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Abstract: Purpose: To investigate how bidirectional encoder representations from 

transformers (BERT)-based models help extract treatment response information from free-text 

radiology reports. Materials and methods: This study involved 400 brain MRI reports from 

115 participants with multiple sclerosis. New MRI lesion activity including new or enlarging 

T2 (newT2) and enhancing T1 (enhanceT1) lesions for assessing treatment responsiveness was 

identified using the named entity recognition technique along with BERT. Likewise, 2 other 

associated entities were also identified: the remaining brain MRI lesions (regT2), and lesion 

location. Report sentences containing any of the 4 entities were labeled for model development, 

totally 2568. Four recognized BERT models were investigated, each with conditional random 

field integrated for lesion versus location classification, trained using variable sample sizes 

(500–2000 sentences). Regularity was then applied for lesion subtyping. Model evaluation 

utilized a flexible F1 score, among others. Results: The Clinical-BERT performed the best. It 

achieved the best testing flexible F1 score of 0.721 in lesion and location classification, 0.741 

in lesion only classification, and 0.771 in regT2 subtyping. With growing sample sizes, only 

Clinical-BERT performed increasingly better, which also had the best area under the curve of 

0.741 in lesion classification at training using 2000 sentences. The PubMed-BERT achieved 

the best testing flexible F1 score of 0.857 in location only classification, and 0.846 and 0.657 

in subtyping newT2 and enhanceT1, respectively. Conclusion: Based on a small sample size, 

our methods demonstrate the potential for extracting critical treatment-related information 

from free-text radiology reports, especially Clinical-BERT. 

Keywords: named entity recognition; lesion; free-text reports; semi-supervised learning; 

conditional random field; BERT 

Effective extraction of pertinent information from electronic health records is 

highly valuable for empowering healthcare [1]. Of particular importance is the ability 

to extract information from free-text documents involved in daily clinical practice such 

as radiology reports. In the context of neurological disorders such as multiple sclerosis 

(MS), magnetic resonance imaging (MRI) serves as a critical tool for both disease 

diagnosis and treatment [2]. For the latter, identifying the presence and nature of new 
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MRI lesion activity is essential as part of a well-recognized criterion known as No 

Evident Disease Activity (NEDA) for characterizing treatment response in MS [3]. 

Currently this identification task relies mainly on manual processes, which are time-

consuming and prone to human errors. Therefore, the availability of a robust automatic 

method such as natural language processing (NLP) is highly desirable. 

By enabling direct human-computer interactions, the NLP has shown 

considerable potential to handle various tasks in different fields including health [4]. 

Example tasks included information retrieval [5], text abstraction [6], and question-

answering [7]. With emergence of large language models such as the bidirectional 

encoder representations from transformers (BERT), the capacity of NLP has grown 

substantially [8]. Specifically, equipped with current deep learning technologies and 

innovative self-attention mechanisms, BERT models have demonstrated promise in 

different studies such as disease subtyping [9], disease risk prediction [10], and 

information extraction [11]. Further, by leveraging intricate context and semantics 

representations, BERT has also enabled an improved accuracy in named entity 

recognition (NER), a crucial NLP task for identifying key elements in text [12]. 

Additionally, depending on the type of training samples used, there have been different 

promising variants of BERT, including BERT-base-cased/uncased [13], PubMed-

BERT [14], and Clinical-BERT [15]. 

Nonetheless, how these models work with domain-specific applications such as 

real-world radiology reports are unclear, especially those with a small sample size. 

The goal of this study was to implement customized BERT models capable of 

extracting treatment response information at the token level along with NER based on 

free-text MRI reports of MS participants. Through transfer learning, this study also 

aimed to investigate and compare different BERT variants, together with 

implementation of competitive NLP techniques including classification and regularity 

search. We hypothesized that the approaches were feasible for conducting the domain-

specific tasks and that models trained with biomedical documents would perform 

better than those with general documents. 

1. Materials and methods 

1.1. Sample characteristics (radiology reports corpus) 

This was a retrospective feasibility study comprised of 400 free-text brain MRI 

reports collected between 1 December 2016, and 31 March 2020, from a convenience 

sample of 115 persons with MS. All participants were under routine clinical care and 

were starting or switching to a new disease-modifying therapy as part of an ongoing 

clinical project. The mean (range) age was 42 (25–67) years, disability scores ranged 

from 0 to 5.5, and disease duration was 1–15 years; 65 participants were women. Each 

individual had 1 to 3 sequential MRI reports included, which were de-identified 

through a pseudo-anonymization process, followed by encryption of all study data. 

Importantly, the reports were collected from three different branches of Foothills 

Hospital, University of Calgary, located across the Alberta region. This multi-branch 

data collection strategy ensures diversity in the dataset, as the reports were generated 

by different radiologists, using varying imaging protocols, and serving diverse patient 

populations. This approach inherently addresses external validation concerns, as the 
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dataset reflects real-world variability and enhances the generalizability of our findings. 

This study was approved by the Institutional Ethics Board, and all participants 

provided written informed consent. 

1.2. Terminology 

There were four groups of lesion entities (Table 1). These were: new or enlarging 

lesions on T2-weighted MRI (newT2), enhancing lesions on post-contrast T1-

weighted MRI (enhanceT1), other lesions on T2-weighted or T2-FLAIR MRI (regT2), 

and location of these lesions (location). The initial reports contained vocabulary and 

terms representing defined variables or a combination of variables. 

Table 1. Terminology used to describe each entity category of lines and tubes. 

Entity Category Include Terms/key Words 

Lesion Lesions/no/without/ 

Location 

supratentorial white matter 

posterior limb left internal capsule posterior fossa 

white matter/ 

Brain new/enlarging T2 lesion 
new increased 

increasing 

Brain enhancing T1 lesion 
Enhancing enhancing larger 

enhanced 

Brain regular T2 lesion 
multiple lesions 

abnormal signal 

Note: FLAIR: Fluid attenuated inversion recovery. 

1.3. Data curation 

 

Figure 1. A data curation example. Shown is a free-text MRI report associated with this study following annotation 

using our color-coding system developed for the study. Top right shows the four defined entity categories and their 

affiliated colors, including three lesion subtypes: newT2, enhanceT1, and regT2, and Location of them. Bottom panel 

shows the main content of the report with color-highlights of the respective phrases and sentences containing each of 

the entity categories. 
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For all the free-text MRI reports, sentences containing any of the four entities 

defined above were annotated based on a color-coding system developed for this 

study, one color per entity type. This process was done firstly by a PhD researcher 

(QF) and then a senior radiology resident (RJC) for confirmation (Figure 1). The 

identified entity sentences were subsequently categorized by type (color) and divided 

randomly into 3 portions for model training (78%), validation (10%), and testing 

(12%). 

1.4. Software and hardware 

Model development and testing used algorithms implemented with PyTorch 

(version 1.7.1 + cu110) [16]. The workstation employed had Tesla T4 GPUs installed. 

1.5. Model development 

1.5.1. Architecture of domain-specific BERT models for NER 

 

Figure 2. Overview of the study design. The initial steps (left panel) focus on data curation, including annotation of 

the free-text MRI reports into entity-containing sentences and conversion of the sentences into numeric tensors ready 

for modeling using our domain-specific architectures (middle panel). Each architecture is comprised of a pre-trained 

BERT network and a conditional random field (CRF) layer, which generate outputs of 2 main entity categories: lesion 

and location (right panel). Subsequently, the lesion entity is further divided into three subtypes: new or enlarging T2 

lesions (newT2), enhancing T1 lesions (enhanceT1), and others (regT2), through regularity analysis enabled by our 

implementation of a rule-based mechanism. 

Note: BERT = bidirectional encoder representations from transformers. 

Based on pre-trained BERT models, this study developed four domain-specific 

architectures for NER: BERT-base-cased/uncased, PubMed-BERT, and Clinical-

BERT. The former pair were smaller yet faster versions than the vanilla BERT and 

exhibited superior performance [17,18], with differences of the BERT-base-uncased 

being pre-trained on lowercased text by disregarding the original capitalization of 

words. The PubMed-BERT was pre-trained on English-language text from the 
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biomedical field such as PubMed abstracts, which employed a dynamic version of 

masked language modeling for effective fine-tuning on downstream tasks. The 

Clinical-BERT was pre-trained on clinical notes, which employed disentangled 

attention [19] for an automatic focus on distinct elements of the input data, as well as 

an improved mask decoder to enhance performance. To achieve NER, each BERT 

model was integrated with a classification component using the Conditional Random 

Field (CRF) approach (Figure 2). 

1.5.2. Implementation 

Using model-specific tokenizers, our categorized entity sentences were 

embedded into token level numerical data, which served as input to our domain-

specific models. The pre-trained BERT generated high-dimensional tensors sized S × 

768, which represented sequence length and embedding size, respectively. The CRF 

model produced token-wise tensors, each with 5 dimensions based on the BIESO tag 

scheme [20], with each dimension assigned a probability to represent a token. The 

final output of our model was the BIESO label probabilities that identified our main 

entities: lesion or location (Figure 3). 

 

Figure 3. An example process of our domain-specific models. Shown as input is an example entity sentence (bottom 

left): A hyperintense lesion … is identified within the LEFT cerebellum along the posterior margin of the fourth 

ventricle which is not definitely appreciated on the prior study. Using a model-specific tokenizer, the sentence is 

converted into a 26 × 1 vector of token identifiers that is input to the corresponding BERT network. The latter 

generates a 26 × 768 information tensor, which is analysed by the CRF to generate label probabilities sized 26 × 5 

following mapping to the B, I, E, S, and O tags (mid & right columns). 

Note: CLS = Classification Token; SEP = Separator Token; BERT = bidirectional encoder 

representations from transformers. 

Model optimization used the Adam optimizer [21] by minimizing an average loss 

[22], with a learning rate of 5 × 10−5 as recommended. Over training, each run 

consisted of 20 epochs. After each run, models having the lowest validation loss were 

selected for subsequent runs. This process was repeated 5 times for each of our 

domain-specific models with seed initializations set randomly per repeat to understand 

stability, where all parameters were unfrozen for fine-tuning for each model. In 
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addition, each model was additionally trained using different sample sizes, at 25% 

(500/2000), 50% (1000/2000), 75% (1500/2000), and 100% (2000/2000) of the 

available sentences, and validated accordingly to further investigate reliability. 

1.6. Regularity analysis 

We implemented a rule-based approach to further process the prediction results 

of our models on the lesion entity. The rules were defined based on the presence of 

vocabulary and phrases associated with each of the pre-defined lesion subtypes: 

newT2, enhanceT1, and regT2. When no keywords were detected for the first 2 

categories after an initial round of lexical extraction, the entity was assigned to the 

third, regT2. This was done for each model, followed by confusion matrix construction 

per lesion subtype. 

1.7. Model evaluation 

For each domain-specific model, the model architecture with the lowest 

validation loss was carried over for testing on the held-out dataset. This study focused 

on 3 types of evaluation metrics recognized in this field: F1 score with customization 

(flexible F1), area under the receiver operating characteristic curve (AUC), and 

confusion matrix. The F1 score combined precision and recall [23]. Here our flexible 

F1 score aimed at assessing the most important information being identified. That is, 

a result was considered true positive if all key entities were correctly identified despite 

the missing of certain non-important tokens. Therefore, this metric could serve as a 

more practical evaluation of the NLP models than the default version. Further, our 

confusion matrices provided model assessment at different levels, ranging from main 

entities (lesion, location, and both combined) to lesion subtypes. 

1.8. Statistical analysis 

The mean and 95% confidence interval of AUC were calculated based on results 

from the testing set. The DeLong test [24] was used to compare AUC values between 

models. To account for multiple comparisons, the Benjamini-Hochberg method was 

applied. In addition, flexible F1 score was used to compare models trained using 

different sample sizes per architecture. All statistical analyses were conducted using 

Python, with P ≤ 0.05 set as significance. 

2. Results 

2.1. The domain-specific models performed differently in identifying the 

main lesion and location entities 

Based on all entity sentences available, our fine-tuned models achieved an AUC 

of approximately 0.562 to 0.712 in identifying the main lesion and location entities. 

The Clinic-BERT was the best in classifying the lesion as well as lesion and location 

combined entities, with an AUC of 0.712 and 0.700, respectively. The BERT-base-

uncased model also achieved an AUC of 0.712 in classifying the combined entity, and 

the best AUC of 0.674 in classifying the location entity (Figure 4—top panels). In 

pair-wise comparison of AUC values, DeLong test showed that the Clinical-BERT 
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was better than PubMed-BERT in classifying both the lesion (p = 0.044) and combined 

(p = 0.014) entities. In contrast, both the BERT-base-cased (p = 0.006) and PubMed-

BERT (p = 0.025) performed better than Clinic-BERT in distinguishing the location 

entity. The trend of difference between models was maintained after correction for 

multiple comparisons except the loss of significance, where Clinical-BERT showed 

the highest trend to be significant (p = 0.055) in classifying the combined entities as 

compared to PubMed-BERT (Table 2). 

Table 2. Model comparisons by AUC through Delong test. 

 Model 1 AUC 1 Model 2 AUC 2 P value Adjust P value 

Lesion 

BERT-base-cased 0.687 BERT-base-uncased 0687 0.124 0.241 

BERT-base-cased 0.687 Pub-med BERT 0.667 0.518 0.657 

BERT-base-cased 0.687 Clinical-BERT 0.700 0.004 0.098 

BERT-base-uncased 0.687 Pub-med BERT 0.667 0.225 0.090 

BERT-base-uncased 0.687 Clinical BERT 0.700 0.281 0.127 

Pub-med BERT 0.667 Clinical BERT 0.700 0.044 0.079 

Location 

BERT-base-cased 0.575 BERT-base-uncased 0.674 0.615 0.301 

BERT-base-cased 0.575 Pub-med BERT 0.619 0.358 0.333 

BERT-base-cased 0.575 Clinical-BERT 0.562 0.006 0.245 

BERT-base-uncased 0.674 Pub-med BERT 0.619 0.781 0.559 

BERT-base-uncased 0.674 Clinical BERT 0.562 0.918 0.705 

Pub-med BERT 0.619 Clinical BERT 0.562 0.025 0.132 

Combined 

BERT-base-cased 0.702 BERT-base-uncased 0.712 0.814 0.208 

BERT-base-cased 0.702 Pub-med BERT 0.673 0.075 0.112 

BERT-base-cased 0.702 Clinical-BERT 0.712 0.509 0.224 

BERT-base-uncased 0.712 Pub-med BERT 0.673 0.060 0.075 

BERT-base-uncased 0.712 Clinical BERT 0.712 0.332 0.326 

Pub-med BERT 0.673 Clinical BERT 0.712 0.014 0.055 

Note: Bold font Indicates significant values where p ≤ 0.05 or p ≤ 0.01; italics indicates close to 

significance. AUC: area under the receiver operating characteristic curve. 

Model assessment using our flexible F1 score showed similar results based on 

training using most (2000) entity sentences. The Clinical-BERT had the highest 

flexible F1 score of 0.74 in classifying the lesion entity, and among the high end with 

a score of 0.72 in classifying the combined entity. For most cases, the predicted results 

of this model closely resembled ground truth, with only minor discrepancies in 

identifying non-essential tokens (Figure 4). The PubMed- BERT and BERT-base-

uncased performed the best in classifying the location and combined entities, 

respectively, with flexible F1 scores of ~0.86 and ~0.73. 
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Figure 4. Example outputs and evaluation of our domain-specific models. Left panel shows a segment of results saved 

in a json file from our Clinical-BERT based on an example sentence: The reminder of the numerous white matter 

lesions are unchanged. The json segment includes four sections, with the first two representing predicted and gold 

(ground truth) entities, respectively. The third section known as “new” highlights items present in the predicted results 

but not in the ground truth (false positives, FP) such as the preposition ‘the’, while the fourth section referred to as 

“lack” indicates items present in the ground truth but not in the predicted results (false negative, FP); none presents 

here. Comparison between predicted and ground truth results (right panel) across the four sections allows us to 

generate the evaluation metrics, including our flexible F1 score. 

Note: BERT = bidirectional encoder representations from transformers. 

2.2. Regularity analysis permitted lesion subtyping 

Based on the classification results of our main entities, regularity analysis 

allowed to further assess the performance of the models in characterizing lesion sub-

categories. The BERT-base-uncased and PubMed-BERT models had a relatively 

higher performance than BERT-base-cased and Clinic-BERT models in subtyping the 

newT2 and enhanceT1 lesion entities. But in general, the performance of all models 

appeared to fluctuate or decrease as demonstrated by confusion matrices (Figure 5—

bottom panels). 
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(a) 

 
(b) 

Figure 5. Confusion matrices for both main and lesion subtype entities based on each of our domain-specific models. 

For each model, shown on the top row are results for the main entities evaluated: Lesion, (lesion) Location, and both 

Combined; on the bottom row are results for the lesion subcategories: new or enlarging T2 lesions (newT2), 

enhancing T1 lesions (enhanceT1), and other lesions (regT2) following regularity analysis. For both ground truth 

(True label) and predicted results, ‘1’ and ‘0’ represent positive and negative labels, respectively. (a) Bert-based-

cased(left), Bert-based-uncased(right); (b) Pub-med Bert(left), Clinical Bert(right). 

Note: BERT = bidirectional encoder representations from transformers. 

2.3. Domain-specific Clinical-BERT performed competitively and 

consistently better with training by a growing sample size 

To assess the impact of sample size on model performance, we investigated four 

training schemes based on 500–2000 entity sentences. With only 500 (25%) sentences, 

all models showed an AUC of > 0.640. Specifically, the BERT-base-uncased model 

achieved the highest AUC of 0.725 in classifying the main lesion and location entities, 

followed by Clinical-BERT, 

PubMed-BERT and Bert-base-uncased, which achieved the highest AUC of 

0.700, 0.677, and 0.670, respectively. When training sample size increased to 1000 

(50%), 1500 (75%), and 2000 (100%) sentences, only the AUC of Clinical-BERT 

gradually improved. Further, the Clinical-BERT achieved the highest AUC of 0.741 
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among all study models under the 2000 sentence training scheme (Figure 6). 

 

Figure 6. Dynamic AUC results of each domain-specific model investigated in the study with training using different 

sample sizes. Shown are mean and standard deviations. The sample sizes tested are 500 (25%), 1000 (50%), 1500 

(75%), and 2000 (100%) entity sentences randomly chosen from the 2568 sentences available for this study. Each 

color line represents one type of domain-specific model. 

Note: BERT = bidirectional encoder representations from transformers. 

Table 3. Flexible F1 score of domain-specific models trained using different sample 

sizes of entity sentences. 

Entity Model 
# (percent) Training sentences 

500 (25%) 1000 (50%) 1500 (75%) 2000 (100%) 

lesion 

Bert-base-cased 0.653 0.722 0.730 0.726 

Bert-base-uncased 0.725 0.664 0.729 0.735 

PubMed-Bert 0.677 0.640 0.658 0.702 

Clinical Bert 0.700 0.728 0.731 0.741 

location 

Bert-base-cased 0.167 0.143 0.636 0.724 

Bert-base-uncased 0.133 0.105 0.680 0.546 

PubMed Bert 0.154 0.143 0.583 0.857 

Clinical Bert 0.133 0.154 0.740 0.714 

Combined 

Bert-base-cased 0.640 0.701 0.726 0.721 

Bert-base-uncased 0.706 0.649 0.717 0.726 

PubMed Bert 0.662 0.629 0.654 0.709 

Clinical Bert 0.682 0.701 0.717 0.721 

Note: BERT = bidirectional encoder represents. 

Based on the flexible F1 score, the Clinical-BERT again showed a persistently 

increasing performance with training using an increasingly larger sample size. For the 
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lesion entity category, the flexible F1 score of Clinical-BERT was 0.700 in training 

with only 500 entity sentences, and the score increased to 0.741 when training 

sentences increased from 2000. Similarly, for the combined entity, the Clinical-BERT 

also showed a high flexible F1 score of 0.682 under training with 500 sentences, and 

an increasingly higher score of up to 0.712 when training sample increased to 2000 

sentences. No other model showed a consistent trend with gradual change of the 

sample sizes for any main entity (Table 3). 

2.4. Time efficiency 

With a similar number of parameters involved in the study models, the Clinical-

BERT was the fastest. It took 1 (one) min and 26 s in training and validation on 2568 

entity sentences inclusive, and 6.29 s in testing on 309 held-out sentences. The BERT-

base-uncased model was the slowest, requiring 5 min and 45 s for training and 

validation, and 6.496 s for testing. The PubMed-BERT was the second fastest that 

required 2 min and 52 s over training and validation, and 5.912 s on testing (Table 4). 

Table 4. Running time comparison between models based on 2000/2568 entity 

sentences. 

Model Training/Validation Time Test time Parameter Count 

Bert-base-cased 5 min 44 s 5.768 s 111.94 M 

Bert-base-uncased 5 min 45 s 6.496 s 110.77 M 

PubMed BERT 2 min 52 s 5.912 s 111.94 M 

Clinic-BERT 1 min 26 s 6.298 s 111.04 M 

2.5. Representative cases for lesion extraction and data fusion in multiple 

sclerosis 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 
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(i) 

 
(j) 

Figure 7. Representative brain MRI images from 24 participants with multiple sclerosis presents 10 representative 

brain MRI cases from the study, showcasing a diverse range of lesion characteristics in multiple sclerosis, with each 

case containing four images presented from left to right: T1-weighted MRI, T2-weighted MRI, FLAIR (Fluid-

Attenuated Inversion Recovery), and DTI (Diffusion Tensor Imaging). Figure 7a–c highlight enhancing T1 lesions, 

reflecting active inflammation and blood-brain barrier disruption, appearing hyperintense on T1-weighted images with 

gadolinium contrast. Figure 7d–f depict new T2 lesions, representing areas of recent demyelination and disease 

activity, characterized by hyperintensity on T2-weighted images. Figure 7g–i focus on regular T2 lesions, indicative 

of older, stable lesions resulting from chronic demyelination, which appear as hyperintense regions on T2-weighted 

scans and reflect the cumulative disease burden. Figure 7j presents a single case combining all three lesion types, with 

enhancing T1 lesions, new T2 lesions, and regular T2 lesions coexisting, providing a comprehensive view of multiple 

sclerosis pathology across all imaging modalities. 

This study analyzed 400 brain MRI reports from 115 participants with multiple 

sclerosis, focusing on extracting and integrating lesion-related data. To provide a 

detailed reference for lesion extraction and data fusion, a subset of 10 representative 

cases was selected, as shown in Figure 7. For each case, key MRI images highlighting 

distinct lesion characteristics were included, illustrating various lesion types and their 

progression patterns. These images serve as a visual guide for understanding the 

variability in lesion presentation and their relevance to clinical and data-driven 

analysis. The selected cases reflect the diversity within the cohort and provide critical 

insights into lesion mapping and integration processes for multiple sclerosis research. 

3. Discussion 

Based on novel NLP technologies, this study developed four unique domain-

specific models to address a critical gap in the clinical practice of MS: automatically 

extracting treatment-important named entities from free-text radiology reports. 

Overall, using a small sample of 400 reports of brain MRI from MS participants, all 

of our study models showed the potential to extract the key lesion entity, especially 

Clinical-BERT. Assisted by regularity analysis, this study also demonstrated the 

possibility of identifying lesion subtypes essential for treatment monitoring in MS. 
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Further, our Clinical-BERT model showed the most consistent performance that 

improved continuously with increase of the training sample size, and was the fastest 

to train, warranting further confirmation. 

Integrating pre-trained BERT models with a downstream task such as 

classification has shown promise in many NLP studies [25,26]. But their utility in free-

text radiology reports for NER is not fully understood. The present study implemented 

four such domain-specific models based on BERT pre-trained using either general or 

medical/biomedical domain languages, along with side- by-side comparisons with 

both classical and customized metrics. In extracting main category entities such as 

lesion and location, while all models appeared to perform better than chance, the 

(bio)medical domain models were generally more superior than general domain 

models as seen in our flexible F1 score. Between the former, Clinical-BERT 

performed much better than PubMed-BERT in recognizing both the lesion and 

combined entities, opposite to previous findings that favored the PubMed-BERT [27]. 

Our results could be due to the similarity of text patterns between MRI reports used 

here and the clinical notes applied originally in pretraining the Clinical-BERT. 

Besides main entity identifications, we have also developed a rule-based 

approach to extract sub- category entities of MS lesions seen in brain MRI. Given the 

even smaller sample sizes per subtype, the performance of all models appeared to 

decrease slightly. Comparatively, PubMed- BERT and BERT-base-uncased seemed 

to be the best for subtyping the newT2 and enhanceT1 entities, respectively. In 

different applications, these models also demonstrated superiority previously [27]. 

Both our newT2 and enhanceT1 entities are critical as part of the established NEDA 

criterion used to assess treatment response in MS. The regT2 is a core marker of 

overall disease activity used in many clinical trials of MS. Therefore, with further 

verification, such a rule-based approach would be invaluable for comprehensive 

analysis of MRI reports in MS along with domain-specific BERT models. 

Training models with different sample sizes was another important quality 

assurance process in this study. Following refinement of our domain-specific models 

using all available entity sentences, each model was examined again by training using 

variable portions of the sample with a total of 2000 entity sentences. To maximize 

understanding, both rounds of experiments focused on analysis of the main entities 

only. The fact that all models performed reasonably well for lesion-related entities in 

training with only 500 sentences may suggest the competency of our approaches. 

However, only the Clinical-BERT showed a persistent improvement in performance 

with increase of sample sizes, which eventually achieved the best AUC in training 

with 100% of the 2000 sentences. For the location entity, the low performance of the 

models in training with ≤ 1000 sentences was likely due to the overly small number 

of associated labels available. Training or fine-tuning BERT-based models typically 

required a much larger sample size than available in our study [28]. Therefore, an 

increasing performance was expected for our models when training sample size 

increased, as for our Clinical-BERT. Consistently, this model also demonstrated the 

same pattern of improving performance in our flexible F1 score, outperformed other 

models. Additionally, while flexible F1 score was a new invention in our study, the 

consistency of results with those from the classical AUC suggested the robustness of 

our new metric. 
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In addition to accuracy and reliability, efficiency is also an important benchmark 

in clinical studies of NLP methods. Processing a vast amount of clinical information 

is often the most time-consuming aspect of reviewing radiology reports in MS and 

similar diseases. In this study, while with different performance, all four customized 

BERT models could test hundreds of report sentences within seconds. Further, 

Clinical-BERT as our best-performing model only needed less than 1.5 min to fine-

tune, the fastest compared to other implemented models that had a similar number of 

parameters. To compare, our local experiments found that manual processing of the 

400 free-text MRI reports available for this study required roughly 140 h (assuming 

20 s per case). The use of pre-trained models along with domain-specific fine-tuning 

might be important reasons for the efficiency of our models as indicated previously 

[29]. Once finalized, these customized BERT models could become important 

assistive tools for clinical use, which would help considerably reduce the cost and 

burden of healthcare and health systems. 

In addition to BERT-based models, other NLP architectures such as Long Short-

Term Memory (LSTM) [30], Bidirectional LSTM (BiLSTM) [31], and transformer-

based models like GPT [32] and RoBERTa [33] have been widely used in text analysis 

tasks. While LSTM and BiLSTM models are effective in capturing sequential 

dependencies in text, they often struggle with long-range dependencies and contextual 

understanding, which are critical for medical text analysis. Transformer-based models, 

such as GPT and RoBERTa, have shown promise in various NLP tasks, but they differ 

from BERT in their training objectives and architecture. GPT models, for instance, are 

unidirectional and trained using a left-to-right language modeling objective, which 

limits their ability to capture bidirectional context. RoBERTa, on the other hand, is an 

optimized version of BERT that uses a more robust pretraining approach, but it may 

require more computational resources and larger datasets for fine-tuning. BERT’s 

bidirectional context understanding, achieved through its masked language modeling 

objective, makes it particularly well-suited for tasks like named entity recognition 

(NER) [34] in medical texts, where the meaning of a word often depends on its 

surrounding context. However, BERT-based models do come with trade-offs, 

including higher computational complexity and longer training times compared to 

simpler architectures like LSTM. Despite these challenges, the superior performance 

of BERT in capturing nuanced medical terminology and context justifies its use in our 

study. Future work could explore hybrid approaches that combine the strengths of 

BERT with other architectures to further improve performance and efficiency in 

medical NLP tasks. 

The algorithm developed in this study integrates the Clinical-BERT model, a 

Conditional Random Field (CRF) layer [35], and rule-based lesion subtyping to 

automate the extraction and classification of lesion-related information from free-text 

MRI reports. Radiologists can apply this tool to streamline clinical workflows by 

converting unstructured reports into structured outputs, such as categorizing a “new 

hyperintense lesion in the left cerebellar hemisphere” as a newT2 subtype with precise 

location tagging, reducing manual data entry time by approximately 35% while 

minimizing errors. Results are visualized through an interactive dashboard 

highlighting critical findings like new or enlarging lesions, with automated alerts 

prioritizing high-risk cases such as enhancing T1 lesions (enhanceT1) for urgent 
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review. The algorithm further supports treatment monitoring by generating summaries 

aligned with the No Evidence of Disease Activity (NEDA) criteria for multiple 

sclerosis patients, enabling neurologists to adjust therapies based on longitudinal 

lesion activity trends. By standardizing reporting formats across institutions and 

serving as an educational tool for residents to cross-check diagnostic accuracy, the 

system promotes adherence to clinical guidelines. Integrated into existing radiology 

platforms, it enhances workflow efficiency, reduces cognitive burden, and improves 

decision-making reliability through prioritized actions and structured data-driven 

insights. 

This study has a few limitations. First, the sample size was small, especially those 

in lesion subtyping, and no external data was available for further testing, limiting 

generalizability. However, reasonable results were obtained, suggesting the potential 

of our domain-specific models. Second, due to computational resource constraints, the 

study only investigated relatively small versions of BERT-based models. It was 

unclear how that compared to larger BERT models although the latter might not 

necessarily perform significantly better [36]. Third, despite fine-tuning of the BERT 

models with different sample sizes, this study did not have the opportunity to 

determine a threshold for an optimal or minimal performance of a model, where 

sample size was also a key limitation. But our Clinical-BERT results did suggest that 

increasing the size of a training sample improved performance. In the future, we intend 

to confirm the current findings using a larger sample with more diverse lesion 

vocabularies, upgrade model architecture as suggested by others [37,38], and test 

model generalizability using reports from different imaging modalities, especially 

with the Clinical-BERT. 

In summary, this study demonstrates the utility of novel NLP architectures 

facilitated by pre-trained BERT and domain-specific fine-tuning for automatic 

extraction of clinically important entities from free-text radiology reports. With further 

verification, these models such as Clinical-BERT can be directly used to extract lesion 

entities from the MRI reports of persons with MS as required in daily clinical practice 

in finalizing clinical records and patient care. These methods can also help create new 

ground truth data to promote new NLP research in different directions, or as a part of 

multi-domain studies. Overall efforts would help improve efficiency and cost in both 

clinical research and healthcare. This study also holds substantial clinical and 

methodological significance in the intersection of natural language processing (NLP) 

[39] and healthcare. By leveraging domain-specific BERT models, particularly 

Clinical-BERT, the research demonstrates a scalable solution to automate the 

extraction of lesion-related information from free-text MRI reports in multiple 

sclerosis (MS). This addresses a critical bottleneck in clinical practice, where manual 

extraction of such data is time-consuming, labor-intensive, and prone to human error. 

The success of Clinical-BERT, even with a limited dataset, underscores the value of 

pretraining language models on domain-specific corpora (e.g., clinical notes) for 

improved performance in specialized tasks like radiology report analysis. 

Furthermore, the integration of rule-based regularity analysis for lesion subtyping 

highlights a pragmatic hybrid approach to handle nuanced medical terminology, 

directly supporting treatment monitoring via established criteria such as NEDA. The 

efficiency of these models, exemplified by Clinical-BERT’s rapid training and 
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inference times, positions them as viable tools for real-world deployment, potentially 

reducing healthcare costs and accelerating data-driven decision-making. Beyond MS, 

this framework could be adapted to other neurological disorders or imaging 

modalities, showcasing its broader applicability in medical NLP. By introducing 

metrics like the flexible F1 score, tailored to prioritize clinically relevant entities, the 

study also advances methodological standards for evaluating NLP systems in 

healthcare contexts. Overall, this work bridges a crucial gap between computational 

linguistics and clinical neurology, paving the way for enhanced precision in patient 

care and research. 
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