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Abstract: Background: This study aims to model the kinematics of human joints using the 

Denavit-Hartenberg matrix method (hereinafter referred to as D-H matrix method) and 

combine biomechanical analysis for posture evaluation, thereby providing a more accurate and 

efficient detection solution. It ensures the implementation of complex calculations under low-

power conditions and has broad application prospects in fields such as rehabilitation medicine, 

sports analysis, and virtual reality. Objective: The aim of this study is to design a sensor fusion-

based embedded electronic system by integrating nine-axis sensors such as accelerometers, 

gyroscopes, and magnetometers. This system combines the D-H matrix method and forward 

kinematics for human posture detection and biomechanical analysis, to improve the system’s 

detection accuracy and response speed. Methods: Traditional forward kinematics and the D-

H matrix method are used for kinematic modeling to enhance the accuracy and efficiency of 

posture calculation. Innovation: The D-H matrix method, a classical analysis technique in 

robotics typically used for kinematic analysis of robotic arms, is successfully applied in this 

study to human posture detection, breaking through traditional posture analysis methods. By 

utilizing the D-H matrix method to model the movement relationships between human joints, 

this study provides a more precise mathematical model for posture detection. By combining 

embedded electronic systems with biomechanical analysis to evaluate human posture, and 

introducing real-time monitoring of biomechanical loads from a biomechanical perspective, 

this study ensures that real-time human posture detection is not only efficient but also capable 

of performing complex calculations under low power conditions. Results: To further improve 

the accuracy of the sensors, this study analyzed the error characteristics of the inertial sensors 

and applied preprocessing algorithms to correct the errors in the signals from the magnetometer, 

accelerometer, and gyroscope. Combined with a high-pass and low-pass complementary filter 

fusion algorithm, the experiment showed that this algorithm successfully resolved the random 

drift and cumulative errors in the attitude angles calculated. The posture calculation system 

using the D-H matrix method outperforms the traditional forward kinematics method in terms 

of response time and root mean square error (hereinafter referred to as MSE). For instance, the 

response time for the right upper arm is reduced by 74.67% compared to traditional methods, 

while the MSE remains within a reasonable range. 

Keywords: sensor; embedded electronic system; human posture detection; traditional forward 

kinematics; D-H matrix method 

1. Introduction 

Human body posture detection is an important topic in the fields of computer 

vision and biomedical engineering [1]. With the continuous advancement of modern 

intelligent technology, how to enable machines to more comprehensively understand 

and analyze human posture and movements has become a key issue [2]. Traditional 

posture detection methods mostly rely on visual image data, and with technologies 

such as deep learning and Convolutional Neural Network (hereinafter referred to as 
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CNN), significant achievements have been made in various fields, including 

healthcare, sports, robot interaction, and autonomous driving. However, with the 

widespread use of embedded devices and mobile platforms, real-time and efficient 

human body posture detection research has become increasingly important, especially 

for how to efficiently complete large-scale computational tasks in resource-

constrained embedded platforms [3–5]. Against this background, sensor fusion-based 

embedded electronic systems have become a research hotspot. 

This paper designs an embedded electronic system by combining Micro-Electro-

Mechanical Systems sensors (hereinafter referred to as MEMS sensors ) such as 3-axis 

accelerometers [6], gyroscopes, and magnetometers, which can capture human motion 

states and posture changes [7]. This system can effectively compensate for the lack or 

limitation of visual image information in certain scenarios. Through sensor data fusion 

and posture estimation algorithms, this paper achieves real-time monitoring of human 

posture, which can be applied to sports analysis, fall detection, health management, 

and various biomedical applications [8–10]. 

In recent years, research in the field of human posture detection has shown a trend 

of diversification and depth. From the early DeepPose model to later models like 

OpenPose and RMPE [11], the progress of deep learning and computer vision has 

greatly improved the accuracy of posture detection. In particular, enhancing the 

accuracy of human posture recognition through multi-model fusion and spatial feature 

extraction in complex scenarios has become a key research direction [12]. Meanwhile, 

with the development of hardware technology, more and more embedded platforms 

are being introduced into human posture detection systems, such as robots with 

dedicated AI chips and autonomous driving systems [13]. These platforms require 

optimized computational efficiency to handle high concurrency and large 

computational loads in posture detection tasks. Additionally, the application of sensor 

fusion technology in biomedical engineering has also received widespread attention. 

MEMS sensors have become the primary tool for modern human posture monitoring, 

and the small size, low power consumption, and low cost of MEMS make them 

suitable for use in embedded devices [14–16]. Sensor data fusion can effectively 

improve detection accuracy and reduce errors that may arise from using individual 

sensors. By combining accelerometers and gyroscopes, we can calculate human 

acceleration and angular velocity, which can further estimate posture changes. The 

magnetometer can provide a more accurate heading angle, helping to improve the 

overall accuracy of posture estimation and overcoming errors in certain motion states, 

further enhancing the reliability of posture detection [17]. 

Thus, the application of sensor fusion-based embedded electronic systems in 

human posture detection and biomechanical analysis has significant academic value 

and practical significance. The research presented in this paper provides an efficient 

real-time posture detection solution for embedded platforms, effectively overcoming 

the limitations of traditional visual detection, such as high hardware performance 

requirements and computational complexity, making it particularly suitable for 

resource-limited mobile platforms and smart devices. At the same time, sensor fusion 

technology maximizes the advantages of different sensors, improving detection 

accuracy and reducing the error influence of individual sensors, making human 

posture detection more precise and reliable. In summary, the application of sensor 



Molecular & Cellular Biomechanics 2025, 22(3), 1279.  

3 

fusion-based embedded electronic systems in human posture detection not only 

promotes technological progress in the field of biomedical engineering but also 

provides feasible technical paths for various practical applications, holding significant 

academic and social value [18]. Therefore, the goal of this study is to design a sensor 

fusion-based embedded electronic system using the D-H matrix method, combining 

MEMS sensors such as a three-axis accelerometer, gyroscope, and magnetometer to 

achieve high-precision and reliable human posture detection. The focus of this 

research is on applying the D-H matrix method to optimize the posture estimation 

process, improve response time, and reduce errors, providing a practical real-time 

solution that can be widely applied in fields such as motion analysis, fall detection, 

health management, and biomedical engineering. 

2. Research methods 

2.1. Human skeletal model method 

The construction of a human skeletal model is fundamental in the fields of 

biomechanics, biomedical engineering, and human posture detection. It aims to 

accurately simulate human motion and posture through mathematical and 

computational models. The human skeletal system consists of multiple joints and 

bones, with each joint having a different degree of freedom, which results in the 

complex nonlinear characteristics of human movement [19]. To simplify this complex 

system, human skeletal models typically use principles from geometry and rigid body 

mechanics. 

Firstly, the human skeletal system contains approximately 206 bones, which form 

a relatively rigid structure through joints. The ends of each bone are connected by 

joints, and the degrees of freedom (hereinafter referred to as DOF) of the joints 

determine their range and direction of movement. The DOF vary depending on the 

structure of the joint. For example, the shoulder joint (ball-and-socket joint) and hip 

joint (ball-and-socket joint) typically have three DOF, allowing for multi-directional 

movements such as flexion, extension, internal and external rotation, and abduction 

and adduction. In contrast, the finger joints have only one degree of freedom, 

permitting movement in a single direction such as flexion and extension [20]. 

To build the human skeletal model, a simplified approach is commonly used, 

where bones are treated as rigid bodies. This assumption means that the bones do not 

deform during motion, allowing their movement to be described by rigid body 

kinematics. This simplification significantly reduces the complexity of the model, 

making it possible to model and analyze human movement. 

When constructing the human skeletal model, it is also essential to consider the 

three basic planes of human motion: the coronal plane, sagittal plane, and horizontal 

plane. The DOF of each joint are typically defined by these three perpendicular planes, 

describing motion along them. For example, flexion and extension occur along the 

coronal axis, abduction and adduction along the sagittal axis, and internal and external 

rotation along the vertical axis [21]. 

Moreover, the human skeletal model does not only include bones and joints but 

also needs to account for the role of ligaments. Ligaments provide stability to joints 

and restrict excessive movement. However, due to the complexity and dynamic nature 
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of ligaments, their modeling often relies on empirical data or simplified assumptions 

[22]. 

Overall, the construction method of the human skeletal model primarily relies on 

treating bones as rigid bodies and simplifying the DOF and range of motion of the 

joints. Through the establishment of mathematical models and computer algorithms, 

human motion can be described. This approach not only provides theoretical support 

in biomechanics research but also lays the foundation for practical applications in 

fields such as medicine, sports science, and robotics. A diagram of the human skeletal 

structure model is shown in Figure 1. 

 

Figure 1. Human skeletal structure model diagram. 

Among them, the Body Part is shown as the Table 1. 

Table 1. The Body Part. 

Number Body Part Number Body Part 

1 Waist Joint 9 Right Elbow Joint 

2 Chest Joint 10 Right Hand 

3 Neck 11 Left Hip Joint 

4 Head 12 Left Knee Joint 

5 Left Shoulder Joint 13 Left Foot 

6 Left Elbow Joint 14 Right Hip Joint 

7 Left Hand 15 Right Knee Joint 

8 Right Shoulder Joint 16 Right Foot 

2.2. Constraints of human motion model 

The constraints of the human motion model typically include joint angle range 

limits, DOF constraints, and inter-joint constraints. By calculating the angles of the 
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joints using the spatial vector method and setting appropriate angle range limits, the 

motion of the human skeleton can be effectively simulated and described. For complex 

multi-degree-of-freedom joints, it is also necessary to consider motion constraints 

within multiple planes to ensure the accuracy and validity of the model [22]. 

In the human motion model, the motion of joints is constrained by their DOF and 

angle limits. Different types of joints have different DOF, and the range of motion for 

each joint also varies. To describe these constraints, the spatial vector method is 

commonly used to calculate the joint angle ranges. The specific constraint formulas 

are based on vector operations, and by restricting the rotational or angular movement 

of the joints, the range of motion for each joint can be defined. 

For different joint locations, the DOF and angle limits vary. Ignoring Gaussian 

white noise, the joint angle range can be calculated using the spatial vector method as 

shown in the following formula: 

𝛽1 ≤ 𝑎𝑟𝑐𝑐𝑜𝑠
𝑋𝑡𝑢

𝑥 •𝑋𝑡𝑑
𝑥

|𝑋𝑡𝑢
𝑥 •𝑋𝑡𝑑

𝑥 |
≤ 𝛽2.  

Among them, 𝑋𝑡𝑢
𝑥  and 𝑋𝑡𝑑

𝑥  represent the x-axis vectors of the upper arm and 

lower arm at time t in the skeletal coordinate system. 

2.3. Joint degree of freedom constraints 

The degree of freedom of each joint can be limited by setting the maximum and 

minimum values of the angle. For example, for single-axis rotational joints (such as 

the elbow joint, knee joint, etc.), the degree of freedom can be constrained by setting 

the rotation angle range within a plane [23]. Assuming the joint’s rotational angle is θ, 

its degree of freedom constraint can be expressed in the following form: 

𝛽𝑚𝑖𝑛 < 𝛽 < 𝛽𝑚𝑎𝑥,  

where 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 represent the minimum and maximum rotational angles of the 

joint. 

For complex multi-degree-of-freedom joints (such as the shoulder joint, hip joint), 

more complex constraint conditions are required. For example, the rotation of the 

shoulder joint is not limited to a rotation within a single plane but also includes internal 

and external rotation, as well as flexion and extension [24]. Therefore, multiple 

degree-of-freedom constraints need to be defined separately: 

Internal and external rotation: Rotation around the vertical axis, typically 

constrained within the range of [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥]. 

Flexion and extension: Rotation around the coronal axis, typically constrained 

within the range of [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥]. 

Abduction and adduction: Rotation around the sagittal axis, typically constrained 

within the range of [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥]. 

Table 2 summarizes the range of motion for the human joints in terms of flexion 

and extension around the coronal axis, abduction and adduction around the sagittal 

axis, and internal and external rotation around the vertical axis. 
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Table 2. Range of motion of human joints. 

Joint Flexion (−) and Extension (+) Abduction (−) and Adduction (+) Internal Rotation (−) and External Rotation (+) 

Neck [−45°~45°] [−45°~45°] [−75°~75°] 

Shoulder Joint [−30°~90°] [−45°~90°] [−80°~30°] 

Elbow Joint 0 [0°~140°] [−90°~90°] 

Waist [−30°~30°] [−30°~90°] [−30°~30°] 

Hip Joint [−20°~30°] [−40°~145°] [−45°~45°] 

Knee Joint 0 [−145°~0°] [−10°~20°] 

2.4. Traditional forward kinematics model 

The traditional forward kinematics model primarily involves the calculation of 

relative motion between joints, especially how to use forward kinematics to describe 

the effect of the angular changes in each joint of the arm on the end effector (such as 

hand position and orientation). To simplify the calculation and reduce the system’s 

computational load, this paper simplifies the human body into a model with 11 joints 

and 25 DOF, including the shoulder joint, elbow joint, and wrist joint, with a primary 

focus on the motion of the arm within a plane [25]. 

The key part of the human arm model is the motion of the shoulder, elbow, and 

wrist joints. The motion of each joint is determined by the relative rotation angle 

between it and the previous joint. By defining these angles, we can use forward 

kinematics to solve for the position and orientation of the end effector. The shoulder 

joint is a three-degree-of-freedom ball-and-socket joint, with DOF for 

flexion/extension, abduction/adduction, and internal/external rotation [26]. Each 

degree of freedom can be described by an angle, usually denoted as θ1. The elbow 

joint is a single-axis hinge joint with only flexion/extension, typically represented by 

θ2. The wrist joint consists of two DOF, mainly for wrist rotation and 

flexion/extension, with the angle denoted as θ3. 

 

Figure 2. Traditional forward kinematics model. 
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Forward kinematics primarily involves calculating the position and orientation of 

the end effector from known joint angles. By solving forward kinematics for the angles 

of each joint and their effect on the end effector, we can effectively simulate arm 

movement. Accurate joint angle calculations and reasonable angle constraints provide 

support for human posture estimation in both simulations and real-world applications. 

This model reduces the computational load while ensuring sufficient accuracy, making 

it suitable for embedded systems or other scenarios requiring real-time feedback. The 

traditional forward kinematics model is shown in Figure 2. 

2.5. D-H matrix method 

The D-H matrix method (Denavit-Hartenberg method) is a technique used to 

describe the kinematics of multi-degree-of-freedom robotic arms or multi-joint robots. 

It simplifies the description of the geometric relationships between adjacent joints and 

links by defining a set of standardized coordinate frames, and then uses homogeneous 

transformation matrices to solve for the position and orientation (pose) of the end 

effector. The D-H method is widely used in robotics and biomechanics for joint chain 

kinematics analysis [27]. 

The D-H matrix method describes the relative motion between each joint by 

defining four parameters that determine the transformation relationship between 

adjacent coordinate frames. These four parameters are: 

θ: The rotation angle of the joint (rotation around the z-axis of the current joint). 

d: The offset of the joint (translation along the z-axis of the current joint). 

a: The length of the link (translation along the x-axis of the current joint). 

α: The twist angle of the link (rotation along the x-axis of the current joint). 

For each pair of adjacent coordinate frames, a homogeneous transformation 

matrix (4 × 4 matrix) can be used to represent the relationship between them. This 

transformation matrix is composed of the four D-H parameters and is expressed as 

follows: 

𝐴𝑖
𝑖−1 = [

𝑐𝑜𝑠( 𝜃𝑖) − 𝑠𝑖𝑛( 𝜃𝑖) 𝑐𝑜𝑠( 𝛼𝑖) 𝑠𝑖𝑛( 𝜃𝑖) 𝑠𝑖𝑛( 𝛼𝑖) 𝛼𝑖 𝑐𝑜𝑠( 𝜃𝑖)
𝑠𝑖𝑛( 𝜃𝑖) 𝑐𝑜𝑠( 𝜃𝑖) 𝑐𝑜𝑠( 𝛼𝑖) − 𝑐𝑜𝑠( 𝜃𝑖) 𝑠𝑖𝑛( 𝛼𝑖) 𝛼𝑖 𝑠𝑖𝑛( 𝜃𝑖)

0 𝑠𝑖𝑛( 𝛼𝑖) 𝑐𝑜𝑠( 𝛼𝑖) 𝑑𝑖

0 0 0 1

], 

where θi, di, ai, and αi are the D-H parameters, representing the rotation angle, 

displacement, link length, and twist angle of the i-th joint, respectively. 

The first column represents the transformation in the x-axis direction. 

The second column represents the transformation in the y-axis direction. 

The third column represents the transformation in the z-axis direction. 

The fourth column represents the translation transformation. 

The D-H matrix method provides a powerful mathematical tool for the kinematic 

analysis of multi-degree-of-freedom robotic arms and human skeletal models. 

Through standardized coordinate system definitions and simplified transformation 

matrix expressions, it can effectively describe the relative motion between joints and 

provide precise solutions for calculating the pose (position and orientation) of the end 

effector. In practical applications, the D-H matrix method is widely used in fields such 

as robot control, animation production, and virtual reality. 
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2.6. Combination of D-H matrix method and forward kinematics 

The combination of the D-H matrix method and forward kinematics still holds a 

certain degree of innovation. In this paper, the introduction of the D-H matrix method 

is not merely a simple repetition of existing methods. By optimizing the D-H matrix 

method, it allows for more accurate handling of multi-joint human posture estimation, 

especially in dynamic situations, providing better adaptability and precision. This can 

address the limitations of traditional forward kinematics methods in real-time and 

complex motion estimation. The D-H matrix method optimizes the relative motion 

relationship between joints by modeling each joint independently, reducing error 

transmission and improving precision and stability. Compared to traditional methods, 

the D-H matrix method can effectively reduce redundant calculations between joints, 

enhancing the overall system’s response speed. 

The advantage of the D-H matrix method lies in its modularity and scalability, 

making posture estimation in multi-sensor fusion applications more manageable. This 

method can not only be applied to simple 2D posture estimation but can also be 

expanded to more complex 3D kinematic analysis. Compared to traditional kinematic 

methods, the D-H matrix method provides stronger alignment and compensation 

capabilities between different sensor data. This is particularly important in multi-

sensor environments (e.g., fusion of accelerometers, gyroscopes, and magnetometers), 

as it reduces errors and deviations between sensors, thereby improving the overall 

reliability and accuracy of the system. 

The combination of the D-H matrix method and forward kinematics can 

effectively overcome the limitations of traditional forward kinematics methods in 

complex posture estimation, particularly in terms of response time and real-time 

performance. Through optimization of the D-H matrix method, it provides faster 

feedback in dynamic environments, especially in scenarios where motion changes are 

large or rapid, allowing for more precise posture tracking. 

2.7. Precision measurement method 

In a human posture detection system, precision measurement is an important 

aspect of evaluating system performance, especially in multi-node precision 

experiments. By accurately measuring joint movements, the system’s accuracy can be 

effectively verified. This section uses a two-node precision experiment to test the 

system. The D-H matrix method is used to calculate the relative motion relationships 

between joint chains and adjacent joint chains, further evaluating the precision of 

sensor nodes in human posture measurement [28]. 

The most commonly used precision evaluation method is the Root Mean Square 

Error (RMSE), which effectively measures the deviation between the measured values 

and the theoretical values. The RMSE calculation formula is as follows: 

RMSE = √
1

𝑛
∑(𝑋𝑖 − 𝑋𝑖

′)2

𝑛

𝑖=1

, 

where: 

𝑋𝑖 represents the sensor measurement (actual measured value). 
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𝑋𝑖
′ represents the theoretical value (calculated through the D-H matrix method or 

other theoretical methods). 

n represents the total number of measurements. 

To evaluate the performance of a classification model, metrics such as accuracy, 

precision, recall, and F1 can be used. The formulas are as follows: 

Accuracy: Accuracy=
TN + TP

TP + FN + TN + FP
; 

Precision: Precision=
TP

TP + FP
; 

Recall: Recall=
TP

TP + FN
; 

F1: F1 = 2 ×
Precision × Recall

Precision + Recall
; 

where TP is true positive, TN is true negative, FN is false negative, and FP is false 

positive. 

3. Research results 

3.1. Sensor module design 

The sensor module is the core measurement unit in the human posture detection 

system, primarily responsible for collecting acceleration, angular velocity, and 

magnetic field strength values from various detection nodes of the human body. These 

analog signals are then converted into digital data for the microcontroller unit 

(hereinafter referred to as MCU) to perform posture computation. The sensor module 

typically includes three basic sensors: accelerometers, gyroscopes, and magnetometers. 

These sensors work together to provide comprehensive motion information, enabling 

the accurate calculation of the posture and motion status of each joint in the human 

body. 

There are various nine-axis MEMS inertial sensors available in the market. 

Common models includehereinafter MEMS 9-Axis Motion Sensor (hereinafter 

referred to as BMX055), LIS3MDL, LSM6DS0—9-Axis MEMS Inertial 

Measurement Unit ( hereinafter referred to as LSM9DS0), and InvenSense 9-Axis 

MotionTracking™ Device(hereinafter referred to as MPU9250 ). These sensors are 

widely used in consumer electronics, smart wearables, and robotics. The BMX055 

offers high precision and low power consumption, making it suitable for low-power 

embedded systems and supporting gyroscope measurements up to 2000 °/s. The 

LSM9DS0 has strong anti-interference capability and a wide operating temperature 

range, making it suitable for motion capture in complex environments. The MPU9250 

has strong overall performance, high integration, and supports high measurement 

accuracy, making it suitable for applications that require high precision and low 

latency. These sensor modules are connected to the MCU via I2C or Serial Peripheral 

Interface (hereinafter referred to as SPI) interfaces to transmit sensor data and perform 

further processing. 

Power management of the inertial sensor module is an important aspect of the 

design, especially in portable and embedded applications. Selecting low-power 

sensors and designing efficient system work cycles are effective methods for 

optimizing power consumption. The nine-axis inertial sensor chip used in this study is 

shown in Table 3. 
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Table 3. Comparison of common nine-axis inertial sensor chips. 

Sensor 

Accelerometer Gyroscope Magnetometer 

Sensitivity 

(mg/LSB) 

Range 

(g) 

Sensitivity 

(mdps/LSB) 

Range 

(°/s) 

Sensitivity 

(μT/LSB) 

Range 

(μT) 

BMX055 0.977 ±2–±16 3.811 ±125–±2000 0.3 ±2500 

LSM9DSO 0.061 ±2–±16 8.750 ±250–±2000 0.8 ±1200 

MPU9250 0.061 ±2–±16 7.634 ±250–±2000 0.6 ±4800 

3.2. Sensor calibration 

In the process of using motion sensors, the initial calibration and accuracy 

verification of the sensors are key steps to ensure data reliability. First, the sensors are 

fixed to the joints of the human body using self-adhesive elastic bands. However, due 

to the misalignment between the sensor axis and the joint axis, it becomes difficult to 

accurately calculate the posture angles between the skeletal coordinate system and the 

world coordinate system. Therefore, after the sensor is installed, initial calibration 

must be performed to reduce installation errors and alignment errors between sensors. 

The calibration process is completed by having the arm naturally hang down to the 

ground and keeping the body still, ensuring that the initial sensor data is accurate. 

During this process, the accelerometer and magnetometer data measurements are used 

to complete the calibration of the static standing posture, ensuring that the data output 

from the sensors matches the actual posture of the body. The movement of the human 

body and the virtual model during the elbow joint rotation process is shown in Figure 

3. 

 

Figure 3. Shoulder joint forward and backward movement. 

After sensor calibration is completed, a single-node accuracy experiment is 

conducted to verify the sensor’s accuracy. Sensor node 1 is selected to be bound to the 

right upper arm of the body, connected to the power supply and 2.4G wireless module, 

simulating the shoulder joint movement. Then, the shoulder joint movement is 

simulated through the upper computer, and the sensor data is observed and saved. The 

data is analyzed using MATLAB, and the dynamic changes of the posture angles are 

observed. The specific experiment includes testing the forward and backward 
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movement of the shoulder joint, where the arm is rotated by a certain angle along the 

sagittal axis and then returns to the initial position, followed by reverse rotation to 

restore the original position. This dynamic motion test helps detect the sensor’s 

performance in actual movement and further verifies its accuracy. Accelerometer X-

Axis Output Before and After Calibration is shown in Figure 4. 

 

Figure 4. Accelerometer x-axis output before and after calibration. 

3.3. Testing of the human posture detection platform 

Six types of continuous behavioral postures were collected to test the posture 

detection platform. The acceleration data of the collected postures are shown in Figure 

5. 

 

Figure 5. Approximation curves of D-H method and forward kinematics method. 
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The dashed line represents the D-H matrix method, and the solid line represents 

the traditional forward kinematics method. The dashed line in the image represents the 

value changes obtained by the D-H matrix method, while the solid line represents the 

values from forward kinematics, and the horizontal line represents the actual value 

corresponding to the model when the arm is lifted to 90°. Point A corresponds to the 

value of the original sensor, at which the baseline value is cleared. Point B represents 

the value after transformation into the human body coordinate system. Due to certain 

errors in the binding of the body with forward kinematics and the D-H matrix method, 

fluctuations in values occur. The points C and D, with errors approximating 5% to the 

actual value, are used to obtain the time values for points C and D. 

3.4. Human posture detection data 

This section presents the response time and MSE (Mean Squared Error) of the 

detection data, as shown in Table 4. 

Table 4. Data comparison between D-H matrix method and traditional forward kinematics method. 

 D-H Matrix Method Forward Kinematics Response Time Ratio MSE Ratio 

 Response Time (ms) MSE Response Time (ms) MSE   

Right Upper Arm 3989.5 14.0693 5342.76 13.6578 74.67% 103.01% 

Right Forearm 4560.15 15.4732 5231.58 17.6358 87.17% 87.74% 

Left Upper Arm 1499.85 7.6356 2521.44 9.3228 59.48% 81.90% 

Left Forearm 2009.9 10.9686 2633.64 11.4546 76.32% 95.76% 

According to the data in Table 4, the D-H matrix method shows a slight 

improvement in Mean Squared Error (MSE) compared to the forward kinematics 

method, particularly in terms of response time, which has significantly improved. For 

example, the response time of the right upper arm was reduced by 74.67% compared 

to the forward kinematics method. Overall, the D-H matrix method improved the 

response time by approximately 20%, and the MSE remained within a reasonable 

range in most test cases, indicating its reliability in terms of accuracy. Therefore, the 

D-H matrix method not only enhances the response speed of human posture detection 

but also maintains good detection accuracy, making it suitable for various human 

posture detection tasks. 

This paper evaluates the pose recognition model, as shown in Table 5. 

Table 5. Evaluation results of the pose recognition model. 

 Recall Precision F1 Accuracy 

Right Upper Arm 0.922 0.938 3.219 

91.405 
Right Forearm 0.964 0.934 3.417 

Left Upper Arm 0.935 0.925 3.220 

Left Forearm 0.891 0.902 2.881 

According to Table 5, the right upper arm demonstrates high performance. The 

posture recognition for the right upper arm is excellent, with both recall and precision 

at high levels, indicating that the model is capable of effectively recognizing and 
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accurately classifying most postures, while also avoiding misidentification. The 

evaluation of the right forearm is also outstanding. The high recall means the model 

can recognize more correct postures, and the relatively high precision indicates that 

the recognition results are highly accurate. The performance for the left upper arm is 

somewhat weaker. Compared to the right upper arm and right forearm, the left upper 

arm shows a slight decline, especially in the F1 score, suggesting that the model may 

have some bias in recognizing the posture of the left upper arm. The evaluation results 

for the left forearm are relatively lower. Although the recall and precision are still quite 

close, the F1 score is lower, indicating that the model may have some error in 

recognizing the posture of the left forearm, with the recognition accuracy and stability 

being weaker.  

4. Discussion 

4.1. Sensor module performance analysis 

In this study, the sensor module design chose nine-axis inertial sensor chips such 

as BMX055, LSM9DS0, and MPU9250. The experimental results show that these 

sensors have good sensitivity and range, effectively capturing the motion information 

of various joints in the human body. However, the sensor selection still has certain 

limitations, especially in high-dynamic environments, where sensor data may be 

affected by noise and interference. For the accelerometer, BMX055 has the highest 

sensitivity (0.977 mg/LSB), but its error is more significant when there are large 

changes in acceleration. On the other hand, the MPU9250 strikes a good balance 

between precision and power consumption, making it suitable for applications that 

require high precision and low latency. Therefore, the selection of sensors should be 

weighed based on the specific application scenario and requirements. While the 

sensors can provide high-precision measurements, ensuring data reliability in complex 

environments remains a problem to be addressed in practical applications. The current 

design mainly relies on raw sensor data and basic algorithm processing, but in some 

special environments, sensor errors may affect the overall detection results. 

4.2. Comparison and optimization of pose detection algorithms 

In the design of the pose detection system, the D-H matrix method and traditional 

forward kinematics method were used for pose computation. By comparing the 

experimental data in Table 4, the results show that the D-H matrix method 

outperforms the traditional forward kinematics method in terms of response time and 

mean square error (MSE). Specifically, the response time for the right upper arm is 

3989.5 ms, which is about 74.67% faster than the traditional method’s 5342.76 ms. 

The MSE also shows a small difference, with the D-H matrix method being 14.0693, 

which is almost identical to the traditional method’s 13.6578. This advantage is mainly 

due to the D-H matrix method’s ability to simplify the complex mathematical 

derivation process and optimize the coordinate transformation formula, making the 

pose computation more efficient and accurate. The traditional forward kinematics 

method has some limitations in computational complexity and accuracy, especially in 

multi-joint and complex motion scenarios, where larger errors and response time 
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delays are more likely to occur. Although the D-H matrix method shows superior 

performance in several aspects compared to the traditional method, there is still room 

for optimization. For example, in high-frequency movements (such as rapid rotations 

and jumps), the D-H matrix method still experiences calculation delays and needs 

further optimization in data acquisition and transmission processes to reduce errors 

caused by sensor data delays. 

4.3. Data processing and system optimization 

The experimental results show that the system has a significant advantage in 

response time and MSE, but different performance results are reflected in the test data 

from different body parts. For example, there is a large difference in the detection 

response time between the left lower arm and the right upper arm. The response time 

for the left lower arm is 2009.9 ms, while the right upper arm is 3989.5 ms. This may 

be related to factors such as the movement characteristics of the joints, sensor 

positioning, and data processing workflow. From the MSE perspective, the MSE 

values for the right upper arm and left lower arm are 14.0693 and 10.9686, respectively. 

Although there is a large difference between the two, the overall error is controlled 

within a reasonable range. This suggests that there are certain discrepancies in the pose 

computation accuracy for different body parts, and future improvements could involve 

personalized calibration or algorithm optimization for different joint movements to 

further enhance overall accuracy. In terms of data transmission and coordinate 

transformation, the system has already achieved an efficient design, ensuring rapid 

information transfer and real-time feedback. Through reasonable collaboration 

between hardware and software design, the system can ensure data accuracy and 

stability. However, real-time data processing remains a challenge, especially in high-

dynamic movements. Further optimization of algorithms is required to minimize 

sensor data loss and processing delays. 

4.4. Sensor fusion-based human posture detection application 

The Perception Neuron™ Studio system, produced by Beijing Noitom 

Technology, utilizes high-precision motion capture capabilities to track patients’ body 

posture, movement trajectories, and joint angles in real-time, with a particular focus 

on finger gestures and large dynamic movements. For example, during post-surgical 

rehabilitation training, the movements of a patient’s arms, fingers, and other parts of 

the body can be comprehensively monitored using this system. The system’s data 

processing frame rate reaches 800 Hz, providing sufficient accuracy and response 

speed, ensuring that each movement is monitored with high time resolution, thus better 

supporting real-time adjustments to the treatment plan. 

In practical applications, Perception Neuron™ Studio has been used in the 

rehabilitation training of professional athletes. For instance, a patient who underwent 

knee replacement surgery wore the motion capture gloves and sensors during 

rehabilitation. By monitoring the patient’s movements during physical therapy in real-

time, doctors can evaluate the range of motion of the patient’s knee joint based on the 

data provided by the gloves and gradually increase the intensity of the exercises 

accordingly. The motion capture gloves from Noitom are shown in Figure 6. 
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Figure 6. The motion capture gloves from noitom. 

As the technology of Perception Neuron™ Studio continues to evolve, its 

application in rehabilitation medicine will become increasingly widespread. In the 

future, with the integration of artificial intelligence and big data analysis, the system 

can further optimize personalized rehabilitation training plans through deep learning. 

Combining virtual reality and augmented reality technologies, the rehabilitation 

process can not only provide precise data support but also offer a more intuitive and 

immersive experience for patients, enhancing their engagement and improving 

treatment outcomes. The usage diagram of Noitom’s Perception Neuron™ series 

products is shown in Figure 7. 

 

Figure 7. The usage diagram of noitom’s perception neuron™ series products. 

5. Conclusion 

This study proposes a novel posture detection and analysis method based on 

sensor fusion embedded electronic systems, aimed at improving the accuracy and real-

time performance of human movement monitoring. By integrating data from 

accelerators, gyroscopes, and magnetometers, and employing the Almanac filter 
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algorithm for sensor data fusion, the system effectively eliminates errors from 

individual sensors in pose recognition, thereby enhancing the system’s reliability and 

accuracy. 

In practical applications, this system can precisely capture multidimensional 

movement data from the human body and perform detailed bio-mechanical analysis 

of the movement process. Experimental comparisons validate the effectiveness of the 

proposed system across different motion scenarios, including daily activities, sports, 

and rehabilitation training, demonstrating superior performance. The system can 

provide real-time posture feedback, helping doctors, rehabilitation therapists, and 

athletes make better adjustments to their movements and monitor health. 

Furthermore, this study explores the potential development directions for sensor 

fusion technology in biomedical engineering. With the continuous advancement of 

sensor technology and embedded systems, the accuracy of posture detection and the 

intelligence of the system can be further improved, providing more effective technical 

support for personalized medical care, rehabilitation treatment, and health 

management. 

In conclusion, the proposed sensor fusion-based embedded electronic system 

offers a new approach and methodology for human posture detection and bio-

mechanical analysis, with broad application prospects. There is still room for further 

research in areas such as algorithm optimization, system cost reduction, and improving 

user experience. It is expected that this technology will be more widely applied in the 

fields of medical care and sports health in the future. 
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