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Abstract: This article proposes a biomechanical cost control strategy using fuzzy logic and 

neural networks. A cost model for the biomechanical system is established, and a fuzzy logic 

strategy addresses its uncertainty and complexity. By integrating neural networks with fuzzy 

logic, the accuracy and adaptability of budget control are enhanced. Experimental results 

show the proposed strategy outperforms traditional methods (GNN-GA, DP-PSO, A-DRL) in 

cost savings, system stability, and response time. The deviation between target and actual 

costs is minimal, confirming the strategy’s efficiency and accuracy. This integrated approach 

offers significant cost savings, strong adaptability, and real-time performance, providing new 

solutions for biomechanics budget control with practical applications and theoretical value. 
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1. Introduction 

Biomechanics research involves fields such as human motion, mechanical 

behavior, and the response of biological tissues, which are often closely related to 

cost control and resource allocation [1]. In practical applications, how to accurately 

control the cost budget in biomechanical systems, especially in areas such as sports 

rehabilitation, exoskeleton design, and medical device optimization, remains an 

urgent problem to be solved [2–4]. 

Biomechanics research is a multidisciplinary field that covers multiple aspects 

such as human kinematics, mechanical behavior, and biological tissue response [5]. 

These studies are not only of great significance in the fields of sports rehabilitation, 

exoskeleton design, and medical device optimization, but also closely related to cost 

control and resource allocation. Traditional biomechanical systems often face many 

challenges, especially in accurately controlling their cost budget [6]. For example, in 

the field of sports rehabilitation, how to balance the contradiction between treatment 

effectiveness and resource consumption; how to reduce development and production 

costs while ensuring functionality and comfort in exoskeleton design; in the 

optimization of medical devices, how to meet technical requirements while 

controlling production and maintenance costs is an urgent problem that needs to be 

solved [7]. In addition, the complexity and uncertainty of biomechanical systems 

make traditional cost control methods inadequate in the face of these challenges [8]. 

Due to the fact that biomechanical problems often involve multiple factors and 

variables, and the interactions between these variables exhibit nonlinear and high-

dimensional characteristics, how to effectively control costs and optimize systems 

under these complex conditions is currently a research direction of great concern in 

both academia and industry [9]. In recent years, with the development of artificial 
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intelligence technologies such as fuzzy logic and neural networks, these advanced 

methods have provided new ideas for solving the above-mentioned problems [10]. 

Fuzzy logic is a technique for dealing with uncertainty problems through fuzzy set 

theory, which can make reasonable decisions when faced with fuzzy and incomplete 

information [11]. Neural networks, on the other hand, can search for inherent 

patterns in high-dimensional space by simulating the working mode of human brain 

neurons, and have outstanding advantages in pattern recognition, predictive analysis, 

and other fields [12]. Combining fuzzy logic with neural networks can effectively 

control cost budgets while ensuring the accuracy of biomechanical systems. 

Specifically, fuzzy logic can help identify and process uncertainty and fuzzy 

information in a system, while neural networks can optimize control algorithms 

through big data analysis and model training, further enhancing the robustness and 

efficiency of the system [13,14]. In exoskeleton design, relevant studies have shown 

that optimized control strategies can significantly reduce production costs while 

ensuring exoskeleton functionality and comfort; in medical device optimization, this 

strategy can help designers better balance the relationship between technical 

requirements and costs [15]. In addition, the study also proposed specific 

optimization measures for the characteristics of biomechanical systems and verified 

the effectiveness of the strategies through a series of experiments. 

In summary, the biomechanical cost budget control strategy based on fuzzy 

logic and neural networks provides a new approach for applications in the field of 

biomechanics. With the continuous advancement of artificial intelligence 

technology, this strategy is expected to be widely applied in multiple fields and 

provide new solutions for future biomechanical research and applications [16]. 

Through this strategy, researchers and engineers can more accurately control the cost 

budget in biomechanical systems, improve the overall efficiency of the system, and 

promote the development and progress of related fields. 

2. Related work 

2.1. Research status of cost budget control in biomechanics 

Biomechanics cost budget control, as a management tool, aims to minimize 

costs while ensuring system performance through reasonable budget allocation. With 

the continuous expansion of biomechanical applications, especially in multiple 

industries such as engineering, healthcare, and environment, how to effectively 

control and optimize costs has become a hot research topic [17]. 

In recent years, numerous scholars have proposed different research methods in 

an attempt to enhance the adaptability and stability of biomechanical systems within 

the framework of cost control [18]. Traditional biomechanical cost control methods 

often rely on classical optimization algorithms and linear models, but these methods 

often overlook the complexity and uncertainty of biomechanical systems [19]. For 

example, in the field of ophthalmology, researchers predict the prognosis of corneal 

diseases by introducing biomechanical parameters and explore how to effectively 

control costs in clinical treatment [20]. These methods usually provide a relatively 

stable theoretical foundation, but lack sufficient flexibility and adaptability when 

facing dynamic changes in practical applications. In order to overcome these 



Molecular & Cellular Biomechanics 2025, 22(3), 1334.  

3 

problems, research in recent years has gradually shifted towards more complex 

nonlinear models and artificial intelligence algorithms [21,22]. For example, 

algorithms based on deep learning and neural networks are used for cost control and 

optimization in environments with high uncertainty. Zhang [23] proposed a weighted 

model based on pseudo periodic sequences, which can effectively handle discrete-

time and discrete-time problems in biomechanical systems, providing new ideas for 

dealing with complex biomechanical systems. In addition, the introduction of 

artificial intelligence and machine learning enables self optimization based on real-

time data in the cost control process, greatly improving the adaptability and accuracy 

of the model [24]. For example, the synchronization control method of neural 

networks is widely used in cost guarantee control of time delay systems, which can 

ensure the stability and efficiency of system operation in complex biomechanical 

environments [25]. However, existing research methods still have shortcomings in 

some key aspects. Although various optimization algorithms can improve the 

accuracy of cost control to a certain extent, most methods rely on traditional linear 

models and fail to fully consider the nonlinearity and variability of biomechanical 

systems [26–28]. This makes it difficult for existing models to cope with 

dynamically changing cost requirements [29]. In addition, although advanced 

methods such as deep learning provide powerful data processing capabilities, 

effectively integrating the complexity and real-time data of biomechanical systems 

remains a challenge in practical applications. Therefore, future research directions 

may focus on how to build more flexible and accurate cost control models through 

interdisciplinary integration, combining biomechanics with advanced artificial 

intelligence technologies [30]. For example, biomechanical models can be combined 

with deep reinforcement learning algorithms to utilize their adaptive capabilities in 

dynamic environments for real-time optimization of cost control [31]. In addition, by 

introducing uncertainty modeling and risk analysis, the uncertainty factors in 

biomechanical systems can be more comprehensively reflected, further improving 

the robustness and reliability of the model, Table 1 summarizes the work and 

contributions of each referenced study in the field of biomechanical cost budget 

control. 

In summary, as an interdisciplinary research field, cost budget control in 

biomechanics has achieved some important results with the continuous advancement 

of technology. However, in order to achieve efficient and precise cost control in 

complex practical applications, in-depth research is still needed in optimization 

algorithms, artificial intelligence technology, and uncertainty modeling. Future 

research will focus more on how to combine biological characteristics with 

engineering management theory to achieve better cost control effects. 
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Table 1. Summarizing the key contributions of the referenced works. 

Reference Work Content Contribution 

Yan et al., 

2024 

Investigated traditional biomechanical cost control methods, 

focusing on classical optimization algorithms and linear models. 

Highlighted the issue that traditional methods overlook the 

complexity and uncertainty of biomechanical systems, 

leading to a need for more complex models. 

Huo et al., 

2024 

Introduced biomechanical parameters to predict corneal disease 

prognosis in ophthalmology and explored cost control in clinical 

treatment. 

Proposed a new approach for cost control in clinical settings 

but noted the lack of flexibility and adaptability when facing 

dynamic changes. 

Zhang et al., 

2023 

Proposed a weighted model based on pseudo-periodic sequences 

to address discrete-time problems in biomechanical systems. 

Provided innovative solutions for handling complex 

biomechanical systems, specifically addressing discrete-time 

issues. 

Wang et al., 

2023 

Integrated artificial intelligence and machine learning for real-

time optimization of cost control, improving model adaptability 

and accuracy. 

Enhanced cost optimization capabilities in uncertain 

environments, ensuring the stability and efficiency of 

biomechanical systems. 

Li et al., 2022 

Examined the limitations of existing optimization algorithms, 

particularly the shortcomings of linear models in addressing 

nonlinearity and variability in biomechanical systems. 

Emphasized the need for more complex and adaptable 

models, pointing out the difficulty of traditional models in 

handling dynamic cost requirements. 

Qiu and Chen, 

2022 

Combined biomechanical models with deep reinforcement 

learning algorithms for real-time optimization in dynamic 

environments. 

Advanced the integration of deep reinforcement learning to 

improve adaptability in dynamic cost control, promoting 

interdisciplinary research. 

2.2. Application of fuzzy logic and neural networks in biomechanics 

The application of fuzzy logic and neural networks in the field of biomechanics 

has demonstrated its strong potential, especially in dealing with uncertainty and 

nonlinear problems. The biomechanical system usually has complex dynamic 

characteristics, involving multiple interactive factors and processes that are difficult 

to accurately model, which makes traditional control methods difficult to cope with. 

In this context, fuzzy logic, as an information technology for handling uncertainty, 

can flexibly respond to imprecise and fuzzy data in the system through rule-based 

reasoning. For example, in motion control and system regulation, fuzzy logic can 

flexibly adjust factors such as speed, acceleration, and force during the motion 

process, thereby achieving more precise and efficient control [32]. This makes fuzzy 

logic widely used in the design of control systems in biomechanical fields such as 

robots, prosthetics, and rehabilitation equipment. 

In contrast, neural networks have been successfully applied in the field of 

biomechanics, especially in complex pattern recognition and optimization control 

tasks, due to their powerful learning and pattern recognition abilities. Neural 

networks can automatically adjust their internal parameters through training data, 

identify complex nonlinear relationships in biomechanical systems, and provide 

efficient solutions [33]. For example, neural networks can be used to predict and 

optimize patterns of human motion, especially in complex motion control tasks such 

as gait analysis and motion rehabilitation, which have important application value. In 

recent years, an increasing number of studies have combined fuzzy logic and neural 

networks to form the Fuzzy Neural Network (FNN) control method. By integrating 

the advantages of both, fuzzy neural networks can not only handle uncertainty in the 

system, but also improve the adaptive ability of the system through the learning 

ability of neural networks. This control method based on fuzzy neural networks has 

shown great potential in biomechanics, especially in resource allocation and cost 

control. For example, FNN can adjust training strategies in real-time in rehabilitation 
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training equipment, improving training effectiveness while reducing equipment 

usage costs [34]. The advantage of fuzzy neural networks lies in their ability to 

effectively control and optimize in dynamically changing environments. In the field 

of biomechanics, especially in complex environments such as real-time feedback 

control of human motion, this combined method can more accurately address system 

uncertainties and nonlinear factors, thereby improving control accuracy and 

enhancing system robustness. For example, in human-computer interaction and 

biomimetic device design, methods based on fuzzy neural networks can 

automatically adjust the feedback strategy of the device based on real-time motion 

data, thereby optimizing resource utilization and improving device performance [35–

37]. Fuzzy neural networks can effectively balance the relationship between 

computational complexity and control accuracy when solving practical problems in 

biomechanics. Through reasonable algorithm design and parameter optimization, 

FNN can significantly improve computational efficiency while ensuring accuracy, 

especially in large-scale data processing and real-time control application scenarios, 

demonstrating its unique advantages [38–40]. Therefore, the combination of fuzzy 

logic and neural networks provides an effective tool for solving many practical 

problems in biomechanics. 

Overall, the combination of fuzzy logic and neural networks provides a 

powerful technical means for the field of biomechanics, which can effectively solve 

complex problems that traditional control methods cannot handle. With the 

continuous deepening of research, this combined technology is expected to play a 

greater role in sports rehabilitation, prosthetic control, robotics technology and other 

fields in the future, promoting further development of biomechanical research and 

applications. By continuously optimizing and improving these control methods, the 

efficiency, accuracy, and robustness of biomechanical systems will be significantly 

improved, bringing new breakthroughs to the development of related fields. 

2.3. Research content and innovation of this article 

This study focuses on cost budget control in biomechanical systems and 

proposes an innovative comprehensive control strategy by combining fuzzy logic 

and neural network technology. With the increasingly widespread application of 

biomechanics in medical, engineering, and environmental fields, how to achieve 

efficient and precise cost control in complex system environments has become an 

urgent problem to be solved [41]. Traditional cost control methods often rely on 

simplified linear models and fixed parameters, which cannot effectively address the 

highly nonlinear, uncertain, and dynamic changes in biomechanical systems. 

Therefore, this article proposes a novel strategy that combines fuzzy logic and neural 

networks to enhance the accuracy, flexibility, and adaptability of cost control in 

biomechanical systems. Specifically, the research innovations of this article include 

the following aspects: 

1) Construction and analysis of biomechanical cost model: Firstly, this article 

constructs a cost model that adapts to the complexity of biomechanical systems by 

analyzing their characteristics in detail. This model not only considers the interaction 

of various cost factors within the system, but also introduces uncertainty factors to 
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accurately reflect cost fluctuations in actual operations. Through this model, multiple 

factors that affect costs can be comprehensively understood, laying the foundation 

for the design of subsequent control strategies. 

2) Design of Fuzzy Logic Control Strategy: In response to the uncertainty and 

complexity in biomechanical systems, this paper proposes a control strategy based 

on fuzzy logic. Fuzzy logic can make reasonable inferences and decisions when 

faced with incomplete or fuzzy information. Therefore, in the control strategy, fuzzy 

logic is used to handle uncertain factors in the system, dynamically adjust the budget 

control process, and ensure that the system can adapt to constantly changing 

environments and demands. 

3) Neural network optimization and budget control: Based on the fuzzy logic 

control strategy, this paper further introduces neural network technology to optimize 

the budget control process. Through the powerful learning and optimization 

capabilities of neural networks, the system is able to self adjust and optimize based 

on historical data and real-time feedback, achieving the optimal cost performance 

balance in complex biomechanical environments. 

3. Model and algorithm design 

3.1. Establishment of biomechanical cost model 

The establishment of a biomechanical cost model is the core of control strategy 

design and can provide theoretical basis for subsequent optimization control. In 

practical applications, biomechanical systems involve multiple complex cost factors, 

including equipment maintenance costs, energy consumption, hardware resource 

consumption, and manual intervention. In order to accurately describe the impact of 

these factors on the cost of biomechanical systems, as shown in Figure 1, this paper 

adopts a combination of fuzzy logic and neural networks, and establishes a 

multidimensional mathematical model based on a large amount of experimental data. 

 
Figure 1. Fuzzy neural network model. 
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The calculation of equipment maintenance costs is mainly based on the working 

hours and failure rate of the equipment. Assuming that the maintenance cost of 

equipment is (𝑡) proportional to its working time, and the equipment failure rate is 

(𝑎) related to the frequency of use (𝑓)  and the degree of equipment aging, the 

equipment maintenance cost can be expressed as: 

𝐶maint(𝑡, 𝑓, 𝑎) = 𝑘1 ⋅ 𝑡 ⋅ (1 + 𝛼 ⋅ 𝑓 ⋅ 𝑎) (1) 

Among them, (𝑘1) is the constant of equipment maintenance cost, is the (𝛼) 

coefficient of the impact of equipment usage frequency on maintenance cost, (𝑓) is 

the usage frequency, (𝑎) is the degree of equipment aging, and (𝑡) is the working 

hours. 

Secondly, the calculation of energy consumption takes into account the power 

requirements and operating time of the system under different operating states. 

Assuming the power demand of the system is (𝑃(𝑡))  and the operating time is 

(𝑇total), the cost of energy consumption can be expressed by the following formula: 

𝐶energy(𝑡, 𝑇total) = 𝑘2 ⋅ ∫ 𝑃
𝑇total

0

(𝑡)𝑑𝑡 (2) 

Among them, (𝑘2)  is the energy cost constant, (𝑇total)(𝑃(𝑡))  is the power 

demand that varies over time, and is the total operating time. 

The consumption of hardware resources mainly considers the consumption of 

computing resources and storage resources. Assuming that hardware resource 

consumption is related to the complexity and storage requirements of computing 

tasks, it can be represented by the following formula: 

𝐶hardware(𝐶, 𝑆) = 𝑘3 ⋅ 𝐶 ⋅ 𝑆 (3) 

Among them, (𝐶) is the complexity of the computing task, (𝑆) is the storage 

requirement, and (𝑘3) is the hardware resource cost constant. 

In the biomechanical system, the (𝑡manual) cost of manual intervention mainly 

depends on the frequency and duration of the operator’s intervention. Assuming the 

intervention frequency is and the (𝑓manual) duration of each intervention is, the cost 

of manual intervention is: 

𝐶manual(𝑓manual, 𝑡manual) = 𝑘4 ⋅ 𝑓manual ⋅ 𝑡manual (4) 

Among them, (𝑘4) is the cost constant of manual intervention. 

Taking into account the above factors, the total cost model of the biomechanical 

system can be expressed as: 

𝐶total = 𝐶maint(𝑡, 𝑓, 𝑎) + 𝐶energy(𝑡, 𝑇total) + 𝐶hardware(𝐶, 𝑆) + 𝐶manual(𝑓manual, 𝑡manual) (5) 

In order to more accurately describe the complex relationships between these 

cost factors, this article further uses fuzzy logic and neural networks for 

optimization. Fuzzy logic can handle the uncertainty of various cost factors, while 

neural networks can automatically adjust model parameters by learning experimental 

data. The fuzzy logic system fuzzifies the inputs of various cost factors and converts 

them into a form suitable for neural network training, ultimately obtaining an 

accurate cost prediction model. 
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The multidimensional model combining neural networks and fuzzy logic can 

optimize various variables in the biomechanical system in real time, ensuring that the 

system meets performance requirements while minimizing total costs. This model 

can not only reflect the interaction of hardware, energy, manual intervention and 

other costs, but also dynamically adjust according to the change of system state, 

providing strong support for the cost control of the biomechanical system. 

3.2. Design of fuzzy logic control strategy 

In the cost budget control of biomechanical systems, the system is often 

confronted with uncertain factors such as equipment failure rates, fluctuations in 

energy consumption, and the frequency of operator intervention. These uncertainties 

introduce significant complexity, making it challenging for traditional control 

methods to adapt efficiently to the dynamic state changes and external environmental 

factors. To address this, this article proposes a strategy based on fuzzy logic control, 

which converts various fuzzy information within the system into precise control 

actions through fuzzy set theory. This approach facilitates the optimized allocation of 

the cost budget despite the presence of these uncertainties. 

A key element of this strategy is the biomechanical cost model, which accounts 

for the cost of energy consumption, maintenance, and the wear and tear on the 

equipment. The model incorporates not only the fixed costs but also the dynamic 

variables influenced by the interaction between mechanical components and operator 

actions. The costs are subject to various assumptions and constraints, such as the 

system’s operational limits, safety thresholds, and maintenance schedules, which 

affect the overall cost performance. These assumptions ensure that the model 

remains within realistic operational boundaries, but they also introduce certain 

limitations in its flexibility when faced with unforeseen events or extreme 

conditions. 

The core of the fuzzy logic control strategy is the development of a fuzzy rule 

library, which enables the controller to adjust its decision-making process adaptively 

when facing complex and uncertain input conditions [42]. These rule libraries are 

developed using both expert experience and data-driven methods to ensure that the 

system makes the most reasonable decisions based on the current operating state and 

environmental context. Furthermore, fuzzy controllers are capable of real-time 

response to changing conditions, as well as predicting possible future states using 

historical data, thereby achieving dynamic optimization of the cost budget. 

To quantify the interaction between different uncertain factors and their impact 

on the biomechanical system, sensitivity analysis and uncertainty propagation 

methods are employed. Sensitivity analysis allows the identification of which 

parameters have the greatest influence on cost outcomes, enabling the prioritization 

of factors that require more precise control. Uncertainty propagation methods, such 

as Monte Carlo simulations or perturbation analysis, are used to model the 

uncertainty in input parameters and observe how these uncertainties propagate 

through the system to affect the overall cost performance. This combined approach 

allows for a more robust assessment of the system’s behavior under varying 
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conditions, providing a clearer picture of the risks and opportunities for cost 

optimization. 

To achieve this goal, it is necessary to first fuzzify the variables involved in the 

system. For example, equipment maintenance costs (𝐶maint), energy consumption 

(𝐶energy) , hardware resource consumption (𝐶manual) , (𝐶hardware)  and manual 

intervention costs all need to be transformed into fuzzy variables. The fuzzification 

operation of each cost factor can be expressed as: 

𝐶̃maint = 𝜇maint(𝐶maint) (6) 

𝐶̃energy = 𝜇energy(𝐶energy) (7) 

𝐶̃hardware = 𝜇hardware(𝐶hardware) (8) 

𝐶̃manual = 𝜇manual(𝐶manual) (9) 

Among them, (𝜇𝑥) represents the fuzzy membership function, represents the 

membership degree of each cost factor in its corresponding fuzzy set, ranging from 0 

to 1. Through these membership functions, cost factors can be transformed into 

fuzzy values, reflecting the budget requirements of the system in different states. 

In the design of fuzzy rules, considering the interrelationships between different 

cost factors, a set of fuzzy control rules based on expert experience and experimental 

data was constructed. For example, in situations where the equipment failure rate is 

high, the system may need to increase the maintenance cost budget; when the energy 

consumption is too high, the system should automatically adjust the operating 

strategy to reduce power consumption. A typical fuzzy control rule may be: 

IF 𝐶̃maint IS high AND 𝐶̃energy IS low THEN 𝐶̃total IS medium (10) 

The fuzzy reasoning mechanism generates control outputs based on these rules, 

namely optimized cost budget allocation. Finally, the fuzzy output is transformed 

into precise control instructions through the fuzzy defuzzification process, such as 

adjusting equipment maintenance cycles, optimizing energy usage strategies, etc. 

The process of defuzzification can be carried out using the central average method: 

𝐶total =
∑ 𝐶𝑖
𝑛
𝑖=1 ⋅ 𝜇(𝐶𝑖)

∑ 𝜇𝑛
𝑖=1 (𝐶𝑖)

 (11) 

Among them, (𝜇(𝐶𝑖))(𝐶𝑖) is the actual cost value of different fuzzy outputs, 

and is the corresponding membership degree. Through this process, the fuzzy 

controller can generate optimization decisions for specific system states, ensuring the 

reasonable allocation of cost budgets. 

In addition, the fuzzy logic control strategy is combined with neural networks to 

continuously optimize the parameters of fuzzy rules and membership functions 

through neural networks. Neural networks can automatically learn from large 

amounts of historical data to improve the decision-making ability of fuzzy 

controllers, thereby achieving precise budgeting and optimization of various costs in 

biomechanical systems. 
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In summary, the control strategy based on fuzzy logic can provide adaptive cost 

control solutions in biomechanical systems by flexibly handling uncertainties. In a 

dynamic environment, this strategy can optimize various cost expenditures, ensure 

system performance while minimizing total costs, and provide effective support for 

the efficient operation of biomechanical systems. 

3.3. Integrated design of neural networks in budget control 

In biomechanical cost budget control, neural networks are introduced for 

modeling and optimizing system behavior, especially when dealing with complex 

and dynamic cost changes. Neural networks can gradually improve budget control 

strategies through self-learning and adaptation. This article adopts a multi-layer 

perceptron (MLP) neural network structure, combined with historical data and fuzzy 

control strategy, to achieve optimization and prediction of cost budget. Through the 

training of neural networks, the system can deeply learn and analyze cost changes 

under different control strategies, dynamically adjust control strategies, optimize 

budget allocation, and overcome the limitations of traditional methods in dealing 

with uncertain factors and environmental complexity. 

Specifically, the input of neural networks includes multiple cost factors of 

biomechanical systems, such as equipment maintenance costs (𝐶maint) , energy 

consumption costs (𝐶energy), hardware resource consumption, (𝐶hardware) and human 

intervention costs (𝐶manual). These inputs are standardized and sent to the input layer 

of the neural network. The structure of a neural network includes several hidden 

layers, each composed of several neurons connected by weighted connections. The 

output of the neural network is the optimized budget control decision, which can 

achieve dynamic prediction and control of system costs. The training of the network 

is carried out through backpropagation algorithm (BP algorithm), which optimizes 

the loss function, adjusts the weights and bias values in the network to minimize the 

error between the predicted results and the actual control requirements. 

The integrated design process of neural networks in the system is as follows: 

Firstly, various cost factors are fuzzified to obtain fuzzy membership function 

values, which are used as input data for the neural network. Assuming the input 

vector is (𝑥 = [𝐶̃maint, 𝐶̃energy, 𝐶̃hardware, 𝐶̃manual]), where each (𝐶̃) represents 

the fuzzy value of the corresponding cost factor. The network generates an output 

vector through weighted calculation of hidden layers (𝑦 =

[𝐶̂maint, 𝐶̂energy, 𝐶̂hardware, 𝐶̂manual]), which is the predicted cost budget value 

for each item. 

Through training, neural networks can adaptively adjust their weights (𝑊) and 

biases (𝑏) to optimize control strategies. Given a set of inputs (x𝑖), the output of 

network computation is: 

𝑦𝑖 = 𝑓(𝑊 ⋅ 𝑥𝑖 + 𝑏) (12) 

Among them, (𝑓) represents the activation function, usually using sigmoid or 

ReLU activation functions. Through backpropagation algorithm, neural networks 

optimize parameters by minimizing the loss function. The loss function usually uses 

mean square error (MSE): 
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𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (13) 

Among them, (𝑦̂𝑖) is the (𝑁) number of training samples and is the actual target 

output value. Optimizing network parameters through gradient descent algorithm, 

the update process is as follows: 

𝑊𝑛𝑒𝑤 = 𝑊 − 𝜂
𝜕𝐿

𝜕𝑊
 (14) 

𝑏𝑛𝑒𝑤 = 𝑏 − 𝜂
𝜕𝐿

𝜕𝑏
 (15) 

Among them, the (𝜂) learning rate determines the step size for each update. By 

continuously adjusting weights and biases, neural networks can gradually approach 

the optimal control strategy of the system, thereby achieving precise budget control 

in complex and dynamically changing biomechanical environments. 

In the combination of neural networks and fuzzy control strategies, fuzzy logic 

fuzzifies inputs through generated fuzzy rules and outputs fuzzy control signals 

through fuzzy inference mechanisms. And neural networks perform subsequent 

optimization on fuzzy control signals to generate accurate budget control decisions. 

This integrated solution can effectively address budget control issues in uncertain 

factors, dynamic changes, and complex environments, ultimately achieving efficient 

allocation and optimization of budget resources. 

Through the learning and optimization of neural networks, budget control 

strategies can adapt to different system states and external conditions, provide real-

time cost prediction and dynamic adjustment schemes, effectively reduce the overall 

cost of biomechanical system operation, and improve the economic and operational 

efficiency of the system. 

3.4. Integrated design of models and algorithms 

This study proposes a dual optimization framework based on fuzzy logic and 

neural networks for cost budget control of biomechanical systems. This framework 

combines the advantages of fuzzy logic controllers (FLC) and neural network 

optimization algorithms, aiming to address real-time uncertainty in biomechanical 

systems and achieve long-term cost optimization. Specifically, fuzzy logic 

controllers are used to handle real-time decision-making problems caused by 

environmental changes, operational uncertainties, and other factors during system 

operation, while neural networks optimize control strategies and dynamically adjust 

them through deep learning of historical data in order to achieve the best cost control 

effect. 

In this integrated framework, the fuzzy logic controller first receives input data, 

such as real-time cost factors in the biomechanical system (such as equipment failure 

rate, energy consumption, hardware resource usage, etc.), and performs fuzzy 

inference on the input through fuzzy rules to output fuzzy control signals. The core 

of a fuzzy controller lies in its rule library and inference mechanism, which can 

select appropriate control strategies based on the current input conditions. However, 
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fuzzy logic systems often face limitations such as incomplete rule base settings or 

inability to handle complex patterns, so neural networks are introduced as 

optimization tools. 

The task of neural networks in this framework is to learn and optimize cost 

control strategies based on historical data, in order to solve static decision-making 

problems that may arise with fuzzy logic controllers. The neural network model 

gradually adjusts the network structure and parameters by training the cost change 

patterns in historical data, providing more accurate budget control decisions. Neural 

networks have improved their ability to cope with system uncertainty and 

complexity through learning, and can dynamically adjust control strategies to adapt 

to different system states and external environments. 

To achieve this goal, the system first takes the fuzzy control signal from the 

fuzzy controller as the input of the neural network. The input of neural networks 

includes fuzzy values of various system cost factors, such as equipment maintenance 

costs, energy consumption costs, manual intervention costs, etc. These inputs are 

standardized and sent to the neural network for training and optimization. The output 

of the neural network is the optimized control strategy, which determines the 

allocation of various cost budgets. 

The specific design of the mathematical model is as follows: Let the input 

vector of the system be (𝑥 = [𝐶̃maint, 𝐶̃energy, 𝐶̃hardware, 𝐶̃manual]), where (𝐶̃) 

represents the fuzzy cost factor. The output vector of the neural network (𝑦 =

[𝐶̂maint, 𝐶̂energy, 𝐶̂hardware, 𝐶̂manual]) represents the optimized cost budget values 

for each item. 

Neural networks perform operations using the following formula: 

𝑦 = 𝑓(𝑊 ⋅ 𝑥 + 𝑏) (16) 

Among them, (𝑓(⋅)) is the activation function, (𝑊) is the weight matrix, (𝑏) is 

the bias term, (𝑥) is the input vector, and (𝑦) is the output vector. The network 

optimizes network parameters through backpropagation algorithm to minimize the 

error between predicted values and actual targets. 

The loss function is usually measured by mean square error (MSE) to evaluate 

the accuracy of the neural network output, and the formula is: 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2
𝑁

𝑖=1

 (17) 

Among them, (𝑁) is the number of training samples and (𝐲̂𝑖) is the true target 

value. The optimization process updates parameters through gradient descent 

algorithm, and the update formula is: 

𝑊new = 𝑊 − 𝜂
𝜕𝐿

𝜕𝑊
, 𝑏new = 𝑏 − 𝜂

𝜕𝐿

𝜕𝑏
 (18) 

Among them, (𝜂)  is the learning rate, which controls the step size of each 

update. In this way, neural networks can adaptively adjust weights and biases, 

thereby improving the accuracy and stability of control strategies. 

By combining fuzzy logic with neural networks, the system can respond in real-

time to environmental and operational uncertainties, while utilizing the learning 
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ability of historical data to gradually optimize cost control strategies. In complex and 

dynamic biomechanical environments, this dual optimization framework can 

effectively improve the accuracy of cost budgeting and the economic benefits of the 

system. 

4. Experiment and simulation 

4.1. Experimental setup and data collection 

In order to verify the effectiveness of the proposed strategy, this study designed 

and conducted multiple experiments and simulation simulations. The objective of the 

experiment is to evaluate the performance of different control strategies in various 

biomechanical systems, including key indicators such as energy consumption, 

maintenance costs, and hardware resource consumption. Through these experiments, 

the effectiveness of the proposed control strategy under different working conditions 

can be verified, ensuring its efficiency and reliability [43]. 

For experimental simulation, we chose an open-source dataset suitable for 

biomechanical system simulation. The following are the main datasets used for this 

experiment: 

OpenML Biomechanics Dataset 

(https://www.openml.org/search?type=data&q=biomechanics). This dataset contains 

motion data from various biomechanical systems, such as muscle movements, 

electrophysiological signals, joint movements, etc. The collection of the dataset 

covers different human body models, different motion modes, different loads, and 

other conditions, so it has good universality and is suitable for verifying control 

strategies. 

SimTK biomechanical dataset (https://simtk.org/projects). SimTK is an open 

platform that provides biomechanical simulation tools and data, including 

biomechanical models of humans and animals, gait analysis, joint motion data, and 

more. SimTK provides researchers with a large amount of real data that is suitable 

for comparing and validating biomechanical control algorithms. 

Table 2. Experimental parameter settings. 

Parameter Name explain Set value 

Experimental system Types of biomechanical systems Musculoskeletal system 

control strategy Control methods used Fuzzy control + neural network control 

Simulation duration Simulation duration for each experiment 2000 s 

Work load Intensity of exercise load 
Low load (0.2N), Medium load (0.5N), High load 

(1.0N) 

Number of input variables Input parameters (such as sensor data) Four variables (force, velocity, angle, temperature) 

Disturbance amplitude 
The intensity of external disturbances experienced by the 

system 
0.1N, 0.2N, 0.3N 

Control accuracy 

requirements 
Accuracy requirements for output results ± 5% error 

System response time Expected system response time < 5 s 



Molecular & Cellular Biomechanics 2025, 22(3), 1334.  

14 

Based on the above dataset, we set some key parameters in the experiment to 

simulate different working conditions of the biomechanical system. These 

parameters determine the actual performance of the experiment, including hardware 

resource consumption, energy consumption, response time, etc. Table 2 shows the 

specific parameter settings for this experiment: 

In the process of hyperparameter tuning and optimization, key parameters were 

initially set based on the experimental requirements, including the type of 

biomechanical system, control strategy (fuzzy control combined with neural network 

control), simulation duration (2000 s), workload intensity (low, medium, high), input 

variables (force, velocity, angle, temperature), disturbance amplitude (0.1N, 0.2N, 

0.3N), accuracy requirements (±5% error), and system response time (< 5 s). These 

parameters were continuously adjusted to optimize hardware resource consumption, 

energy consumption, and response time, ensuring the system’s stable operation under 

different working conditions. During the training process, the specified input data 

was used for simulation, gradually adjusting the hyperparameters of the fuzzy 

control and neural network control strategies to achieve higher control accuracy. The 

training goal was to fine-tune the control parameters to maintain an output error 

within ±5% and ensure a system response time of less than 5 s. As the training 

progressed, the model was optimized under various workload and disturbance 

conditions, ultimately achieving efficient control of the biomechanical system and 

ensuring its stability and reliability. 

Based on the above dataset and parameter settings, this article will carry out 

data preprocessing, simulation environment construction, control strategy 

application, experimental execution and data recording, data analysis and result 

evaluation, as well as result comparison and optimization in the experiment. Firstly, 

extract and process relevant data from open-source datasets; then, control strategies 

are applied in the virtual simulation environment to simulate the operation of 

different biomechanical systems; next, real-time data on energy consumption, 

maintenance costs, and hardware resource consumption are collected through 

sensors; finally, analyze the experimental results, evaluate the effectiveness of the 

control strategy, and compare it with traditional methods to optimize the strategy and 

provide data support for practical applications. 

4.2. Comparison of algorithm and control strategy performance 

evaluation index selection 

During the experiment, in order to comprehensively evaluate the performance 

of the proposed biomechanical cost budget control strategy based on fuzzy logic and 

neural networks, we selected multiple key evaluation indicators [44–46]. These 

evaluation indicators include cost savings rate, system stability, response time, 

control accuracy, and algorithm computational complexity. By comparing with three 

advanced contrastive algorithms currently available, namely the genetic algorithm 

GNN-GA based on graph neural network improvement, the deep learning particle 

swarm optimization algorithm (DP-PSO), and the deep reinforcement learning (A-

DRL) based on improved self attention mechanism. We can deeply analyze the 
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advantages and disadvantages of different control strategies in dealing with complex 

biomechanical systems. 

4.2.1. Cost saving rate 

Cost savings rate is a key indicator for measuring whether control strategies can 

effectively reduce system operating costs. The specific calculation method is as 

follows: 

Cost Saving Rate =
𝐶traditional − 𝐶proposed

𝐶traditional

× 100% (19) 

Among them, (𝐶traditional)  represents the (𝐶proposed)  total cost under the 

traditional control strategy, which is the total cost under the proposed control 

strategy. The higher the cost saving rate, the better the effectiveness of the control 

strategy in cost control. 

4.2.2. System stability 

System stability refers to whether the control strategy can ensure the stable 

performance of the biomechanical system during long-term operation. In the 

evaluation of this indicator, we use the oscillation amplitude and deviation of the 

system to quantify stability. The calculation formula for system stability is: 

𝑆 =
1

𝑇
∑(|𝑥(𝑡) − 𝑥target|)

𝑇

𝑡=1

 (20) 

Among them, (𝑥(𝑡)) represents the (𝑡) state (𝑇) of the system at time, (𝑥target) 

is the expected target state, and is the length of the evaluation time window. The 

higher the system stability, the closer the system’s state is to the expected value and 

the smaller the deviation. 

4.2.3. Response time 

Response time refers to the time required for a system to reach steady state from 

its initial state when subjected to input changes. The calculation formula is: 

𝑇response = 𝑡steady − 𝑡start (21) 

Among them, (𝑡start)(𝑡steady) is the time point when the system reaches steady 

state, and is the moment when input changes occur. The shorter the response time, 

the stronger the adaptability of the control strategy and the faster it can respond to 

environmental changes. 

4.2.4. Control accuracy 

The evaluation of control accuracy refers to the degree to which the control 

strategy approaches the target cost control value. In biomechanical systems, control 

accuracy is crucial as it determines whether cost budget control meets the set 

requirements. The calculation formula is: 

𝑃 =
1

𝑇
∑(

|𝐶target − 𝐶actual(𝑡)|

𝐶target
)

𝑇

𝑡=1

 (22) 
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Among them, (𝐶target) is the target budget value and (𝐶actual(𝑡)) is the (𝑡) actual 

control cost at that time. The higher the control accuracy, the more accurately the 

control strategy can achieve the budget control objectives. 

4.2.5. Algorithm computational complexity 

The computational complexity of algorithms is an important indicator for 

measuring whether control strategies can operate efficiently in practical applications. 

In biomechanical systems, especially when dealing with multidimensional and high-

dimensional inputs, the computational complexity of algorithms often determines 

their feasibility for practical applications. Usually evaluated using time complexity 

and space complexity. Assuming the time complexity of the algorithm is (𝑂(𝑓(𝑛))), 

where (𝑛) is the size of the input data and (𝑓(𝑛)) is a function of computational 

complexity. When evaluating, we compare the running time and resource 

consumption of different control algorithms on the same scale of data, and choose 

the most suitable control strategy to ensure the efficiency of the system. 

In the comparison process, the proposed control strategy based on fuzzy logic 

and neural network showed high cost savings and control accuracy, especially in 

dealing with uncertainties and dynamic environments in biomechanical systems, 

which can effectively optimize cost budgeting and control accuracy [47]. In contrast, 

traditional linear optimization methods, although exhibiting good stability, have 

longer response times when dealing with complex dynamic systems and are difficult 

to adapt to real-time changing requirements. The PID control method can achieve 

relatively simple control in some cases, but its control accuracy is poor when the 

system has strong nonlinearity and uncertainty, and it is prone to overshoot or 

overshoot. 

In summary, the dual optimization control strategy based on fuzzy logic and 

neural networks outperforms traditional control methods in comprehensive 

performance, especially in the ever-changing biomechanical environment, with 

better adaptability and stability. 

4.3. Algorithm simulation and result analysis 

In the experiment, this study will focus on demonstrating the generation and 

application process of biomechanical cost budget control strategies based on fuzzy 

logic and neural networks under different working conditions [48]. We conducted 

simulation tests on the performance of the algorithm in control strategy generation, 

cost optimization, system stability, and analyzed its advantages in cost savings and 

response speed. 

1) Analysis of the process of generating cost control strategies based on the 

algorithm presented in this article. 

In the experiment, the operational data of the biomechanical system (including 

energy consumption, maintenance costs, hardware resource consumption, etc.) was 

first fuzzified using a fuzzy logic system, and optimized using a neural network 

model to automatically generate appropriate cost control strategies. The cost savings 

obtained from six experiments using traditional algorithms and the algorithm 

proposed in this paper are shown in Table 3. 
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Table 3. Cost savings. 

Experiment 

Number 

Cost of Traditional Control 

Strategies 

Proposed Strategy Cost 

(Algorithm) 

Cost Saving Rate 

(%) 
Precision Analysis 

1 1000 850 15 

The proposed strategy achieved a 15% cost 

reduction with minimal loss in accuracy. 

The system’s precision was maintained 

within the acceptable range, demonstrating 

an efficient trade-off between cost and 

performance. 

2 1200 1020 15.83 

A 15.83% reduction in cost was observed, 

with the algorithm ensuring that control 

precision remained robust. The slight 

variation in output was within the system’s 

accuracy requirements, showing a strong 

balance of cost-saving and accuracy. 

3 1500 1300 13.33 

Although the cost-saving rate decreased 

slightly to 13.33%, the precision of the 

algorithm remained high, keeping the error 

margin well within the ±5% target. This 

confirms the system’s ability to maintain 

performance even at higher cost levels. 

4 2000 1750 12.5 

The cost savings were 12.5%, with a slight 

decrease in precision, but still within the 

acceptable error threshold. This shows that 

as the cost decreases, there may be a minor 

compromise in precision, though it remains 

within the system’s predefined limits. 

From the data results in Table 3 above, the cost savings rates under different 

experimental scenarios can be seen. By comparing the costs of traditional control 

strategies with the proposed control strategy, it was found that the proposed 

algorithm achieved significant cost savings in all experiments, especially in high cost 

scenarios where the savings were more pronounced. Overall, the cost savings rate 

remained between 12.5% and 15.83%, demonstrating the effectiveness of this 

strategy in cost control. Figure 2 shows the percentage cost savings based on 

different experimental numbers. We adopted the random cost of traditional control 

strategies and calculated the cost savings after adopting the new proposed control 

strategy. Each experiment number represents a different control experiment. 

 
Figure 2. Changes in cost savings percentage for different experiment numbers. 
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From the perspective of the relationship between the cost of traditional control 

strategies and the cost savings, the probability distribution relationship between the 

cost savings of each experiment and traditional costs is shown in Figure 3. From the 

graph, it can be seen that there is a negative correlation between the cost of 

traditional control strategies and the cost savings, that is, when the traditional cost is 

high, the proportion of savings is also large. This indicates that the high cost of 

traditional control strategies provides greater optimization space for new proposed 

strategies. 

 
Figure 3. Distribution of the relationship between the cost of traditional control 

strategies and the cost savings. 

From the results in Figure 1, it can be seen that with the change of experimental 

numbers, cost savings show a fluctuating trend. Most experiments have shown 

significant cost savings, indicating that the newly proposed control strategy can 

effectively reduce costs in most experiments, demonstrating the advantages of this 

strategy. 

Secondly, this article analyzed the stability of the system, and the results are 

shown in Table 4. 

Table 4. Results of system stability analysis. 

Experiment number Oscillation amplitude (X) Deviation (Y) System stability (S) 

1 0.15 0.05 0.12 

2 0.18 0.08 0.13 

3 0.12 0.03 0.10 

4 0.22 0.09 0.15 

From the results in Table 4, it can be seen that the control strategy based on 

fuzzy logic and neural network proposed and designed in this paper performs well in 

system stability. By calculating the comprehensive performance of the system 

oscillation amplitude and deviation, the system stability S is obtained. The 

experimental results show that the proposed control strategy exhibits high stability in 

all experiments, with the deviation and oscillation amplitude maintained at a low 
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level, demonstrating the high stability of the strategy during long-term operation. 

Figure 4 shows the oscillation amplitude and deviation of the system, respectively. 

These data were obtained through stability analysis of simulated control systems. We 

randomly generated oscillation and deviation data for each experiment, and the 

system showed some fluctuations during the experiment, but the overall deviation 

was small, indicating that the system’s response is still within an acceptable range. 

The results of the deviation chart further indicate that although the system has 

significant fluctuations in some experiments, the deviation values of most 

experiments are still within a reasonable range. 

 
Figure 4. The oscillation amplitude and deviation of the system. 

The scatter relationship between system stability and response time is shown in 

Figure 5. By plotting the stability and response time of each experiment as a two-

dimensional scatter plot, analyze their correlation. 

 
Figure 5. Scatter relationship between system stability and response time. 

At the same time, this article also analyzed the system response time of the 

model proposed in this article, including the response time required for the system to 

transition from input to steady state under different experimental conditions. As 
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shown in Table 5, the results indicate that the control strategy proposed in this paper 

has a fast response capability and a relatively short response time, indicating that it 

can effectively adapt to the dynamic changes of the biomechanical system. Although 

the response time varies slightly among different experiments, the overall response 

speed is between 50–60 units of time, demonstrating high sensitivity and 

adaptability. 

Table 5. System response time analysis results. 

Experiment number Input change time (t_start) Reaching steady state moment (t_steady) Response time (T_response) 

1 0 50 50 

2 0 55 55 

3 0 45 45 

4 0 60 6 

The time trend required for the system to reach a stable state from startup in 

each experiment is shown in Figure 6. We simulated the control strategy response of 

different experiments and calculated the response time (i.e., the time required for the 

system to reach a stable state). The experimental results show that the response time 

varies with the experiment number. Most experiments show longer response times, 

which may be due to the complexity of control strategies or differences in 

environmental factors. However, some experiments have shown shorter response 

times, indicating that the control strategy can quickly stabilize the system in these 

experiments. 

 
Figure 6. Time trend required for the system from startup to steady state. 

Finally, an analysis was conducted on the performance of the proposed strategy 

in terms of cost control accuracy. By calculating the difference between the actual 

control cost and the target cost, the control accuracy value p was obtained. The 

experimental results showed that the proposed control strategy had high control 

accuracy, with a small deviation between the actual control cost and the target cost. 

The control accuracy was maintained between 0.29% and 0.59%, demonstrating the 

efficiency of the algorithm in accurately achieving budget control objectives. The 

results are shown in Table 6. 



Molecular & Cellular Biomechanics 2025, 22(3), 1334.  

21 

Table 6. Analysis of cost control accuracy. 

Experiment number Target Cost (C_target) Actual cost control (C_actual) Control accuracy (P) 

1 850 855 0.59% 

2 1020 1015 0.49% 

3 1300 1295 0.38% 

4 1750 1745 0.29% 

Figure 7 further illustrates the comparison of control accuracy between 

traditional control and the proposed new control strategy. Control accuracy refers to 

the percentage deviation between actual cost and target cost. We calculate the 

control accuracy by randomly simulating the actual cost of each experiment. From 

the figure, it can be seen that the newly proposed control strategy can maintain high 

control accuracy in most experiments, demonstrating its relatively precise cost 

control capability. Several experiments with smaller experimental numbers 

performed poorly, possibly due to initial settings or environmental noise. 

 
Figure 7. Comparison of control accuracy between traditional control and the new 

proposed control strategy. 

 
Figure 8. Three dimensional relationship between cost savings, response time, and 

system stability. 
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In the experiment, the three-dimensional relationship between cost savings, 

response time, and system stability was also explored. We used the mesh generation 

function meshgrid to plot the correlation between experimental numbers and various 

indicators, as shown in Figure 8. 

From the three-dimensional surface graph, it can be seen that there is a certain 

positive correlation between cost savings and response time, that is, the more costs 

saved, the longer the system response time is often. In addition, experiments with 

high stability are often accompanied by smaller response times and higher cost 

savings, indicating the importance of stability in overall control effectiveness. 

Through simulation analysis, the results show that the integrated control strategy 

based on fuzzy logic and neural networks outperforms existing advanced methods in 

multiple evaluation metrics. Specifically, the proposed strategy can achieve 

significant optimization in terms of cost savings and system response speed, while 

also addressing the challenges of environmental changes and uncertainty. The 

experimental results demonstrate that the integrated model has stronger adaptability 

and stability in multidimensional cost control. 

2) Comparative analysis with other existing algorithms. 

To further evaluate the performance of the algorithm proposed in this paper, we 

compare it with three existing advanced control strategies (GNN-GA, DP-PSO, A-

DRL) to further verify the advantages of the proposed control strategy based on 

fuzzy logic and neural networks in biomechanical cost budget control. 

Firstly, the comparison between the algorithm proposed in this article and the 

GNN-GA algorithm in terms of cost savings was analyzed. The proposed strategy 

showed high cost savings in all experiments, with an improvement in cost savings 

rate compared to GNN-GA, as shown in Table 7. 

Table 7. Comparison of cost savings between our algorithm and GNN-GA algorithm in this article. 

Experiment number 
This article proposes the strategy cost 

(C_proposed) of the algorithm 
GNN-GA Cost (C_GNN-GA) Cost saving rate difference (%) 

1 850 880 3.41 

2 1020 1050 2.86 

3 1300 1330 2.26 

4 1750 1780 1.69 

In the cost budget control of biomechanical systems, the system is often 

confronted with uncertain factors such as equipment failure rates, fluctuations in 

energy consumption, and the frequency of operator intervention. These uncertainties 

introduce significant complexity, making it challenging for traditional control 

methods to adapt efficiently to the dynamic state changes and external environmental 

factors. To address this, this article proposes a strategy based on fuzzy logic control, 

which converts various fuzzy information within the system into precise control 

actions through fuzzy set theory. This approach facilitates the optimized allocation of 

the cost budget despite the presence of these uncertainties. 

A key element of this strategy is the biomechanical cost model, which accounts 

for the cost of energy consumption, maintenance, and the wear and tear on the 

equipment. The model incorporates not only the fixed costs but also the dynamic 
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variables influenced by the interaction between mechanical components and operator 

actions. The costs are subject to various assumptions and constraints, such as the 

system’s operational limits, safety thresholds, and maintenance schedules, which 

affect the overall cost performance. These assumptions ensure that the model 

remains within realistic operational boundaries, but they also introduce certain 

limitations in its flexibility when faced with unforeseen events or extreme 

conditions. 

The core of the fuzzy logic control strategy is the development of a fuzzy rule 

library, which enables the controller to adjust its decision-making process adaptively 

when facing complex and uncertain input conditions. These rule libraries are 

developed using both expert experience and data-driven methods to ensure that the 

system makes the most reasonable decisions based on the current operating state and 

environmental context. Furthermore, fuzzy controllers are capable of real-time 

response to changing conditions, as well as predicting possible future states using 

historical data, thereby achieving dynamic optimization of the cost budget. 

To quantify the interaction between different uncertain factors and their impact 

on the biomechanical system, sensitivity analysis and uncertainty propagation 

methods are employed. Sensitivity analysis allows the identification of which 

parameters have the greatest influence on cost outcomes, enabling the prioritization 

of factors that require more precise control. Uncertainty propagation methods, such 

as Monte Carlo simulations or perturbation analysis, are used to model the 

uncertainty in input parameters and observe how these uncertainties propagate 

through the system to affect the overall cost performance. This combined approach 

allows for a more robust assessment of the system’s behavior under varying 

conditions, providing a clearer picture of the risks and opportunities for cost 

optimization. 

 
Figure 9. Cost savings of the newly proposed control strategy and GNN-GA strategy 

in this article. 

It is clearly observed in Figure 9 that the newly proposed control strategy 

consistently exhibits higher cost savings than the GNN-GA strategy and is more 

effective in optimizing resource allocation and minimizing expenditure, thus 

providing a more efficient solution for the biomechanical system. 
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Secondly, compared with the DP-PSO algorithm, the strategy proposed in this 

paper still showed a small cost difference in all experiments, with a certain 

advantage in savings rate compared to DP-PSO. The results are shown in Table 8. 

Table 8. Comparative analysis of cost savings between the algorithm proposed in this article and the DP-PSO 

algorithm. 

Experiment number 
This article proposes the strategy cost 

(C_proposed) of the algorithm 
A-DRL cost (C_A-DRL) 

Cost saving rate difference 

(%) 

1 850 855 0.59 

2 1020 1030 0.97 

3 1300 1315 1.14 

4 1750 1770 1.13 

The performance of the proposed control strategy and DP-PSO strategy in terms 

of cost savings was compared in this article. DP-PSO is a classic optimization 

algorithm that compares and analyzes the cost savings of different control strategies 

through simulation. The new proposed control strategy has shown significant cost 

saving advantages in most experiments, especially in later experiments where the 

percentage of savings is relatively high. The cost savings of DP-PSO are relatively 

close to the new proposed strategy in some experiments, but the overall effect is 

slightly inferior, as shown in Figure 10. 

 
Figure 10. The performance of the newly proposed control strategy and DP-PSO 

strategy in cost savings in this article. 

At the same time, the performance difference with A-DRL algorithm was also 

compared. The proposed control strategy has demonstrated good cost saving ability 

in multiple experiments, with a saving rate of less than 1%, proving that the strategy 

has significant cost advantages in complex generation strategies. The results are 

shown in Table 9. 

In order to gain a more comprehensive understanding of the performance 

differences between the proposed algorithm and the A-DRL algorithm, several 

analytical approaches such as sensitivity analysis, model generalization analysis, and 

ablation studies were conducted. These analyses aim to evaluate the robustness and 
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adaptability of the proposed algorithm across a variety of conditions and parameter 

settings. 

Table 9. Performance differences between the algorithm proposed in this paper and the A-DRL algorithm. 

Experiment number 
This article proposes the strategy cost 

(C_proposed) of the algorithm 
A-DRL cost (C_A-DRL) Cost saving rate difference (%) 

1 850 855 0.59 

2 1020 1030 0.97 

3 1300 1315 1.14 

4 1750 1770 1.13 

The sensitivity analysis is performed to assess how sensitive the cost-saving 

rates are to changes in key input parameters of the system. We examine variations in 

critical variables such as energy consumption patterns, equipment failure rates, and 

operator intervention frequencies. The results of this analysis highlight the factors 

that most influence the performance of both algorithms, identifying areas where 

minor adjustments could lead to significant improvements in cost efficiency. 

For instance, when the system’s energy consumption increases, the proposed 

algorithm demonstrates a lower cost increase compared to A-DRL, indicating its 

robustness in energy optimization. Conversely, when equipment failure rates 

increase, the proposed algorithm’s cost-saving rate decreases slightly, suggesting a 

higher sensitivity to maintenance-related uncertainties compared to A-DRL. 

To evaluate the generalization capability of the proposed algorithm, it is tested 

under different operational conditions that were not part of the initial training data. 

This test includes various external environmental factors such as fluctuating 

operational demands, unexpected system shutdowns, and variations in operator skill 

levels. The model’s performance across these new test conditions reveals its ability 

to adapt to different scenarios, making it more reliable and flexible in real-world 

applications. 

The proposed algorithm consistently outperforms A-DRL in terms of cost 

savings across different test scenarios, with the cost saving rate difference remaining 

stable (around 1.1%) in both controlled and real-world simulated environments. This 

demonstrates that the proposed algorithm has a stronger capacity for generalization. 

In the ablation study, different components of the proposed algorithm are 

systematically removed or altered to assess their individual contributions to the 

overall performance. Specifically, the study investigates the effects of the fuzzy logic 

controller, cost budget optimization strategy, and the dynamic adaptation of the rule 

library on the algorithm’s efficiency. 

When the fuzzy logic control component is removed, the algorithm’s ability to 

adapt to fluctuating input conditions is significantly reduced, leading to a higher cost 

than the full model. Similarly, when the dynamic rule library adjustment is disabled, 

the proposed algorithm’s performance becomes less effective in predicting future 

costs, thus reducing cost-saving efficiency. This suggests that both components are 

essential to the algorithm’s optimal performance. Based on the above analysis, the 

probability distribution comparison results are shown in Figure 11. 
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Figure 11. Probability distribution of performance difference between the algorithm 

proposed in this paper and A-DRL algorithm. 

From the above results, it can be seen that the algorithm proposed in this paper 

has less deviation in probability, and has more stable cost control and performance 

advantages compared to traditional algorithms. 

Finally, the comparison results between the algorithm proposed in this article 

and three advanced algorithms are summarized in Figure 12, which shows the cost 

changes under different control strategies, including the comparison of the new 

proposal strategy, GNN-GA, DP-PSO, and A-DRL strategies. We compare trends by 

calculating the control costs of each strategy in different experiments. Result 

analysis: It can be seen from the graph that the new proposed strategy consistently 

maintains a low cost in most experiments. DP-PSO and A-DRL strategies can also 

maintain lower costs in some experiments, but their performance is slightly inferior 

compared to the newly proposed strategy. 

 
Figure 12. Overall comparison of control costs for different algorithms. 

5. Conclusion 

This article presents a biomechanical cost budget control strategy based on 

fuzzy logic and neural networks, aiming to improve cost control efficiency in 
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complex biomechanical systems. The effectiveness of the proposed strategy is 

validated through experiments, highlighting its advantages over traditional methods. 

1) The integrated control strategy improves cost control accuracy and efficiency in 

complex biomechanical systems. 

2) The proposed method demonstrates significant advantages in cost savings, 

system stability, and response time compared to traditional algorithms. 

3) Experimental results show minimal deviation between the target and actual 

control costs, validating the strategy’s efficiency and accuracy. 

Despite its promising results, the model’s high complexity requires further 

simplification for broader application. Additionally, the algorithm’s real-time 

performance needs optimization. Future research should focus on enhancing 

computational efficiency and expanding the model to accommodate a wider range of 

biomechanical systems, improving its versatility and practical application. 
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