seen that based on the generalized Hooke’s law, the ratio of the calculation 

results under the assumptions of isotropy and anisotropy equals approximately to 0.8. 

However, this truncation error can be offset to some extent considering the blood 

pressure error between the aorta and the brachial artery applied in our in the calculation.  

6.3. Idealized assumptions 

In order to avoid overly complex theoretical deductions and reduce dependence 

on experimental data, the theoretical model in this paper has made some idealized 

assumptions: 

1) The ventricle can be regarded as a uniform thin-walled spherical shell; 

2) The end diastolic period corresponds exactly to the extreme point of the pressure 

inside the ventricle; 

3) Brachial artery blood pressure is close to aortic blood pressure; 

4) The stress state of the unit body at each position of the ventricular wall is similar 

or exhibits a linear distribution, which can be approximated by the average value; 

5) Stress distribution satisfies superposition principle; 

6) The longitudinal shear modulus of myocardial bundles can be approximated by 

the radial elastic modulus. 

These assumptions indicates that there exist some limitations of this calculation 

about to be addressed. Firstly, the calculation method may be invalid for some 

hypertensive patients because the abnormality of brachial artery blood pressure may 

be caused by non-cardiogenic factors, such as vascular organic damage. Generally 

speaking, the ventricular muscle material parameters of patients with cardiogenic 

diseases will change synchronously. Thus, for these cases, it is necessary to consider 

the measured Poisson’s ratio for further diagnosis. 

Secondly, the calculation method can only reflect the overall health status of 

ventricular muscle, and cannot find local lesions. Therefore, it can only be applied as 

a primary screening method for the prevention of acute heart disease, and cannot 

replace the diagnostic methods such as magnetic resonance imaging. 
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7. Conclusions  

A new probability model is proposed to describe the resting potential and 

calculate its duration. This model has proven its capacity to evaluate the rationality of 

bioelectricity model based on the analysis of non-smooth dynamics involved in this 

paper. Besides, the theoretical calculation method of elastic modulus of human 

ventricular muscle is established and the reference value is provided. This calculation 

method based on the data of cardiac ultrasound, enables the large-scale screening of 

myocardial elastic modulus in the form of routine physical examination, which can 

reflect the heart health conditions. Therefore, it has important clinical value for the 

primary diagnosis and effective prevention of cardiogenic diseases at least. The 

research methodologies along with the conclusion framework of this article can be 

visualized as a flowchart shown in Figure 22. 

 

Figure 22. The framework of research methodologies and conclusions. 



Molecular & Cellular Biomechanics 2025, 22(3), 1163.  

36 

Author contributions: Conceptualization, RQ and XX; methodology, RQ; software, 

RQ; validation, RQ and XX; data curation, XX; writing—original draft preparation, 

RQ; writing—review and editing, RQ and XX; visualization, RQ; project 

administration, RQ; funding acquisition, RQ. All authors have read and agreed to the 

published version of the manuscript. 

Ethical approval: Not applicable. 

Funding: This research is supported by National Natural Science Foundation of China 

(Grant no. 12302012). 

Data availability: All the data used to support the findings of this study are available 

from the corresponding author upon request. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Smoluk L.T. and Protsenko Yu.L., Mechanical properties of passive myocardium: experiment and mathematical model, 

Biophysics, 2010, 55(5), pp. 796–799.  

2. Hasan A., Ragaert K., Swieszkowski W., et al, Biomechanical properties of native and tissue engineered heart valve 

constructs, J. Biomech., 2014, vol. 47, pp. 1949–1963.  

3. Ostrovskiy N.V., Chelnokova N.O., Golyadkina A.A., et al, Biomechanical parameters of ventricles of the human heart, 

Fund. Issled., 2015, nos. 1–10, pp. 2070–2075. 

4. Chabiniok R. , Wang V.Y., Hadjicharalambous M., Asner L. , Lee J., Sermesant M. , et al, Multiphysics and multiscale 

modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics, Interface 

Focus, 2016, 6 (2), Article 20150083. 

5. Shmurak M.I., Kuchumov A.G., and Voronova N.O., Hyperelastic models analysis for description of soft human tissues 

behavior, Master’s J., 2017, no. 1, pp. 230–243. 

6. Wang V.Y., Lam H., Ennis D.B., et al, Nash modelling passive diastolic mechanics with quantitative MRI of cardiac 

structure and function, Med Image Anal, 2009, 13(5), pp. 773-784. 

7. Nordsletten D., Capilnasiu A., Zhang W., Wittgenstein A., Hadjicharalambous M., Sommer G., et al, A viscoelastic model 

for human myocardium, Acta Biomater, 2021, vol. 135, pp. 441-457. 

8. Sommer G., Schriefl A.J., Andrä M., Sacherer M., Viertler C., Wolinski H., et al, Biomechanical properties and 

microstructure of human ventricular myocardium, Acta Biomater, 2015, vol. 24, pp. 172-192. 

9. Rajagopal K., Hajian D.N., Natiq H., et al., Effect of Gaussian gradient in the medium's action potential morphology on 

spiral waves, APPL MATH COMPUT, 2024, vol. 470, Article 128590. 

10. Hayashi T., Tokihiro T., Kurihara H., Yasuda K., Community effect of cardiomyocytes in beating rhythms is determined by 

stable cells, Sci. Rep., 2017, vol. 7, Article 15450. 

11. Tabi C.B., Dynamical analysis of the FitzHugh-Nagumo oscillations through a modified Van der Pol equation with 

fractional-order derivative term, Int. J. Non-Linear Mech., 2018, vol. 105, pp. 173-178. 

12. Yuan L., Liu Z.Q., Zhang H.M., et al, Noise-induced synchronous stochastic oscillations in small scale cultured heart-cell 

networks, Chin. Phys. B, 2011, 20 (2), Article 020508. 

13. Qu R., Xia X., Wu G.Q., et al, Bursting Oscillation Mechanisms of a Desktop Medical Shaker with Eccentric Turntables 

Affected by Dry Friction. Shock & Vibration, 2023, vol. 2023, Article 8374444. 

14. Qu R., Li S.L., Attractor and Vector Structure Analyses of Bursting oscillation with sliding bifurcation in filippov 
systems, Shock & Vibration, 2019, pp. 1-10. 

15. Muslova S.A,, Lotkovb A.I., Arutyunova S.D., and Albakova T.M., Calculation of the parameters of mechanical properties 

of the heart muscle, Inorganic Materials: Applied Research, 2021, 12(2), pp.433-44. 

16. Latorre M., Montáns F.J., Wypiwyg hyperelasticity without inversion formula: application to passive ventricular 

myocardium, Comput Struct, 2017, vol. 185, pp. 47-58. 

https://6ac5b0bb39d192b0858cfa77a8a47a00lib.v.ujs.edu.cn/detail_38502727e7500f2658786869503e9452d02ea79d33fef5db1921b0a3ea255101c944b624736f9e85efde9a586abf88dfa839393ff709ca593775e8436e09ad3711dfd5d001f0b2e166b3354d50b73b45?


Molecular & Cellular Biomechanics 2025, 22(3), 1163.  

37 

17. Laita N., Rosales R.M., Wu M., et al, On modeling the in vivo ventricular passive mechanical behavior from in vitro 

experimental properties in porcine hearts, Comput Struct, 2024, vol. 292, Article 107241. 

18. Ghanta R.K., Pugazenthi A., Zhao Y.G., et al, Influence of supraphysiologic biomaterial stiffness on ventricular mechanics 

and infarct reinforcement, Acta BIOMATERIALIA, 2022, vol. 149, pp. 30-39. 

19. Liu W.Q., Nguyen-Truong M., LeBar K., et al, Multiscale contrasts between the right and left ventricle biomechanics in 

healthy adult sheep and translational implications, Front BIOENG biotech, 2022, vol. 105, Article 857638. 

20. Park C.K., Kim J., Development of a three-dimensional- printed heart model replicating the elasticity, tear resistance, and 

hardness of pig heart using Agilus and Tango, J MECH MED BIOL, 2022, 22(3). 

21. Peyronnet R., Desai A., Edelmann J.C., et al, Simultaneous assessment of radial and axial myocyte mechanics by combining 

atomic force microscopy and carbon fibre techniques, PHILOS T R SOC B, 2022, 377(1864). 

22. Motchon Y.D., Sack K.L., Sirry M.S., et al, Effect of biomaterial stiffness on cardiac mechanics in a biventricular infarcted 

rat heart model with microstructural representation of in situ intramyocardial injectate, INT J NUMER METH BIO, 2023, 

39(5). 

  



Molecular & Cellular Biomechanics 2025, 22(3), 1163.  

38 

Appendix A. Supplementary description of pressure equalization theory 

Although the pressure equalization theory cannot be directly used to calculate the material parameters of ventricular 

muscle, its conclusion has potential guiding significance for the stress analysis of blood vessels. Therefore, it is 

necessary to provide some supplements to this theory. 

The spherical envelope method is employed in the proof part of pressure equalization theory. Actually, 

asymmetrical convex polyhedron can also be used to envelope the research object, which can be composed of several 

tetrahedrons as basic elements. In other words, a balanced tetrahedron subjected to uniform pressure 𝒑 on each side 

321 ,, SSS  has a determined resultant force 𝑭4 on the bottom surface 
4S , as shown in Figure A1. The resultant force 

𝑭4 = 𝒑′ × 𝑆4 is equivalent to the uniform load 𝒑 distributed on the bottom surface. According to the relevant theories 

of statics, the resultant force on the bottom shall meet the following conditions: 

1) The principal vector equals to 𝒑 × 𝑆4; 

2) The principal moment is zero (Both bending moment and torque are zero); 

3) The acting point is the geometric center of the bottom surface. 

 

Figure A1. The tetrahedron under uniform pressure. 

Ⅰ. Principal vector  

Assuming 𝑝 = 1, the external force on each side can be expressed as: 

{

𝐅1 = 𝐛 × 𝐜

𝐅2 = (𝐛 − 𝐜) × (𝐚 − 𝐛)
𝐅3 = 𝐜 × 𝐚
𝐅4 = 𝐚 × 𝐛

 (1) 

Substituting above formulas to the equilibrium equation: 

𝐅1 + 𝐅2 + 𝐅3 + 𝐅4 = 𝟎 
(2) 

it can be obtained that: 

𝑝′ = 1 = 𝑝 (3) 

The above conclusion can also be extended to the general pyramid shown in Figure A2 as: 
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𝐅1 = 𝐚1 × 𝐛
𝐅2 = 𝐚2 × (𝐛 − 𝐚1) = 𝐚2 × 𝐛 + 𝐚1 × 𝐚2
𝐅3 = 𝐚3 × (𝐛 − 𝐚1 − 𝐚2)
𝐅4 = 𝐚4 × (𝐛 − 𝐚1 − 𝐚2 − 𝐚3)
. . .
𝐅n−1 = 𝐚n−1 × (𝐛 − 𝐚1 − 𝐚2 − 𝐚3−. . . −𝐚n−2)

𝐅n = 𝐚n × (𝐛 − 𝐚1 − 𝐚2 − 𝐚3−. . . −𝐚n−2 − 𝐚n−1)
𝐅n+1 = −𝐚1 × 𝐚2 − (𝐚1 + 𝐚2) × 𝐚3 − (𝐚1 + 𝐚2 + 𝐚3) × 𝐚4−. . . (𝐚1 + 𝐚2 + 𝐚3+. . . 𝐚n−2) × 𝐚n−1}

 
 
 
 

 
 
 
 

⇒ ∑𝑭𝑖

𝑛+1

𝑖=1

= 𝟎 (4) 

 

Figure A2. The general pyramid under uniform pressure. 

Ⅱ. Torque 

The normal component 𝑭1⊥, 𝑭2⊥, 𝑭3⊥ and tangential component 𝑭1//, 𝑭2//, 𝑭3// can be obtained by projecting 

𝑭1, 𝑭2, 𝑭3 onto the plane of the yellow triangle formed by the centroids of all sides shown in Figure 21. From the 

equilibrium equations: 

{
𝐅1// + 𝐅2// + 𝐅3// = 𝟎

𝐅1⊥ + 𝐅2⊥ + 𝐅3⊥ = −𝐅4 
(5) 

it is clear that the tangential components have already formed a balance force system and the normal component 

can only generate bending moments. Therefore, the torque on the bottom surface has to be zero. 

Ⅲ. Bending moments 

Applying the translation theorem of force, the acting point of 𝑭1, 𝑭2, 𝑭3 can be moved to bottom centroid. Since 

the torque is zero, the sum of the additional couple moments must be equal to the sum of the bending moments. The 

displacement vectors from the bottom centroid to each side centroid can be denoted as 𝒌1, 𝒌2, 𝒌3. From the geometric 

relationship in Figure 21, it is not difficult to deduct the expression of the displacement vectors as: 

{
 
 

 
 𝐤1 =

1

3
(𝐛 + 𝐜) −

1

3
(𝐚 + 𝐛) =

1

3
(𝐜 − 𝐚)

𝐤2 =
1

3
𝐜

𝐤3 =
1

3
(𝐚 + 𝐜) −

1

3
(𝐚 + 𝐛) =

1

3
(c⃗ − 𝐛)

 (6) 

Combining the expression of force vector (95), the sum of the additional couple moments can be expressed as: 
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∑𝐤i

3

i=1

× 𝐅i = −
1

3
[𝐚 × (𝐛 × 𝐜) + 𝐜 × (𝐚 × 𝐛) + 𝐛 × (𝐜 × 𝐚)]

 

(7) 

By establishing a spatial coordinate system and representing vectors in coordinates, it can be obtained that: 

𝒂 × 𝒃 = |
𝒊 𝒋 𝒌
𝑥𝑎 𝑦𝑎 𝑧𝑎
𝑥𝑏 𝑦𝑏 𝑧𝑏

| = (𝑦𝑎𝑧𝑏 − 𝑦𝑏𝑧𝑎 , 𝑥𝑏𝑧𝑎 − 𝑥𝑎𝑧𝑏, 𝑥𝑎𝑦𝑏 − 𝑥𝑏𝑦𝑎) ⇒  𝒄 × (𝒂 × 𝒃)

= |
𝒊 𝒋 𝒌
𝑥𝑐 𝑦𝑐 𝑧𝑐

𝑦𝑎𝑧𝑏 − 𝑦𝑏𝑧𝑎 𝑥𝑏𝑧𝑎 − 𝑥𝑎𝑧𝑏 𝑥𝑎𝑦𝑏 − 𝑥𝑏𝑦𝑎

|

= (𝑦𝑐𝑥𝑎𝑦𝑏 − 𝑦𝑐𝑥𝑏𝑦𝑎 − 𝑧𝑐𝑥𝑏𝑧𝑎 + 𝑧𝑐𝑥𝑎𝑧𝑏 , 𝑧𝑐𝑦𝑎𝑧𝑏 − 𝑧𝑐𝑦𝑏𝑧𝑎 − 𝑥𝑐𝑥𝑎𝑦𝑏 + 𝑥𝑐𝑥𝑏𝑦𝑎 , 𝑥𝑐𝑥𝑏𝑧𝑎 − 𝑥𝑐𝑥𝑎𝑧𝑏
− 𝑦𝑐𝑦𝑎𝑧𝑏 + 𝑦𝑐𝑦𝑏𝑧𝑎). 

(8) 

According to the symmetry of rotation, it can be inferred that: 

𝑎 → 𝑐, 𝑏 → 𝑎, 𝑐 → 𝑏, 

𝒃 × (𝒄 × 𝒂) = (𝑦𝑏𝑥𝑐𝑦𝑎 − 𝑦𝑏𝑥𝑎𝑦𝑐 − 𝑧𝑏𝑥𝑎𝑧𝑐 + 𝑧𝑏𝑥𝑐𝑧𝑎 , 𝑧𝑏𝑦𝑐𝑧𝑎 − 𝑧𝑏𝑦𝑎𝑧𝑐 − 𝑥𝑏𝑥𝑐𝑦𝑎 + 𝑥𝑏𝑥𝑎𝑦𝑐 , 

𝑥𝑏𝑥𝑎𝑧𝑐 − 𝑥𝑏𝑥𝑐𝑧𝑎 − 𝑦𝑏𝑦𝑐𝑧𝑎 + 𝑦𝑏𝑦𝑎𝑧𝑐). 

(9) 

Similarly, it can be known that: 

𝑎 → 𝑏, 𝑏 → 𝑐, 𝑐 → 𝑎, 

𝒂 × (𝒃 × 𝒄) = (𝑦𝑎𝑥𝑏𝑦𝑐 − 𝑦𝑎𝑥𝑐𝑦𝑏 − 𝑧𝑎𝑥𝑐𝑧𝑏 + 𝑧𝑎𝑥𝑏𝑧𝑐, 𝑧𝑎𝑦𝑏𝑧𝑐 − 𝑧𝑎𝑦𝑐𝑧𝑏 − 𝑥𝑎𝑥𝑏𝑦𝑐 + 𝑥𝑎𝑥𝑐𝑦𝑏 , 

𝑥𝑎𝑥𝑐𝑧𝑏 − 𝑥𝑎𝑥𝑏𝑧𝑐 − 𝑦𝑎𝑦𝑏𝑧𝑐 + 𝑦𝑎𝑦𝑐𝑧𝑏). 

(10) 

Summing up all above expressions (102), (103) and (104), it can be concluded that: 

∑𝒌𝑖

3

𝑖=1

× 𝑭𝑖 = −
1

3
[𝒂 × (𝒃 × 𝒄) + 𝒄 × (𝒂 × 𝒃) + 𝒃 × (𝒄 × 𝒂)] = 𝟎

 

(11) 

Therefore, there is no bending moment on the bottom surface.  

It should be pointed that the above resultant force analysis does not mean that the stress on the bottom is uniformly 

distributed. In fact, the translation theorem of force can only be used to analyze the balance but not the deformation of 

deformed bodies. In other words, concentrated force and uniform load are equivalent only in the sense of equilibrium 

with the ignorance of deformation. 
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Appendix B. The physical or physiological meanings of mathematical symbols 

A large number of mathematical symbols are employed in the theoretical derivation process of this paper. The 

specific meaning of each mathematical symbol has been clearly explained in the text. For ease of reference, the physical 

or physiological meanings of frequently used mathematical symbols in bioelectric model and mechanical pump model 

are listed in Tables B1 and B2 respectively. 

Table B1. Physical or physiological meaning of mathematical symbol used in bioelectric model. 

Mathematical symbol 
Physical/Physiological 

meaning 

x Membrane potential 

y Quick recovery current 

z Slow-varying adaptive current 

W External stimulation current 

A External excitation amplitude 

Ω External excitation frequency 

Ω0 Natural frequency 

χ Resting state adjustment parameter  

r Ion concentration change rate  

ΔI Feedback potential 

an General term formula of fully misaligned arrangement 

Pn Probability of fully misaligned arrangement 

P1 Probability of resting potential preconditions 

�̄�𝑛 Average Probability of a single ion channel being blocked 

e Natural base 

Table B2. Physical or physiological meaning of mathematical symbol used in mechanical pump model. 

Mathematical symbol 
Physical/Physiological 

meaning 

r0 Initial radius of ventricle in natural state 

r- End systolic ventricular radius 

r+ End diastolic ventricular radius 

t0 Initial thickness of ventricular wall in natural state 

Pd Diastolic blood pressure of aorta 

Ps Systolic blood pressure of aorta 

σi
 Principal stress 

εx
+ End diastolic circumferential strain  

εz
- End systolic radial strain  

E Elastic modulus 

μ Poisson’s ratio 

G Shear modulus 

γ Volumetric strain 

 


