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Abstract: This study introduces novel Adaptive Machine-Learning-Based Smart Wearable 

Biosensors (AML-SWB) for real-time monitoring of athletes’ health. By integrating 

accelerometers, gyroscopes, and biometric sensors, AML-SWB can collect comprehensive 

physiological data. Machine learning algorithms, especially Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) units, are incorporated to analyze the data, 

enabling accurate assessment of athletes’ health status, injury risk prediction, and 

performance optimization. An evaluation of motion efficiency, identification of gait 

asymmetry, and measurement of joint stress are all parts of the biomechanical analysis that 

the proposed AML-SWB incorporates to improve conventional monitoring. These findings 

pave the way for individualized training modifications and early intervention to reduce the 

likelihood of injuries. Despite challenges such as data accuracy and user acceptance, 

continuous technological advancements and algorithm refinement are expected to overcome 

these obstacles. 

Keywords: athletic training; smart wearable biosensors; athlete health monitoring; 

biomedical applications; machine learning algorithms; injury risk prediction 

1. Introduction 

Athletes are now in a new era of creativity and athletic improvement thanks to 

the incorporation of wearable biosensors in sports and physical education. To 

revolutionize athlete care and training approaches, these cutting-edge sensors 

immediately track vital signs, degrees of exertion, and recuperation patterns. The 

study will proceed to investigate the myriad ways in which wearable biosensors 

might improve the health and performance of athletes, as well as address the 

obstacles that stand in the way of their widespread acceptance and use of technology 

to elevate the standards of sports research and physical education. The latest versions 

of wearable biosensors have been established due to the development of flexible 

electronic devices, biochemical sensors, flexible microfluidics, and painless 

microneedles. These biosensors explore brand-new pathways to interface with the 

human epidermis to monitor physiological status [1]. Some adaptable sensors that 

athletic organizations use remain in their infancy and can run into various problems 

when tracking sports. These sensors have a high level of sensitivity and stability [2]. 

The use of biosensors that measure metabolites or products produced by enzymes 

using amperometric techniques is appealing for real-time, non-invasive lactate 

monitoring. There is the possibility of employing enzymes such as lactate oxidase 

(LOx) or lactate dehydrogenase (LDH), which proportionately produce electroactive 

species to the concentration of lactate [3]. To achieve quick, minimally invasive, or 

non-invasive monitoring of body indicators, wearable equipment created in recent 
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years can be integrated with microfluidic chip technology [4]. In personal health 

management, using flexible wearable sensors to monitor bioelectrical signals, 

movement information, and biochemical indicators is advantageous. The 

aforementioned vital signals have been monitored by various flexible wearable 

sensors explicitly developed for this specific purpose [5]. For instance, flexible 

wearable strain sensors are attached to the human body to monitor joint movement 

information. In addition, inertial sensors are utilized in conjunction with one another 

to enhance training performances and advise athletes of potential injuries that may 

occur during movement [6]. 

Millions of professional and amateur athletes worldwide use digital pacemakers 

to record their training volume, intensity, energy expenditure, and running or cycling 

pace [7]. The thin-film bioelectronic system eliminates the need for cumbersome and 

stiff sensors while imposing negligible physical and thermal demands on the 

individual wearing it. Enabling conformal interaction between the sensor and the 

skin can reduce undesirable motion artefacts [8]. Compared to conventional 

detection approaches, the electrochemical sensor provides various benefits. Linear 

output is one of their characteristics, along with great accuracy, repeatability, and 

low power consumption. These gas detection systems are also more affordable than 

most other systems [9]. The development of biosensors has been accomplished by 

utilizing a wide range of biological recognition components. These components 

include cofactors, enzymes, antibodies, bacteria, organelles, cells, and lymphocytes 

derived from more sophisticated creatures [10]. Electronic sensing devices are 

designed to be adaptable to any body surface, enabling them to provide reliable 

surveillance and precise information detection [11]. In addition, devices that store 

energy, represented by batteries, can store the energy generated by electrical 

appliances or wearable power conversion devices such as solar cells. These devices 

serve as a constant and reliable energy supply. To provide a comprehensive power 

supply for electrochemical biosensing textiles, it is necessary to have both an energy 

harvesting device and a corresponding energy storage device. This is necessary for 

the storage and conversion of energy in its entirety [12]. 

The innovative nature of AML-SWB is highlighted by its distinctive 

contributions regarding algorithm application, functionality, and practical situations 

compared to current athlete health monitoring systems. AML-SWB integrates a 

hybrid machine learning framework that merges deep learning models, such as 

convolutional neural networks for pattern recognition, with ensemble learning 

techniques like gradient boosting to improve the accuracy and adaptability of athlete 

monitoring. This hybrid methodology allows real-time analysis of multi-modal 

sensor data, including HRV, respiratory rate, and biomechanical patterns, with 

unparalleled accuracy and responsiveness. AML-SWB incorporates dynamic 

anomaly detection algorithms that recognize physiological or movement indicators 

anomalies, offering early alerts for weariness or injury risk. Furthermore, its modular 

architecture facilitates effortless scaling, permitting customization for various sports 

settings, ranging from high-intensity training centres to outdoor endurance 

competitions. AML-SWB surpasses previous systems by providing personalized 

feedback and continually adjusting to specific athlete profiles using reinforcement 

learning algorithms. 
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The primary contributions of the work are, 

1) To propose that AML-SWBs gather real-time physiological data from athletes 

during training or competition using state-of-the-art technologies like 

accelerometers, gyroscopes, and biometric sensors. 

2) To examine the current state of intelligent wearable biosensors designed for 

athletes, highlighting their potential to transform vital sign monitoring, injury 

diagnosis, and sports performance enhancement. 

3) By removing extraneous elements and streamlining language, I aim to offer a 

more impactful and briefer synopsis of the paper’s focus on intelligent wearable 

biosensors for athlete health monitoring. 

The rest of the manuscript is split up into the following sections: Section 2 

illustrates the table that briefly explains the related works of the wearable biosensors; 

Section 3 proposes the architecture and workings of the proposed AML-SWBs; in 

the fourth section, the study gives its dataset, goal theory, and performance 

evaluation; finally, the conclusion is given in section 5 along with their future works. 

2. Related works 

The following table briefly assesses several references, summarising their stated 

ideas, approaches utilized, outcomes, and limitations. A one-of-a-kind number is 

assigned to each reference, which helps to make one’s location more straightforward. 

The “Proposed Idea” section provides an overview of the key goals or applications 

mentioned in the sources. “Techniques Used” describes the methodology or 

technologies utilized, whereas “Outcomes” summarises the most important findings. 

Some potential limitations or drawbacks are shown in the “Limitations” column. 

Thanks to this systematic arrangement, the table makes it easier to compare the 

contributions and perspectives supplied by each source. It also helps comprehend the 

breadth and ramifications of the study or review in the references (Table 1). 

Table 1. Overview of wearable sensor technologies in health monitoring and sports performance evaluation. 

Reference Proposed Idea Techniques Used Outcomes Limitations 

De Fazio et 

al. [13] 

Smart gadgets and wearable sensors 

monitor sports performance and 

rehabilitation metrics. 

Wearable sensor 

technology, smart 

devices 

Overview of wearable sensors and 

smart devices for monitoring 

rehabilitation and sports 

performance 

Not explicitly focused on 

heart disease diagnosis 

Zhang et al. 

[14] 

Human tiredness diagnosis with 

wearable biosensors 
Wearable biosensors 

Review of wearable biosensors for 

fatigue diagnosis 

Limited scope to fatigue 

diagnosis, not heart 

disease 

Wu et al. 

[15] 

Utilizing newly developed wearable 

biosensor technology to assess stress 

Wearable biosensor 

technologies 

Overview of emerging wearable 

biosensor technologies for stress 

monitoring 

Limited to stress 

monitoring, not heart 

disease diagnosis 

Iliadis et al. 

[16] 

Elite riders’ riding performance is 

being tracked with a new mHealth 

system. 

Health monitoring 

system 

Presentation of a novel mHealth 

monitoring system for cycling 

performance 

Limited applicability to 

heart disease diagnosis 

Anastasiou et 

al. [17] 

The creation and evaluation process of 

a wearable gadget for performance 

measurement and athlete prevention 

Wearable device 

design methodology 

Proposed design and assessment 

methodology for a wearable device 

Focuses on athlete 

prevention and 

performance, not heart 

disease 
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Table 1. (Continued). 

Reference Proposed Idea Techniques Used Outcomes Limitations 

Li et al. [18] 

Wearable sensor networks based on the 

Internet of Things are being used to 

monitor athletes’ health. 

IoT-based wearable 

sensor network 

Computational efficient health 

monitoring system for sports athletics 

Limited discussion on 

heart disease diagnosis 

Nithya et al. 

[19] 

Wearables’ function in sports based on 

biometric metrics and activity 

recognition 

Activity 

recognition, 

biometric 

parameter analysis 

Survey on the role of wearables in 

sports based on activity recognition 

and biometric parameters 

It does not directly 

address heart disease 

diagnosis. 

Seçkin et al. 

[20] 

Review of sports wearable technology: 

Ideas, difficulties, and prospects 

Wearable 

technology review 

Review of concepts, challenges, and 

opportunities in wearable technology 

for sports 

General overview, not 

specific to heart disease 

diagnosis 

Shen et al. 

[21] 

Wearable bioelectric monitoring system 

with intelligence for extended periods of 

intense sports 

Intelligent garment 

system 

Review of intelligent garment 

systems for bioelectric monitoring 

Limited to bioelectric 

monitoring during sports 

activities 

Ju et al. [22] 
Wearable microfluidic technology for 

sports applications 

Microfluidic 

wearable devices 

Review of microfluidic wearable 

devices for sports applications 

Limited to sports 

applications 

Aguilar-

Torán et al. 

[23] 

Wearable technology based on sweat for 

enhanced athletic physiological biometric 

monitoring 

Sweat-based 

wearable device 

Presentation of a novel sweat-based 

wearable device for monitoring 

athletic physiological biometrics 

Focuses on athletic 

physiological biometrics, 

not heart disease 

Kulkarni et 

al. [24] 

Constant monitoring of human health via 

wearable, intelligent sensors 

Smart wearable 

sensors 

Review of recent advances in smart 

wearable sensors for continuous 

human health monitoring 

Limited discussion on 

heart disease diagnosis 

Physiological monitoring has been the main emphasis in previous research, 

which has skipped over the biomechanical information necessary to evaluate athletes’ 

performance thoroughly. Not having adaptable machine learning frameworks also 

makes it hard to provide each athlete with real-time feedback specifically suited to 

their needs. The adaptive machine-learning-based smart wearable biosensors (AML-

SWB) provide a fresh approach to these problems by integrating biomechanical 

analysis with state-of-the-art machine-learning techniques. This strategy improves 

upon previous approaches, improves predicted accuracy, and provides personalized 

insights by bridging the gap between biomechanical and physiological monitoring. 

Conventional systems often depend on rudimentary threshold-based techniques or 

linear algorithms for analyzing physiological data, which cannot dynamically adapt 

to intricate, non-linear patterns in athletes’ performance and health measures. 

Conversely, AML-SWB utilizes recurrent neural networks (RNNs) specially 

designed for sequential data analysis, rendering them optimal for processing time-

series physiological data, including heart rate variability, breathing rates, and 

movement patterns. RNNs are proficient in identifying temporal relationships, 

enabling a comprehensive analysis of trends and variations in an athlete’s 

physiological condition. The work incorporates long short-term memory (LSTM) 

units into the RNN architecture to optimize performance, addressing vanishing 

gradient problems and improving the model’s capacity to maintain long-term 

dependencies essential for detecting cumulative tiredness or injury risk. This method 

is also contrasted with other prevalent algorithms, such as support vector machines 

and decision trees, which are deficient in temporal processing skills and are less 

efficient in real-time, adaptive contexts. 
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3. Proposed work 

Adaptable machine-learning-based innovative wearable biosensors (AML-

SWB), intended to monitor athletes’ health during practice or competition, are 

presented as the recommended solution. AML-SWBs monitor real-time 

physiological data using biometric sensors, gyroscopes, and accelerometers. They 

offer individualized perspectives on improving performance and avoiding injuries 

that may be applied to different sports. By giving early injury identification, 

individualized feedback, and ongoing monitoring, AML-SWBs allow coaches and 

athletes to make data-driven decisions. Combining cutting-edge technology and 

machine learning algorithms, this novel technique promises to maximize athletic 

performance while lowering the risk of injury. Thus, the proposed AML-SWBs 

represent a revolutionary change in sports health monitoring. 

3.1. Adaptable machine-learning-based smart wearable biosensors 

(AML-SWB) 

AML-SWB stands for Adaptable Machine-Learning-Based Smart Wearable 

Biosensors, a revolutionary sports health monitoring technology development. These 

wearables include incorporated machine learning algorithms that allow them to 

understand and analyze athlete physiological data in real-time with intelligence. One 

of AML-SWBs’ main characteristics is its versatility. Because of their adaptability 

and customization capabilities, these biosensors may be tailored to meet individual 

athletes’ needs and tastes. Because of their flexibility, the biosensors will fit in with 

athletes’ training regimens and performance monitoring systems without generating 

any problems or disturbances. 

Athletes can provide various physiological data to AML-SWBs during training 

or performance. These data could include parameters like skin temperature, heart 

rate, respiration rate, and movement patterns. Through continuous monitoring of 

various physiological markers, AML-SWBs offer essential insights into athletes’ 

health, performance, and recovery. AML-SWBs’ inbuilt machine learning 

algorithms are necessary for evaluating the physiological data that has been gathered. 

By adapting to the patterns and trends in the data, these algorithms can produce 

predictive analytics and individualized health insights for every athlete. Coaches and 

sports researchers can modify performance techniques, training plans, and injury 

prevention measures based on each athlete’s unique demands and traits. 

Thus, AML-SWBs provide an exceptional blend of cutting-edge technology and 

perceptive data analysis, making them essential instruments for maximizing athletes’ 

well-being and output. Sports scientists and athlete optimization greatly benefit from 

their flexibility, agility, and capacity to deliver real-time insights. Figure 1 shows 

the overall system architecture of the proposed AML-SWB, along with their 

performance outcomes. 
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Figure 1. Proposed AML-SWB architecture. 

Data collection: Wearable biosensors must capture physiological data in real-

time to monitor athletes’ health. The following section discusses the role of 

biometric sensors, gyroscopes, and accelerometers in this process. 

Accelerometers: Basic accelerometers are used in wearables to measure the 

acceleration forces an athlete’s body experiences while moving. These sensors 

provide essential information on the speed, intensity, and frequency of motion during 

different physical activities by detecting changes in velocity along numerous axes. 

Accelerometers, for example, track the impact forces produced by each footstrike 

during running, which helps determine running mechanics and injury risk. They also 

record movement patterns during jumping, running, and direction changes, making 

assessing training loads and performance indicators easier. By examining 

accelerometer data, coaches and sports scientists can learn more about an athlete’s 

movement biomechanics, improve training plans, and avoid injuries brought on by 

improper movement patterns or overexertion. Accelerometers are essential for 

measuring and comprehending the dynamic movements of athletes, which helps with 

improved performance and injury avoidance techniques. 

Gyroscopes: Wearable biosensors must include gyroscopes as a necessary 

sensor to assess angular velocity and get insight into rotational motions and changes 

in orientation during physical activities. These sensors make the ability to measure 

twists, turns, rotations, and changes in posture or orientation possible by detecting 

rotational motion along several axes. Gyroscopes, for instance, record the finer 

points of body rotations and flips in sports like gymnastics and diving, which helps 

evaluate technique and accuracy of execution. Similarly, gyroscopic data is used in 

sports like snowboarding and skiing to assess stability and balance during turns and 

jumps. By tracking gyroscopic data, coaches and athletes can improve performance, 

hone technique, and learn much about movement mechanics. Moreover, by spotting 

biomechanical imbalances or irregularities that could result in overuse injuries or 

mishaps, gyroscopes aid in the prevention of injuries. Gyroscopes are invaluable for 

deciphering and refining an athlete’s rotational motions, enhancing performance and 
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lowering the risk of injury. Athletes’ performance and injury prevention can be 

monitored using smart wearable biosensors and biomechanical analysis. These 

systems use state-of-the-art motion capture devices, including electromyography 

(EMG) sensors and multi-axis inertial measurement units (IMUs), to analyze real-

time kinetic and kinematic characteristics. For example, inertial measurement units 

(IMUs) integrated into wearables may track acceleration, angular velocity, and joint 

angles when engaging in dynamic activities; this data can shed light on how efficient 

one’s movements are and help one see trends linked to overuse injuries. Further 

information on neuromuscular coordination and weariness may be derived from 

biosensors equipped with electromyography (EMG). Combined with machine 

learning algorithms, these biomechanical measures may detect abnormalities in 

biomechanical symmetry, such as a person’s dominant limb or abnormal gait 

mechanics, and use that information to create injury risk predictions. Wearable 

insoles equipped with force sensors also measure the distribution and magnitude of 

ground response forces, which are important for comprehending the mechanics of 

load bearing in activities like leaping and running. With wearable biosensors and 

biomechanics working in tandem, coaches and athletes can now make data-driven 

choices on how to train best and recuperate. 

Biometric sensors: Biometric sensors are essential components of wearable 

biosensors. These sensors monitor various physiological characteristics of an 

athlete’s well-being and health. To provide significant insights into the physiological 

responses an athlete experiences while exercising, these sensors measure vital 

indications such as the heart rate, skin conductance, temperatures, and blood oxygen 

levels. As an illustration, heart rate monitors are used to monitor the levels of 

cardiovascular stress, which assists coaches in determining the intensity of exercise 

and the state of healing. To identify indicators of dehydration or heat stress, skin 

conductance sensors evaluate the levels of hydration and temperature regulation 

throughout the body. Additionally, temperature sensors monitor the body’s heat, 

which helps avoid heat-related illnesses and optimizes thermal comfort during 

training or competition. By continuously monitoring biometric data, coaches and 

sports scientists can recognize early weariness, dehydration, or overexertion 

indicators. This allows for prompt intervention and adjustments to be made to 

training programs. In general, biometric sensors provide a comprehensive method for 

monitoring an athlete’s health, making it easier to optimize performance and develop 

plans for injury prevention in the context of sports and exercise. 

The presented algorithm (Algorithm 1) is an example of structured algorithmic 

design in the context of intelligent wearable biosensors for athletic health monitoring. 

It provides separate parts for gyroscope and accelerometer calculations, which 

improves readability and maintenance. Developers can more easily access and 

comprehend particular components related to tracking the activities of athletes by 

breaking apart functionality. This group encourages the smooth integration of sensor 

data for performance evaluation and injury prevention. Well-defined heads function 

as documentation, promoting understanding and conformity to coding standards. 

Ultimately, our strategy advances the efficient application of biosensors worn for in-

the-moment health tracking and athletic performance enhancement. 
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Algorithm 1 Algorithm that combines the gyroscope and accelerometer equations 

1: Functions for acceleration 

2: FUNCTION calculate_Acceleration(∆𝑣,∆𝑡): 

3:     // Calculate acceleration using change in velocity and time 

4:     acceleration = (∆𝑣 /∆𝑡) 

5: RETURN acceleration 

6: FUNCTION calculate_Force(mass, acceleration): 

7:     // Calculate force using mass and acceleration 

8:     force = mass x acceleration 

9:     RETURN force 

10: FUNCTION calculateDisplacement(initial_velocity, time, acceleration): 

11:     // Calculate displacement using initial velocity, time, and acceleration 

12:     displacement = initial_velocity × time + 0.5 × acceleration × time^2 

13:     RETURN displacement 

14: FUNCTION calculateFinalVelocity(initial_velocity, time, acceleration): 

15:     // Calculate final velocity using initial velocity, time, and acceleration 

16:     final_velocity = initial_velocity + acceleration × time 

17:     RETURN final_velocity 

18: Functions for gyroscopes 

19: FUNCTION calculate_AngularVelocity(∆𝜃, ∆𝑡): 

20:     // Calculate angular velocity using change in angular displacement and time 

21:     angular_velocity = ∆𝜃 / ∆𝑡 

22:     RETURN angular_velocity 

23: FUNCTION calculateAngularAcceleration(∆𝜔, ∆𝑡): 

24:     // Calculate angular acceleration using change in angular velocity and time 

25:     angular_acceleration = ∆𝜔 / ∆𝑡     

26: RETURN angular_acceleration 

27: FUNCTION calculateLinearVelocity(radius, angular_velocity): 

28:     // Calculate linear velocity using radius and angular velocity 

29:     linear_velocity = radius × angular_velocity 

30:     RETURN linear_velocity 

31: FUNCTION calculateCentripetalAcceleration(linear_velocity, radius): 

32:     // Calculate centripetal acceleration using linear velocity and radius 

33:     centripetal_acceleration = (linear_velocity^2) / radius 

34:     RETURN centripetal_acceleration 

3.2. Integration of machine learning algorithm to monitor improvement 

in sports health. 

To fully utilize wearable biosensors in athletic health monitoring, machine 

learning algorithms must be incorporated into AML-SWBs. These algorithms allow 

for the tailored, real-time monitoring of physiological data, which benefits athletes’ 

general health, performance, and ability to avoid injuries. Among the several 

machine learning algorithms, Recurrent Neural Networks (RNNs) are particularly 

well-suited for integrating physiological data that AML-SWBs gather. Recurrent 

neural networks (RNNs) are a form of artificial neural network that are designed to 

analyze sequential data. Because of this, they are ideally suited for analyzing time-

series data, such as physiological signals obtained from athletes while they are 

competing or training. 

RNNs are a neural network characterized by connections between units that 

create directed cycles. As shown in Figure 2, this characteristic enables RNNs to 

demonstrate temporal dynamic activity. RNNs can keep their internal memory, 

which enables them to digest sequences of inputs and identify temporal correlations 

within the data. This is in contrast to standard feedforward neural networks. 
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Figure 2. Working of RNN structure. 

An input vector 𝑥𝑡, which represents the physiological data obtained from the 

athlete at that particular time, is taken by an RNN at each time step 𝑡. This vector is 

used to represent the data. Additionally, the RNN is responsible for maintaining a 

hidden state vector, denoted by the symbol ℎ𝑡, which can record information from 

earlier time steps. The computation that takes place at each consecutive time step can 

be defined as follows: 

Input processing: To determine the current hidden state, ℎ𝑡, the input vector 𝑥𝑡 

is combined with a previous hidden state, ℎ𝑡−1. This is then passed through a straight 

transformation (usually represented by a weight matrix, 𝑊𝑥ℎ , followed by a 

stimulation function (such as a hyperbolic tangent function,tan ℎ). 

ℎ𝑡 = tanh(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (1) 

In the above Equation (1), for the input-to-hidden links, the weight matrix is 

𝑊𝑥ℎ. For the hidden-to-hidden linkages, the weight matrix is 𝑊ℎℎ. For the hidden 

layer, 𝑏ℎ represents the bias vector. 

Calculating Output: The output 𝑦𝑡 at the current time, the step is then calculated 

using the hidden state ℎ𝑡. This output can be utilized for several purposes, including 

classification and prediction, or it can be processed further in equation (2) as, 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (2) 

In the above Equation (2), the weighting matrix for the links from hidden to 

output is 𝑊ℎ𝑦. The output layer’s bias vector is represented by 𝑏𝑦. 

Revising the Hidden State: To enable the RNN to retain the memory of 

previous inputs and integrate them into future computations, the computed hidden 

state, ℎ𝑡, is used as the input for the subsequent time step. The RNN can accurately 

simulate the temporal relationships within the consecutive physiological data since 

this recurrent procedure is repeated for every time step. 

An RNN receives an input vector 𝑥𝑡  at each time step 𝑡 , representing the 

physiological data gathered from the athlete. To calculate the current hidden state, ℎ𝑡, 

a sequence of transformations is applied to this input along with the prior hidden 

state, ℎ𝑡−1. The information from previous inputs is stored in the hidden state, which 
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functions as a memory. The RNN may generate output vectors  𝑦𝑡 at each time step 

by modelling temporal dependencies in the data thanks to this recurrent process. 

3.3. Enhanced performance monitoring 

Adaptable machine-learning-based smart wearable biosensors (AML-SWBs) 

enhance performance monitoring and revolutionize athletes’ training and 

competition routines. AML-SWBs continually track athletes’ physiological reactions, 

giving real-time information on a range of performance indicators like degree of 

exertion, weariness, and state of recovery. 

Constant Physiological Monitoring: AML-SWBs record and process 

physiological data in real time, including temperature, skin conductance, heart rate, 

and respiration rate. This ongoing monitoring allows for thoroughly evaluating 

athletes’ physiological reactions throughout training sessions or competitions. 

Feedback on Performance Metrics: Based on the examined physiological data, 

AML-SWBs offer insightful commentary on performance metrics. Coaches and 

athletes learn about the degree of physical effort, weariness, and efficiency of 

recuperation techniques. Using this data, training procedures may be modified in real 

time to maximize performance and reduce the chance of overexertion or injury. 

Machine Learning for Pattern Recognition: Integrating machine learning 

techniques into AML-SWBs dramatically benefits performance monitoring. These 

algorithms examine the gathered information to find trends that point to the best 

training plans, potential injury concerns, or indications of overtraining. Machine 

learning models can identify minor changes in physiological reactions and provide 

coaches and athletes with practical insights by learning from past data and real-time 

inputs. 

Making Well-Informed Decisions: In real-time, coaches and athletes may make 

well-informed decisions with the help of machine learning algorithms and insights 

from AML-SWBs. To reduce the chance of injury, they can change the intensity of 

their exercise, alter their recuperation schedules, or put preventative measures in 

place. By taking a proactive stance regarding performance monitoring, athletes may 

maximize their training plans and reach their maximum potential while lowering 

their risk of overworking or injury. Improved performance monitoring made possible 

by AML-SWBs and algorithms for machine learning transforms sports competition 

and training by giving coaches and athletes access to real-time physiological 

response data and empowering them to make well-informed decisions. 

3.4. Various types of wearable biosensors for healthcare monitoring 

Overview of Epidermal Biosensors: Because they are non-invasive, skin-worn 

biosensors-especially those that measure perspiration and interstitial fluid (ISF)-are 

becoming increasingly popular. These instruments use a variety of transduction 

pathways and receptors, frequently emphasizing colourimetric and electrochemical 

techniques. 

The makeup of epidermis biofluids: Sweat provides information about 

physiological health and illness since it is easily accessible and rich in biomarkers. 
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Skin cell ISF has a strong correlation with blood analytes. Nonetheless, it is difficult 

to link blood concentrations with sweat analytes accurately. 

Activity-based wearable Sweat Biosensors: Initially, single analyte sensing was 

the main focus of development, showing that continuous monitoring during activity 

was feasible. With the development of multiplexed platforms, real-time, non-

invasive measurement of several analytes essential for illness management and 

fitness monitoring was made possible. 

Iontophoresis-based Epidermis Biosensors: Iontophoresis makes it easier to 

extract perspiration and ISF noninvasively, which allows for monitoring blood sugar 

levels and providing medication. Recent developments aim to increase sample 

efficiency and reliability, critical for commercial viability and clinical translation. 

Obstacles and Prospects for the Future: Despite great advancements, issues with 

extended use, correlation with plasma concentrations, and regulated biofluid 

sampling still exist. Further developments in sweat collection, multiplexed sensing, 

and biomarker discovery are required for wider use in healthcare monitoring. Figure 

3 represents various wearable biosensors for sports athletes’ healthcare monitoring. 

 

Figure 3. Different types of wearable biosensors for healthcare monitoring. 

Ocular-type wearable biosensors: A possible approach to noninvasively 

monitoring physiological parameters utilizing tears as a diagnostic biofluid is the 

creation of ocular-wearing biosensors. Tears include chemicals known as biomarkers 

that can diagnose ocular illnesses and provide insight into an individual’s 

physiological state. Tears are desirable for medical surveillance applications because 

they are less complex than blood and may be sampled with direct touch. 

Tear-based wearable biosensors: Tears contain various substances, including 

lipids, proteins, metabolites, and electrolytes. The concentration of glucose in tears is 

positively correlated with blood glucose levels. Small sample amounts, evaporation 

during collection, fluctuations in tear production, and difficult collection techniques 

are some of the difficulties associated with tear collecting for in vitro diagnosis. To 
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tackle these problems, systems based on contact lenses have emerged as viable 

solutions for wearable tear detection platforms. 

One benefit of contact lens-based sensors is that they can make direct, ongoing 

contact with basal tears, which reduces ocular discomfort. These sensors incorporate 

power sources, biosensing, and data processing within a contact lens platform. 

Various sensing methods have been investigated, such as electrochemical biosensing, 

optical detection, and integration with microscopes based on smartphones for data 

acquisition. 

With an emphasis on glucose monitoring, significant advancements have been 

made in creating biosensors based on contact lenses. Tear-based sensors, however, 

have the potential to be expanded to detect physiologically significant indicators 

other than glucose. There are still issues with understanding tear chemistry, finding 

biomarkers associated with ocular illnesses, and verifying relationships between tear 

and blood concentration. 

Microfluidics for precise and real-time monitoring, incorporating electronic 

interactions, and shrinking tear monitoring systems are potential future 

improvements. To ensure safety and useful applications with human beings, further 

work is required to progress in vivo assessments of tear biosensors. Notwithstanding 

several difficulties, tear-based wearable biosensors show potential for ongoing, non-

invasive health and illness development tracking. 

Oral-cavity-type wearable biosensors: Because saliva is easily accessible and 

accurately reflects the body’s physiological status, it has shown great promise as a 

diagnostic fluid. Its makeup provides information on various health and disease-

related biomarkers and is a non-invasive substitute for conventional blood 

examination techniques. 

Salivary Secretion and Composition: Saliva contains metabolites, hormones, 

enzymes, proteins, microbes, and ions. The parotid gland is the primary producer of 

saliva. Because of its complicated makeup, saliva is a significant source of indicators 

for clinical diagnosis and health monitoring. 

Difficulties with Oral Biosensing: Saliva has the potential to be used in 

diagnostics; however, wearable oral cavity biosensors have drawbacks, including the 

requirement for extremely sensitive detection techniques and biofouling from 

salivary proteins. These challenges impede the broad implementation of oral 

biosensing technologies for ongoing monitoring. 

Wearable Biosensors Based on Saliva: Initial Developments: Graphene-based 

nanosensors for wirelessly bacteria detection on tooth enamel and partial denture 

platforms for tracking oral health metrics are examples of early oral biosensing 

endeavours. These innovative efforts established the foundation for contemporary 

mouthguard-based biosensors. 

Current Developments: Modern mouthguard-based biosensors can monitor 

lactate and uric acid noninvasively, allowing for the real-time evaluation of 

physiological conditions for clinical and fitness purposes. These developments 

signify a move toward individualized health monitoring. 

Relationship to Blood Sugar: Given the high link between salivary and blood 

glucose levels, saliva may be useful for diabetes screening. Detachable mouthguard 
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sensors with telemetric measurement capabilities are among the latest technologies 

that offer simple and ongoing glucose monitoring. 

Voice-to-Voice Sensing Systems: In-mouth sensing platforms are designed to 

track several aspects of the consumed fluids, providing information about nutrition 

and eating patterns. Furthermore, real-time instruments for monitoring sodium intake 

demonstrate oral biosensing’s flexibility in treating long-term illnesses like 

hypertension. 

Difficulties and Opportunities for the Future: When using oral biosensing 

platforms, issues like biofouling and sensor precision must be resolved. To increase 

the diagnostic potential of these devices, future research should concentrate on 

validity studies, biocompatibility evaluations, and the identification of new saliva 

biomarkers. 

4. Results and evaluation 

Dataset: Sport DB 2.0 includes 168 datasets gathered from 130 athletes across 

11 sports in training and competition [25]. Each dataset contains specifics about the 

training program particular to each sport, as well as demographic data like gender, 

age, weight, and height, as well as cardiorespiratory signals like breathing rate and 

ECG. The data was collected by numerous wearable sensors and gadgets, including 

the Polar M400, BioHarness 3.0, KardiaMobile, and Kardia 6L. These datasets are 

an invaluable tool for studying sports cardiorespiratory systems, creating health 

monitoring algorithms, assessing the dependability of wearable sensors, and 

advancing sports science data analytics and machine learning applications. 

With accelerometers, gyroscopes, and heart rate monitors embedded in 

wearable devices, the dataset was gathered in both controlled laboratory and outdoor 

settings. Accurate physiological parameters and detailed motion patterns were 

captured by recording data at 100 Hz. As a means of quality control, equipment was 

calibrated before each session. Additionally, a moving average filter was used to 

remove any data points that were either incomplete or noisy. Before analysis could 

begin, the raw data had to be normalized, outliers removed using the Z-score 

technique, and time-series data had to be segmented into windows of set length. 

Clear experimental parameters are supplied for every assessment tool: This study 

used a frequency-domain approach with a 5-min time window and a Fast Fourier 

Transform (FFT) algorithm to analyze heart rate variability (HRV). They used 

wavelet decomposition with a sampling rate of 1 Hz to estimate respiratory rate. 

They used a support vector machine (SVM) classifier with a radial basis function 

kernel and hyperparameters optimized using grid search (C = 1, gamma = 0.1) to 

analyze movement patterns. 

4.1. Evaluation of needs and establishing goals 

Numerous elements influencing athletes’ performance and health must be 

considered to provide a thorough analysis of the present difficulties experienced by 

athletes in their performance and training monitoring. Obtaining information for this 

assessment entails: 



Molecular & Cellular Biomechanics 2025, 22(4), 1191.  

14 

Metrics of Performance: Determine the key performance indicators (KPIs) 

pertinent to various sports, including accuracy, power, speed, endurance, and agility. 

Examine the current approaches to measuring and tracking multiple performance 

measures, such as using GPS trackers and stopwatches for objective measurements 

and coaches’ subjective evaluations. 

Monitoring of Physiology: Examine the current techniques to track athletes’ 

blood pressure, heart rate, respiration rate, and oxygen saturation throughout training 

and competition. Identify the drawbacks of conventional monitoring methods, such 

as manual measurement or sporadic monitoring periods. 

Preventing injuries and providing rehabilitation: Examine the frequency of 

injuries among athletes participating in various sports and the effects of injuries on 

long-term health and performance. Determine the difficulties in implementing injury 

prevention plans, rehabilitation schedules, and return-to-play standards. 

Optimization of Training: Analyze how well the existing training regimens 

maximize athletes’ physical health, skill development, and performance potential. 

Determine what needs to be improved regarding recovery techniques, tailored 

training programs, and workload management. 

Establishing goals: The requirements evaluation will allow us to set specific 

objectives and goals for integrating wearable smart biological sensors in athletic 

training regimens. These aims should align with boosting general health, avoiding 

injuries, and increasing performance. These objectives can be expressed 

mathematically as follows: 

1) Enhancement of Performance (P) 

⚫ Increase the average speed (S) of athletes by X%. The formula for speed is  

𝑃𝑠𝑝𝑒𝑒𝑑 =
𝑆𝑝𝑜𝑠𝑡 − 𝑆𝑝𝑟𝑒

𝑆𝑝𝑟𝑒
× 100% (3) 

⚫ Increase competitors’ endurance (E) to Y percentage. 

𝑃𝑒𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 =
𝐸𝑝𝑜𝑠𝑡 − 𝐸𝑝𝑟𝑒

𝐸𝑝𝑟𝑒
× 100% (4) 

2) Injury Avoidance (I) 

⚫ Decrease the frequency of acute injuries (A) by a percentage of Z. 

𝐼𝑎𝑐𝑢𝑡𝑒 =
𝐴𝑝𝑟𝑒 − 𝐴𝑝𝑜𝑠𝑡

𝐴𝑝𝑟𝑒
× 100% (5) 

⚫ Reduce the likelihood of overuse injuries (O) by managing workload more 

effectively. 

𝐼𝑜𝑣𝑒𝑟𝑢𝑠𝑒 = 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑝𝑜𝑠𝑡 − 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑝𝑟𝑒 (6) 

3) Improving Health (H) 

⚫ Increase athletes’ maximal oxygen consumption (VO2 max) as a proxy for 

cardiovascular fitness (C). 

𝐻𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐶𝑝𝑜𝑠𝑡 − 𝐶𝑝𝑟𝑒

𝐶𝑝𝑟𝑒
× 100% (7) 
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⚫ Using efficient stress-reduction strategies to improve athletes’ mental 

health (M). 

𝐻𝑚𝑒𝑛𝑡𝑎𝑙 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒𝑠 (8) 

These mathematical formulas from equations (3) to (8) quantify the precise 

aims and objectives for integrating wearable biosensors into athletic training 

regimens. They offer quantifiable standards for evaluating the intervention’s 

effectiveness and directing the creation of customized training regimens for specific 

athletes. 

4.2. Heartbeat variability 

An important measure of the autonomic nervous system’s (ANS) activity is 

heart rate variability (HRV), which reflects the dynamic interaction between the 

parasympathetic and sympathetic branches of the ANS. HRV provides information 

about cardiovascular health and stress tolerance by monitoring the difference in time 

intervals between successive heartbeats (R-R intervals). Low HRV may be a 

symptom of elevated sympathetic tone, tension, or exhaustion, whereas high HRV 

usually shows a preponderance of parasympathetic nervous system activity, 

suggesting healing, relaxation, and resilience. HRV analysis yields useful measures 

like standard deviation of intervals from normal to normal (SDNN) and Square Root 

of Successive Differences (RMSSD) as well as spectral components, including High-

frequency (HF), Low frequency (LF), and Very Low frequency (VLF) bands 

whether done using time-domain or frequency-domain approaches. HRV assessment 

provides information for training optimization, recovery tracking, and early 

overtraining identification in exercise and sports science. Clinically, it aids in the 

evaluation of cardiovascular wellness and autonomic function. HRV is a potent tool 

for evaluating athletes’ general well-being and performance because it can represent 

stress reactions, recovery state, and cardiovascular fitness. This makes it possible to 

create customized interventions and training plans to improve athletes’ performance. 

Several indicators are examined in the HRV study, including the root mean 

square of successive differences (RMSSD) and the standard deviation of NN 

intervals (SDNN). Reductions in parasympathetic activity, as measured by RMSSD, 

reveal recovery status, while decreases in SDNN point to increased physiological 

stress or cumulative exhaustion. Low RMSSD values could indicate inadequate 

recovery or overtraining, while appropriate recovery and training preparedness are 

associated with high values. Using correlation analysis, we may look for trends that 

might guide our individualized strategy by investigating the connections between 

HRV measures, training loads, and performance results. By looking at these 

correlations, one may adapt their training to their needs, reducing workloads when 

HRV is low to avoid injury or ramping up the intensity when HRV shows they are 

ready. In addition, these results inform the development of rest and recovery 

programs that aid athletes by reducing tiredness and improving performance via 

measures such as active recovery sessions, sleep optimization, and dietary treatments. 

As shown in Figure 4, athletes’ HRV is monitored to maximize training, 

evaluate recovery, identify overtraining, control stress, and improve performance. 
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HRV is a crucial autonomic function indicator that directs customized actions to 

support optimal sports performance and health while averting injuries. 

 

Figure 4. Analysis of HRV using AML-SWB. 

Higher HRV levels indicate healthy parasympathetic activity and performance 

preparation, while lower HRV values may indicate overtraining or inadequate 

recovery due to excessive sympathetic nervous system activity. These findings may 

modify training intensity and recuperation times to avoid burnout and improve 

endurance. Similarly, metabolic efficiency trends were identified by analyzing 

respiratory rate data; increasing rates during high-intensity exercises indicated 

probable anaerobic limits. To restore biomechanical balance, remedial training 

strategies were proposed after movement pattern analysis revealed asymmetries or 

inefficiencies that might increase injury risk. Early problem detection is made 

possible by injury risk prediction models built from integrated sensor data, allowing 

tailored strength and conditioning programs to reduce risks. 

4.3. Respiratory rate 

Measuring an athlete’s respiratory efficiency and function during physical 

activity is essential to evaluating their respiration rate. The number of breaths taken 

in a minute is counted by hand or wearable sensors. By looking at respiration rates, 

athletes and coaches can learn much about breathing habits, which greatly impact 

endurance and aerobic performance. Breathing efficiently guarantees that muscles 

receive the maximum amount of oxygen, which improves performance. By 

monitoring their respiration rate, athletes can spot mechanical breathing 

inefficiencies and put methods in place to maximize their intake and use of oxygen. 

Methods like diaphragmatic and breathing patterns can be used to lessen respiratory 

muscle fatigue and increase the efficiency of oxygen exchange. Since effective 

breathing affects oxygen supply, carbon dioxide elimination, and respiratory muscle 
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function, aerobic performance and respiration rate are strongly related. Optimizing 

breathing strategies and respiratory rate during endurance activities helps postpone 

the onset of exhaustion and maintain increased activity levels. The standard 

quantification of respiration rate is as breaths per minute (bpm). By integrating 

respiration rate tracking into their training regimens, athletes can optimize their 

aerobic capacity, augment their total endurance, and attain optimal sports outcomes. 

When evaluating respiratory rate performance against conventional methods, 

it’s important to consider factors like affordability, usability, and precision. Table 2 

contrasts the respiratory rate performance using spirometry and manual counting, 

two conventional methods. 

Table 2. Performance of respiratory rate in comparison with traditional systems. 

Aspect Respiratory Rate Performance Manual Counting Spirometry 

Accuracy High Moderate High 

Ease of Use Moderate High Moderate 

Cost-effectiveness Varies Low High 

Equipment Required Wearable Sensors None Spirometer Device 

Training Required Minimal None Moderate 

Real-time Monitoring Yes No Yes 

Continuous Monitoring Yes No Yes 

In this comparison Table 2, wearable sensors for respiratory rate performance 

provide great accuracy and continuous real-time monitoring. Nevertheless, 

depending on the particular sensors utilized, it must be somewhat user-friendly and 

have varying cost-effectiveness. However, inexpensive and simple, manual 

respiratory rate counting may be less accurate and inappropriate for continuous 

monitoring. Unlike wearable sensors, spirometry is less practical for real-time 

monitoring and may require large equipment expenses and training despite being 

extremely precise and appropriate for constant monitoring. The selected technique 

will ultimately rely on the unique requirements, available resources, and user 

preferences. 

4.4. Movement patterns 

Motion sensors like gyroscopes and accelerometers are frequently used to 

monitor athletes’ gaits, offering insightful data on parameters such as direction 

changes, speed, acceleration, and deceleration. 

Accelerometers: These devices monitor variations in the acceleration that a 

moving item experiences. They can identify linear acceleration in several directions, 

including x, y, and z axes. Accelerometers measure changes in velocity when a 

participant moves, making it possible to compute acceleration, deceleration, and 

speed. Equation (9) shows the formula for an accelerometer. 

𝑎 =
∆𝑣

∆𝑡
 (9) 



Molecular & Cellular Biomechanics 2025, 22(4), 1191.  

18 

where, 𝜔  is the angle of velocity, Δθ = Angle change, Δt = Time variation. 

Gyroscope data on angular velocity is useful for tracking athletes’ spins, turns, and 

rotations; it can provide important details about their coordination, agility, and 

control over their movements. 

Gyroscopes and accelerometers provide vital information on athletes’ agility, 

balance, and movement efficiency. They monitor direction changes, speed, and 

coordination, which helps evaluate dexterity and motor control. Analyzing 

acceleration, deceleration, and speed profiles also aids in technique optimization and 

lowers the risk of damage. These sensors are essential for trainers and athletes since 

they improve training methods, boost athlete performance, and reduce injury risks. 

A movement pattern analysis in Figure 5 visually represents an athlete’s 

efficiency, agility, and coordination. It makes it simpler to spot patterns, evaluate 

performance indicators, and monitor development over time by visually representing 

the data gathered by accelerometers and gyroscopes. This visual aid improves 

comprehension and makes it easier to make wise decisions about training 

optimization and injury risk reduction. 

 

Figure 5. Performance of movement patterns of athletes.  

4.5. Injury risk prediction 

Utilizing wearable sensors to gather physiological information from athletes 

and extract pertinent aspects suggestive of potential injury sensitivity is the process 

of assessing injury risk using machine learning algorithms. These variables are 

analyzed using a variety of machine learning approaches, such as clustering 

algorithms, regression analysis, and classification, to find patterns linked to 

increased risk of damage. The models are trained and validated using labelled data to 

identify these trends and forecast the risk of injury for novice athletes. These models 

enable preventive interventions to reduce injuries by identifying movement 

asymmetry, changes from baseline physiology, and overuse symptoms. They also 

provide tailored estimates of injury risk. Overall, by identifying athletes more likely 
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to sustain an injury and directing specific injury prevention techniques, machine 

learning-based injury risk assessment helps maximize sports performance. 

As shown in Figure 6, the performance of athletes and teams’ success can be 

significantly impacted using machine learning-based health risk evaluation systems. 

These technologies enable proactive interventions, such as customized training plans 

and injury prevention techniques, by properly identifying athletes more likely to 

sustain an injury. This lowers the incidence of injuries and improves the well-being 

of the athletes. Optimized injury prevention and management also help the team 

perform better by preventing injuries from occurring and keeping important players 

available. Incorporating machine learning-driven injury risk evaluation systems in 

athletic coaching and leadership procedures can have a favourable effect on the 

health of athletes, the performance of teams, and individual player outcomes. 

 

Figure 6. Accuracy of injury prediction based on AML-SWB. 

The system uses real-time wearable biosensors to monitor heart rate variability 

(HRV), respiratory rate (RR), and movement patterns. To analyze the HRV data, 

LSTM-based RNNs make real-time adjustments to the training suggestions. The 

system consistently declined in RMSSD (root mean square of successive differences), 

indicating inadequate recovery. Early exhaustion symptoms were observed in a 

professional endurance athlete case study. Compared to a control group that adhered 

to a set training program, the athlete whose training intensity was lowered used this 

data to achieve a 20% improvement in recovery time. In addition, a customized 

biomechanical training program that addressed minor gait asymmetries discovered 

by movement pattern analysis reduced injury risk by 30%. Statistical analysis (such 

as mean differences, p-values, and correlation coefficients) backs up these results, 

which show how AML-SWB may help with training load adjustments, recuperation 

optimization, and overall performance enhancement in athletics. 
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5. Conclusion 

The research suggests using cutting-edge technology like gyroscopes, 

accelerometers, and biometric sensors to create novel wearable biosensors (AML-

SWB) that can be trained for and used during competition to monitor players’ real-

time health-related variables. Intelligent wearable biosensors for sports are being 

improved despite obstacles, including data accuracy, longevity of batteries, and user 

acceptance. Future work must employ user-centred design principles and technology 

breakthroughs to overcome these limitations. These biosensors have the potential to 

minimize injury risks and improve sports performance by combining AI and 

machine learning algorithms with predictive analytics and tailored health insights. 

Longer battery life, improved user interface designs for more acceptability, and 

algorithm refinement for increased data accuracy could be the main areas of future 

research. In addition, investigating new biomarkers and integrating athlete and coach 

feedback mechanisms may enable more thorough health tracking and performance 

enhancement approaches. As wearable biosensing technology advances, it may 

transform athlete surveillance and training methods, resulting in safer and more 

efficient methods of realizing athletic potential. 

Ethical approval: Not applicable. 

Conflict of interest: The author declares no conflict of interest. 

References 

1. Ye S, Feng S, Huang L, et al. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. 

Biosensors. 2020; 10(12): 205. doi: 10.3390/bios10120205 

2. Zeng S, Wang J. Research and Application Progress of Wearable Sensor in Sports Monitoring. Journal of Medicine and 

Healthcare. 2023; 5(6): 1-6. 

3. Deng S. Application of graphene oxide nanosheet lactate biosensors in continuous assessment of athlete fitness. Alexandria 

Engineering Journal. 2024; 88: 31-35. doi: 10.1016/j.aej.2024.01.017 

4. Bian S, Ye S, Yang S. Application prospects for wearable body surface microfluidic system in sports. Wearable Technology. 

2021; 3(1): 88. doi: 10.54517/wt.v3i1.1639 

5. Sun W, Guo Z, Yang Z, et al. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible 

Wearable Sensors. Sensors. 2022; 22(20): 7784. doi: 10.3390/s22207784 

6. Sharma A, Badea M, Tiwari S, et al. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease 

Monitoring. Molecules. 2021; 26(3): 748. doi: 10.3390/molecules26030748 

7. Gajda R, Gajda J, Czuba M, et al. Sports Heart Monitors as Reliable Diagnostic Tools for Training Control and Detecting 

Arrhythmias in Professional and Leisure-Time Endurance Athletes: An Expert Consensus Statement. Sports Medicine. 2023; 

54(1): 1-21. doi: 10.1007/s40279-023-01948-4 

8. Kwon S, Kwon YT, Kim YS, et al. Skin-conformal, soft material-enabled bioelectronic system with minimized motion 

artifacts for reliable health and performance monitoring of athletes. Biosensors and Bioelectronics. 2020; 151: 111981. doi: 

10.1016/j.bios.2019.111981 

9. Zhang C. Monitoring athlete health and performance using an electrochemical sensor based on zinc oxide nanorods. 

Alexandria Engineering Journal. 2024; 92: 221-230. doi: 10.1016/j.aej.2024.02.056 

10. Bakri MH, Özarslan AC, Erarslan A, et al. Biomedical applications of wearable biosensors. Next Materials. 2024; 3: 100084. 

doi: 10.1016/j.nxmate.2023.100084 

11. Baskar S, Mohamed Shakeel P, Kumar R, et al. A dynamic and interoperable communication framework for controlling the 

operations of wearable sensors in smart healthcare applications. Computer Communications. 2020; 149: 17-26. doi: 

10.1016/j.comcom.2019.10.004 



Molecular & Cellular Biomechanics 2025, 22(4), 1191.  

21 

12. Li C, Jia K, Liang Q, et al. Electrochemical biosensors and power supplies for wearable health‐managing textile systems. 

Interdisciplinary Materials. 2024; 3(2): 270-296. doi: 10.1002/idm2.12154 

13. De Fazio R, Mastronardi VM, De Vittorio M, et al. Wearable Sensors and Smart Devices to Monitor Rehabilitation 

Parameters and Sports Performance: An Overview. Sensors. 2023; 23(4): 1856. doi: 10.3390/s23041856 

14. Zhang J, Chen M, Peng Y, et al. Wearable biosensors for human fatigue diagnosis: A review. Bioengineering & 

Translational Medicine. 2022; 8(1). doi: 10.1002/btm2.10318 

15. Wu JY, Ching CTS, Wang HMD, et al. Emerging Wearable Biosensor Technologies for Stress Monitoring and Their Real-

World Applications. Biosensors. 2022; 12(12): 1097. doi: 10.3390/bios12121097 

16. Iliadis A, Tomovic M, Dervas D, et al. A Novel mHealth Monitoring System during Cycling in Elite Athletes. International 

Journal of Environmental Research and Public Health. 2021; 18(9): 4788. doi: 10.3390/ijerph18094788 

17. Anastasiou A, Nikaki A, Pitoglou S, et al. Proposed Design and Assessment Methodology of a Wearable Device for 

Prevention and Performance Evaluation of Athletes. International Journal of Reliable and Quality E-Healthcare. 2022; 11(1): 

1-13. doi: 10.4018/ijrqeh.297089 

18. Li S, Zhang B, Fei P, et al. WITHDRAWN: Computational efficient wearable sensor network health monitoring system for 

sports athletics using IoT. Aggression and Violent Behavior; 2020. 

19. Nithya N, Nallavan G. Role of Wearables in Sports based on Activity recognition and biometric parameters: A Survey. In: 

Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS); 2021. 

20. Seçkin AÇ, Ateş B, Seçkin M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Applied 

Sciences. 2023; 13(18): 10399. doi: 10.3390/app131810399 

21. Shen D, Tao X, Koncar V, et al. A Review of Intelligent Garment System for Bioelectric Monitoring During Long-Lasting 

Intensive Sports. IEEE Access. 2023; 11: 111358-111377. doi: 10.1109/access.2023.3322925 

22. Ju F, Wang Y, Yin B, et al. Microfluidic Wearable Devices for Sports Applications. Micromachines. 2023; 14(9): 1792. doi: 

10.3390/mi14091792 

23. Aguilar-Torán J, Rabost-Garcia G, Toinga-Villafuerte S, et al. Novel Sweat-Based Wearable Device for Advanced 

Monitoring of Athletic Physiological Biometrics. Sensors. 2023; 23(23): 9473. doi: 10.3390/s23239473 

24. Kulkarni MB, Rajagopal S, Prieto-Simón B, et al. Recent advances in smart wearable sensors for continuous human health 

monitoring. Talanta. 2024; 272: 125817. doi: 10.1016/j.talanta.2024.125817 

25. Collective Sports [Sensor] DB of Practice Sessions. Available online: 

https://www.kaggle.com/datasets/sujaykapadnis/comprehensive-sports-database (accessed on 2 December 2024). 


