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Abstract: Intelligent decision-making in dynamic recommender systems is crucial for 

capturing temporal user preferences and optimizing long-term user satisfaction. Traditional 

recommender systems often rely on static modeling, neglecting the temporal dynamics of user-

item interactions. To address this limitation, we propose a novel framework, Temporal 

Interpretability Graph Neural Network with Reinforcement Learning (TIGNN-RL), which 

integrates dynamic graph neural networks (DGNNs) and Proximal Policy Optimization (PPO) 

to optimize personalized recommendations. Specifically, our method models user-item 

interactions as dynamic graphs and utilizes temporal interpretability modules to encode both 

temporal features and node-specific static features. The temporal interpretability module 

assigns time-aware and interactions weights to user-item, enabling more time-sensitive and 

explainable dynamic embeddings. This TIGNN dynamic graph sequential embedding is 

processed by some LSTM modules to be used as the state of the deep reinforcement learning 

agent and states. We take a joint approach to training, earn graph embeddings that enable better 

PPO policy. To evaluate the proposed framework, we conduct experiments on three benchmark 

datasets: Last.fm 1K, MovieLens 1M, and Amazon Product Review. Results show that 

TIGNN-RL outperforms state-of-the-art baselines, which use GNNs for augmenting DRL-

based RS, in terms of accuracy (NDCG@K) and diversity (ILD@K@K), demonstrating its 

effectiveness in dynamic and interpretable recommendation scenarios. In this research, some 

biomechanics knowledge is integrated to further enhance the understanding and application of 

the proposed framework in scenarios where user behavior is influenced by physical factors. 

Keywords: recommender systems; subgraphs extraction; dynamic graph neural network; deep 

reinforcement learning; intelligent decision-making; LSTM; biomechanics 

1. Introduction 

Intelligent decision-making has become a cornerstone of modern recommender 

systems, enabling them to provide more accurate, adaptive, and context-aware 

recommendations [1–4]. As users interact with systems across multiple sessions, their 

preferences evolve dynamically, creating new challenges for recommendation models 

[5]. Conventional recommender systems frequently depend on static user profiles or 

aggregated historical behaviors, which are inadequate in capturing the temporal 

intricacies of user preferences or the intricate dependencies among items. This 

limitation severely restricts the capacity of recommender systems to make intelligent, 

context-sensitive decisions, particularly in multi-round interaction scenarios where 

long-term user satisfaction and engagement are of paramount importance [6–8]. An 

existing study have demonstrated through experiments that using static models in 
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traditional recommendation systems results in an accuracy of predicting user interests 

of no more than 65% [9]. 

Graph-based data representations have emerged as a powerful tool for modelling 

the complex relational structures inherent in recommender systems, such as user-item 

interactions and item-item associations. Graph Neural Networks (GNNs) have 

advanced the field by enabling rich feature extraction and representation learning on 

such graph structures. However, the majority of GNN-based methods are constrained 

to static graphs, thus disregarding the dynamic nature of user preferences and the 

temporal evolution of item relationships. These dynamic aspects are critical for 

intelligent decision-making, as they reflect the underlying processes that drive user 

behavior and item popularity over time [10–12]. 

Recent studies have demonstrated the considerable potential of Reinforcement 

Learning (RL) in the domain of recommender systems. By conceptualizing 

recommendation tasks within the framework of sequential decision-making problems, 

RL has exhibited notable efficacy. RL-based approaches have the capacity to optimize 

long-term objectives, such as user retention or lifetime value, through the 

implementation of meticulously designed reward mechanisms. However, existing RL 

methods frequently encounter limitations in state representation, relying on simplistic 

or static inputs that fail to account for the dynamic nature of user-item interactions 

[10,13–17]. This shortcoming reduces their ability to make informed decisions across 

multiple recommendation rounds. Furthermore, the sparsity of user feedback and the 

vast action space in real-world recommendation scenarios exacerbate the challenges 

of effective decision-making. 

In the context of user interactions with recommendation systems, biomechanics 

can provide valuable insights. For example, in applications related to physical 

activities such as fitness apps or sports equipment recommendations, understanding 

the biomechanics of human movement can help athletes to improve their mechanical 

insights and enhance their performance. Gongbing Shan [18] explores the role of 

multidisciplinary collaboration on enhancing human physical ability. By integrating 

such biomechanics knowledge into our TIGNN-RL framework, we can enhance the 

understanding of user behavior and improve the recommendation process. 

In order to address the aforementioned issues, a novel framework has been 

proposed. This is known as TIGNN-RL (Temporal Interpretability Graph Neural 

Network-Reinforcement Learning), and it integrates Dynamic Graph Neural Networks 

(DGNNs) with RL in order to enable intelligent decision-making in personalized 

recommendation systems. TIGNN-RL captures the temporal evolution of user 

preferences and user-item interaction features through DGNNs, generating time-

sensitive graph-structured state representations that reflect the dynamic nature of the 

recommendation environment [10,19,20]. These representations form the basis of an 

RL-based decision-making strategy, which aims to balance short-term accuracy with 

long-term user engagement across multiple rounds of interaction. 

The primary innovation of TIGNN-RL lies in its capacity to integrate dynamic 

graph modelling with intelligent decision-making for recommendation tasks. The 

utilization of DGNNs within the framework facilitates a more nuanced comprehension 

of the temporal variations in user preferences and item characteristics. This dynamic 

state modelling, in combination with RL’s capacity for sequential optimization, 
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enables TIGNN-RL to make more informed, context-aware decisions. The intelligent 

decisions made by TIGNN-RL have the potential to enhance not only the immediate 

recommendation relevance but also to optimize long-term metrics such as user loyalty, 

diversity, and overall satisfaction [21–22]. 

In summary, intelligent decision-making in recommender systems requires a 

combination of dynamic modelling and strategic optimization. The TIGNN-RL system 

addresses this need by integrating DGNNs and RL to create a unified framework 

capable of adapting to temporal changes and optimizing multi-round recommendation 

strategies. The integration of biomechanics knowledge further enriches the framework, 

allowing for more accurate predictions in scenarios where physical factors influence 

user behavior. 

The subsequent sections of this paper offer a detailed exposition of the design, 

implementation, and evaluation of TIGNN-RL. This provides a compelling case study 

in demonstrating the effectiveness of the proposed framework in propelling the state 

of the art in intelligent recommendation systems. In this study, it provides a 

comprehensive overview of the related work in the field of TIGNN-RL, including the 

development of deep neural networks (DGNNs), research on reinforcement learning 

(RL) in recommender systems, and the current state-of-the-art research on the 

integration of dynamic graphs and RL. Besides, the methodology and architecture of 

DGNNs, discussion of the experimental results, performance evaluation, discussion of 

the results of the work, and the suggestion of future research directions are described 

in this research. 

2. Related work 

2.1. DGNNs 

DGNNs have emerged as a powerful tool for modelling time-evolving graph-

structured data. In contradistinction to static graphs, which assume a fixed structure, 

dynamic graphs capture temporal changes in nodes, edges, and their features, 

rendering them particularly suitable for dynamic environments such as recommender 

systems. Existing DGNN models can be broadly categorized into two approaches: 

discrete-time and continuous-time modeling. 

In discrete-time DGNNs, the temporal evolution of the graph is divided into 

snapshots, where each snapshot represents the graph’s state at a specific time. The 

employment of techniques such as temporal convolutional networks (TCN) and 

recurrent neural networks (RNN) is prevalent in the modelling of dependencies across 

snapshots. To illustrate this point, consider the Evolved GCN model, which updates 

GCN parameters over time using an RNN, thereby facilitating the capture of temporal 

changes in graph structure. 

In contrast, continuous-time DGNNs treat graph evolution as a continuous 

process, often using event-driven methods to model changes in the graph. Notable 

examples in this category include Graph Neural Ordinary Differential Equations 

(GraphODE) and Temporal Graph Networks (TGNs). These methods capture finer-

grained temporal dynamics by modelling edge creation, deletion, or attribute updates 

as asynchronous events. While continuous-time models are more expressive, they are 

computationally intensive and challenging to scale for large graphs. 
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Notwithstanding the advances achieved, the implementation of DGNNs within 

the domain of recommender systems poses distinctive challenges. Primarily, user-item 

interactions are inherently sparse and dynamic, necessitating efficient techniques to 

handle real-time updates. Secondly, DGNNs must be capable of capturing the evolving 

preferences of users and the changing characteristics of items while maintaining 

scalability. Addressing these challenges remains an active area of research. 

2.2. RL in recommender systems 

The field of RL has garnered considerable attention within the domain of 

recommender systems, primarily due to its capacity to enhance the efficacy of 

sequential decision-making processes. In contradistinction to conventional 

methodologies that emphasize static recommendations, RL-based approaches are 

oriented towards the maximization of long-term objectives, including, but not limited 

to, user satisfaction, retention, and lifetime value. 

One of the foundational RL applications in the field of recommendation is the use 

of deep Q-networks (DQN) to model user interactions as a Markov decision process 

(MDP). To illustrate this point, RL agents are able to learn optimal recommendation 

strategies by maximizing cumulative rewards based on user feedback (e.g., clicks, 

purchases). The development of advanced versions, such as Double DQN and Dueling 

DQN, has led to significant improvements in the stability and accuracy of Q-value 

estimation in recommendation tasks\cite{lei2020reinforcement}. 

Another popular RL paradigm in recommender systems is policy gradient 

methods, including REINFORCE, A2C, and PPO. These methods directly optimize 

the recommendation policy by learning a probability distribution over actions, thereby 

enabling more flexible and adaptive strategies. To illustrate this point, consider the use 

of Proximal Policy Optimization (PPO) in conversational recommender systems. This 

approach enables the dynamic adaptation of recommendations based on user responses 

in multi-turn interactions. 

Nevertheless, RL methods in recommender systems encounter numerous 

challenges. State representation is frequently dependent on static features or 

aggregated histories, which are unable to account for dynamic user preferences. 

Additionally, the reward signal is typically sparse and delayed, which hinders the 

evaluation of the immediate impact of recommendations. Furthermore, the extensive 

action space, corresponding to a vast catalog of items, introduces scalability issues for 

traditional RL algorithms. Addressing these limitations through improved state 

modelling and efficient exploration strategies is an ongoing area of research. 

2.3. Integration of DGs and RL 

The integration of Dynamic Graphs (DGs) and RL is a promising avenue for 

enhancing intelligent decision-making in recommender systems. By utilizing the 

temporal modelling capabilities of DGNNs and the sequential optimization strengths 

of RL, these approaches have the potential to address the limitations of static 

modelling and enhance recommendation performance over time. 

Recent studies have begun to explore this intersection. For instance, Graph-based 

Q-learning methods have incorporated GNNs to extract relational features from graphs, 
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while RL agents have been employed to optimize recommendation strategies based on 

these features. A notable extension is the use of DGNNs to dynamically update graph 

representations, enabling the RL agent to adapt to evolving user-item interactions. 

These frameworks facilitate the capture of both the structural dependencies within 

graphs and the temporal evolution of relationships. 

In a similar manner, policy gradient methods have been combined with graph-

based state representations to enhance multi-round recommendation systems. For 

instance, attention-based DGNNs have been used to encode user-item interaction 

sequences, thereby providing RL agents with time-sensitive state representations. This 

approach has been shown to facilitate more informed decision-making, especially in 

scenarios where user preferences are subject to rapid change over time. 

Notwithstanding the aforementioned advances, the integration of DGNNs and RL 

remains challenging. Primarily, the computational intricacy of dynamic graph updates 

and RL training can be substantial, particularly in the context of large-scale 

recommender systems. Secondly, the design of effective reward mechanisms that align 

with both immediate user feedback and long-term engagement is non-trivial. Finally, 

the question of how to ensure the interpretability of decisions made by such integrated 

frameworks remains unresolved. 

The proposed TIGNN-RL framework aims to address these challenges by 

combining the strengths of DGNNs and RL into a unified system. By leveraging DGs 

modelling for state representation and reinforcement learning for sequential 

optimization, TIGNN-RL seeks to advance the frontiers of intelligent decision-making 

in recommender systems. In addition, by considering biomechanics knowledge, we 

can further enhance the understanding of user behavior and improve the performance 

of the framework in relevant application scenarios. For example, in a fitness 

recommendation system, biomechanics principles can help in understanding how 

different exercises affect the body and predict user preferences based on their physical 

capabilities and goals [1]. 

3. Materials and methods 

3.1. Problem formulation 

The capacity for intelligent and context-aware decision-making in recommender 

systems necessitates the capability to adapt to dynamic environments, wherein user 

preferences and item features undergo evolution over time. This dynamic environment 

is represented by a temporal user-item interaction graph 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) , where 𝑉𝑡 

includes users and items as nodes, and 𝐸𝑡 represents their interactions at time 𝑡. Each 

interaction 𝑒𝑡 ∈ 𝐸𝑡  is associated with contextual featyres such as timestamps, 

interaction types, and user-specific data. These interactions capture the complex, 

evolving relationships that form the basis of personalized recommendations. 

In relevant biomechanics scenarios, such as in fitness or sports-related 

recommendations, the interactions can also be influenced by factors such as the 

physical demands of an activity and the user’s physical capabilities. For example, a 

user’s past interactions with different types of fitness equipment may be related to their 

body strength, flexibility, and injury history. The system incorporates biomechanical 
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contextual features in dynamic environments by leveraging measurable physical 

ability indicators, such as joint range of motion, muscle strength, and postural stability. 

Understanding these biomechanical factors can help in providing more accurate 

recommendations. Incorporating user-specific data related to biomechanics can enable 

the system to better learn and understand these features. 

The core challenge lies in designing a system that balances immediate user 

engagement with long-term satisfaction. To address this, we model the 

recommendation process as a Deep RL, where the state 𝑠𝑡  represents the system’s 

knowledge at time 𝑡, derived from the temporal graph 𝐺𝑡. This state encapsulates user 

behaviors, item properties, and temporal dynamics, ensuring a comprehensive 

understanding of the current context. The system generates recommendations as 

actions 𝑎𝑡, selecting a subset of items from the catalog to maximize engagement. The 

user’s feedback on these recommendations influences the transition to a new state 𝑠𝑡+1, 

as the interaction graph evolves with newly observed behaviors and relationships. 

To quantify the effectiveness of the recommendations, a reward function 𝑟𝑡  is 

defined to integrate both immediate feedback, such as clicks or purchases, and long-

term objectives, such as user retention or repeat engagement. The reward is designed 

to reflect the system’s dual goals: optimizing short-term relevance while fostering 

sustained user satisfaction. This balance is achieved by combining immediate and 

long-term rewards, weighted by a parameter 𝜆 , allowing the system to prioritize 

contextually appropriate strategies. The cumulative reward over multiple rounds is 

then maximized using a policy 𝜋(𝑎𝑡 ∣ 𝑠𝑡), which maps states to actions and evolves 

dynamically with user preferences. 

The objective of the system is formalized as finding an optimal policy 𝜋∗ that 

maximizes the expected cumulative reward over a finite horizon 𝑇. This is expressed 

mathematically as: 

𝜋∗ = arg⁡𝑚𝑎𝑥
𝜋

𝔼𝜋[∑ 𝛾𝑡𝑟𝑡
𝑇

𝑡=0
]. 

where 𝛾 is a discount factor that balances the importance of immediate versus future 

rewards. By incorporating this temporal perspective, the system is equipped to make 

intelligent, adaptive decisions that respond to both current user needs and anticipated 

future behaviors. 

The framework under discussion is predicated on the state representation, which 

integrates multi-faceted information to enable intelligent decision-making. The graph 

topology captures the relational structure of user-item interactions, including both 

direct links and higher-order dependencies. Temporal encoding techniques are utilized 

to embed recency and frequency of interactions, thereby reflecting shifts in user 

interests. Additionally, the system incorporates static features, alongside dynamic 

embeddings derived from graph neural networks. The integration of these components 

ensures that the state representation provides a rich, context-aware foundation for 

generating recommendations. 

The transition dynamics further enhance the system’s adaptivity by updating the 

interaction graph based on user feedback. Positive responses, introduce new edges or 

update existing ones, while changes in item features or user profiles modify node 

features. This evolving graph structure enables the system to remain responsive to the 
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continuous interplay between user preferences and item relevance, ensuring that the 

recommendations remain both timely and personalized. 

The formulation of the recommendation task as an DRL, in conjunction with the 

dynamic interaction graph, facilitates a balance between immediate user engagement 

and long-term satisfaction. This intelligent, context-aware approach provides a robust 

foundation for multi-round decision-making, integrating dynamic graph modeling and 

reinforcement learning to optimize the recommendation process in real time. 

Incorporating biomechanics knowledge into the state representation and reward 

function can further improve the decision-making process. And it also allows the 

system to take into account physical factors that may influence user preferences and 

behaviors. 

3.2. DGs representation 

In the recommender systems, the interactions between users and items are subject 

to dynamic evolution, reflecting complex temporal dependencies. The objective of 

DGs representation is to capture these temporal changes in user preferences, item 

features, and their relationships, constructing a graph-structured representation of the 

system’s state in real time.  

In Figure 1, We use a snapshot approach to describe the process of dynamic graph 

𝐺𝑡 over time, with each subgraph view 𝐺𝑡 then state at different points in time. Each 

subgraph contains not only nodes and edges, but also node features, edge features, and 

timestamps. 

 

Figure 1. Temporal user-item interaction graph. 

3.2.1. Subgraph and edge features 

When using DGs as input to the DGNN, if the node features contain dynamic 

features, and each dynamic feature is time-dependent sequential data, it will 

correspond to multiple values. If the dynamic features of each node are directly 

expanded into multiple rows, this will result in the repetition of user nodes in the 

feature matrix. This repetition may interfere with the embedding processing of the 

DGNN, since traditional graph neural networks assume that each node corresponds to 
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one row in the feature matrix. We avoid this problem by using the method of extracting 

dynamic subgraphs, where the dynamic features are not directly embedded into the 

node feature matrix, but are modeled as dynamic subgraphs to capture time-dependent 

information. 

The core of the extracting dynamic subgraphs is a temporal user-item interaction 

graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), where 𝑉𝑡 consists of user 𝑢 and item 𝑖 nodes, and 𝐸𝑡 represents 

interactions at time 𝑡 as Figure 1 show. Each node 𝑣 ∈ 𝑉𝑡 has a feature vector 𝑥𝑣 that 

includes static features (e.g., user demographics or item metadata) and dynamic 

features (e.g., recent behaviors or current popularity). Each interaction 𝑒𝑡 = (𝑢, 𝑖, 𝑡) ∈

𝐸𝑡  includes a timestamp 𝑡  and optional features 𝑥𝑒 , such as interaction type or 

contextual features. As described in Table 1. 

Table 1. Part of temporal subgraph at time point 𝑡𝑛, timestamps are examples. 

optional 𝒙𝒆 user node 𝒖 item node 𝒊 timestamp 𝒕 

Like 𝑢1 𝑖1 2024-01-01 10:00 

Buy 𝑢1 𝑖2 2024-01-01 10:05 

Favorite 𝑢2 𝑖2 2024-01-01 10:10 

Dislike 𝑢2 𝑖4 2024-01-01 10:15 

Rate 𝑢3 𝑖2 2024-01-01 10:20 

Share 𝑢3 𝑖3 2024-01-01 10:25 

3.2.2. Temporal encoding 

As new interactions occur, the graph evolves dynamically, with edges being 

added or updated to reflect changes in user preferences and item relevance. We use 

timestamps to represent the temporal state of the edges. Timestamps are usually 

represented as continuous numerical values, and in order to enable GNNs to 

effectively recognize and utilize temporal information and understand it’s while 

significance in the temporal dimension, and thus significantly improve the embedding 

ability of GNNs for dynamic graphs, we temporally encode timestamps. 

We encode the timestamp 𝑡 of each edge as a feature vector 𝑡𝑒: 

PE(Δ𝑡) = {
sin⁡(

𝑡−𝑡prev

100002𝑖/𝑑
), 2𝑖

cos⁡(
𝑡−𝑡prev

100002𝑖/𝑑
), 2𝑖 + 1

. 

where $Δ𝑡 = 𝑡 − 𝑡prev$, 𝑡prev is the timestamp of the previous interaction. This 

enables the model to incorporate the influence of temporal changes on user preferences 

and item relationships. Edge temporal features and edge semantic features can be 

combined into complete edge feature vectors: 

𝑥𝑒
final = Concat⁡(𝑥𝑒 , 𝑡𝑒). 

Since we use a snapshot extraction of dynamic subgraphs to provide inputs to the 

DGNNs, the dynamic features in the node features can be considered without temporal 

encoding, since their dynamic node features can be considered invariant in each 

dynamic subgraph. 
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3.2.3. Subgraph extraction method 

In order to improve computational efficiency and focus recommendation on users, 

we use user nodes as target nodes to extract subgraphs, which include the target users 

and their associated higher-order neighbors like Figure 2. This local subgraph retains 

context while reducing computational overhead: 

𝐺𝑡(𝑢) = (𝑉𝑢, 𝐸𝑢). 

The nodes and edges in the subgraph 𝐺𝑡(𝑢) are directly or indirectly related to 

the target node 𝑢 . It is imperative that the subgraph 𝐺𝑡(𝑢)  guarantees the 

establishment of connections between nodes, with the objective of capturing 

contextual information between users and items. Furthermore, the subgraph 𝐺𝑡(𝑢) 

should be designed to reflect temporal evolution, including recent interactions and 

time-sensitive relationships. 

We focus on the target user node for subgraph extraction to improve 

computational efficiency (Figure 2). 

 

Figure 2. Target user node and subgraph extraction. 

The local neighborhood of the query vertex $u$ is identified based on its direct 

and higher-order neighbors. Include all nodes directly connected to $u$ through edges 

in 𝐸𝑡: 

𝒩1(𝑢) = 𝑖 ∣ (𝑢, 𝑖) ∈ 𝐸𝑡. 

where 𝑖 ∈ 𝐼 represents items interacted with by user 𝑢. Extend the neighborhood to 

second-order or higher-order connections to capture indirect relationships: 

𝒩2(𝑢) = 𝑗 ∣ ∃𝑖 ∈ 𝒩1(𝑢), (𝑖, 𝑗) ∈ 𝐸𝑡. 

𝒩𝑘(𝑢) = 𝑣 ∈ 𝑉𝑡 ∣ 𝑑(𝑢, 𝑣) ≤ 𝑘. 

where 𝑑(𝑢, 𝑣) represents the shortest path distance between nodes u and v, and 𝑘 is 

the range of hops. This allows the inclusion of items co-interacted with by other users, 

enriching the subgraph with collaborative signals. 

After selecting the neighborhood, further filter the time-sensitive edge set 𝐸𝑢
𝑡  

associated with the target node 𝑢, defined as: 

𝐸𝑢 = (𝑣,𝑤, 𝑡) ∈ 𝐸𝑡 ∣ 𝑣, 𝑤 ∈ 𝒩𝑘(𝑢), 𝑡 ≥ 𝑡threshold. 



Molecular & Cellular Biomechanics 2025, 22(3), 1339.  

10 

where 𝑡threshold is the set time threshold used to filter out early interactions. To ensure 

relevance, temporal constraints only interactions within a specified time window Δ𝑡 

are considered. This reduces noise and focuses on recent, contextually meaningful 

relationships. 

Further optimize the node set 𝑉𝑢 and edge set 𝐸𝑢 of the subgraph based on the 

features values of the nodes or edges. Define the attribute filtering function: 

𝑉𝑢
′ = 𝑣 ∈ 𝑉𝑢

𝑡 ∣ Attr⁡(𝑣) ∈ 𝒞𝑣. 

𝐸𝑢
′ = 𝑒 ∈ 𝐸𝑢

𝑡 ∣ Attr⁡(𝑒) ∈ 𝒞𝑒. 

where 𝒞𝑣 and 𝒞𝑒 are sets of filter conditions for node and edge features. 

For example, node properties could be category labels for items, and filtering 

could keep only items in certain categories. Edges could be filtered based on 

interaction types for high-value relationships. 

Combine the selected node 𝑉𝑢
′  and edge 𝐸𝑢

′   to generate the final subgraph 

𝐺𝑡(𝑢) = (𝑉𝑢
′, 𝐸𝑢

′ ) . The generation of subgraphs can be achieved by cropping the 

adjacency matrix: 

A𝑢 = A[𝑉𝑢
′, 𝑉𝑢

′]. 

where 𝐴  is the adjacency matrix of the original complete graph and 𝐴𝑢  is the 

adjacency matrix of the extracted subgraph. 

For the DGs scenario, the subgraph needs to be updated in real time to reflect the 

latest interactions and relationships as time 𝑡 changes. When a new edge e is added to 

the full graph 𝐺𝑡, determine whether the filter conditions of the subgraph are satisfied. 

If so, add (𝑣, 𝑤, 𝑡) to 𝐺𝑡(𝑢). Remove edges that exceed the 𝑡threshold from the subgraph. 

When the features of nodes or edges change, re-evaluate whether they satisfy the filter 

conditions, and add or delete nodes or edges from the subgraph. 

The attribute evaluation function of a node is used to determine whether a node 

meets the filtering conditions of the current subgraph, the evaluation function can be 

defined as: 

𝑓node (𝑣, 𝑡) = {
1, if 𝐱𝑣(𝑡) ∈ 𝒞𝑣
0, otherwise

. 

where 𝑥𝑣(𝑡) represents the dynamic features value of node v at time 𝑡, such as the 

current preferences of a user or the status of an item. 𝒞𝑣 is a constraint set of node 

features, such as the user’s preference for a specific category of items or whether the 

item is valid at the current time. Recalculate 𝑓node (𝑣, 𝑡) when the features of a node 

change. If the evaluation changes from 1 to 0, remove the node from the subgraph. 

Add new or previously removed nodes to the subgraph if their updated features 

satisfy 𝒞𝑣. 

The features evaluation function of an edge is used to determine whether edge 

𝑒 = (𝑣,𝑤, 𝑡)  satisfies the filter conditions of the current subgraph. The evaluation 

function is defined as follows: 

𝑓edge (𝑒, 𝑡) = {
1, if x𝑒(𝑡) ∈ 𝒞𝑒 and 𝑡 ≥ 𝑡threshold

0, otherwise
. 
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where 𝑥𝑒(𝑡)⁡represents the dynamic features value of edge e at time 𝑡, such as the 

interaction type, weight etc. 𝒞𝑒 is the constraint set of edge features, such as filtering 

purchases or interactions with a frequency above a certain threshold. 𝑡threshold   is a 

temporal constraint used to filter expired or historical interactions. Recalculate 

𝑓edge(𝑒, 𝑡) when the edge features 𝑥𝑒(𝑡) or the timestamp t is updated. If the evaluation 

value changes from 1 to 0, remove the edge; if the evaluation value changes from 0 to 

1, add the edge to the subgraph. Adding new interactions automatically evaluates the 

features to ensure that they meet the filter conditions before adding them to the 

subgraph. 

During subgraph extraction, the features adjustments of nodes and edges need to 

be considered comprehensively with respect to contextual constraints. In order to 

maintain the connectivity of the subgraph, a comprehensive evaluation function is 

introduced using the evaluation functions of nodes and edges: 

𝑓subgraph (𝐺𝑢, 𝑡) =
1

|𝑉𝑢|+|𝐸𝑢|
(∑ 𝑓node (𝑣, 𝑡)𝑣∈𝑉𝑢

+∑ 𝑓edge (𝑒, 𝑡)
𝑒∈𝐸𝑢

). 

where |𝑉𝑢|⁡and |𝐸𝑢| are the total numbers of subgraph nodes and edges, respectively. 

This formula is used to measure the extent to which a subgraph as a whole satisfies 

the property constraints by normalizing the evaluation scores of nodes and edges. 

When the value of 𝑓subgraph(𝐺𝑢, 𝑡) is lower than the set threshold (for example, 0.8), it 

indicates that a large number of nodes or edges in the subgraph do not satisfy the 

constraints, and the entire subgraph needs to be rebuilt or re-extracted. Through this 

reasoning process, the extracted subgraph not only captures the local relationships of 

the target node, but also generates a contextually relevant graph structure by 

combining temporal evolution and attribute information. This dynamic subgraph 

provides high-quality input for subsequent DGNNs modeling. 

3.3. DGNNs modeling 

DGNNs play a critical role in capturing the temporal and structural dynamics of 

user-item interaction graphs in recommender systems. In this study, we integrate 

advanced DGNN models, such as STGCN  (design a temporal convolution layer to 

capture dynamic behaviors) and DySAT (introduces self-attention mechanism), while 

introducing innovations in attention mechanisms and memory modules to enhance 

embeddings interpretability.  

The dynamic graph is a spatial-temporal graph, and we consider spatial features 

by designing a Temporal Interpretability Graph Neural Network (TIGNN) that focuses 

on temporal coding as well as node and interaction features during aggregation, using 

the LSTM mechanism to focus on temporal of dynamic subgraphs’ sequences (Figure 

3). 
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Figure 3. Temporal Interpretability Graph Neural Network (TIGNN). 

3.3.1. Message propagation 

For each interaction quaternion (𝑢, 𝑖, 𝑒, 𝑡𝑒) , the TIGNN we design takes into 

account both the user nodes 𝑢 and item nodes 𝑖 interactions feature vector 𝑒 as well as 

the temporal features of the time-encoded vector 𝑒𝑡 in message propagation stage, in 

order to increase the temporal interpretability. 

Considering interpretability , we use a cosine similarity function 𝑐𝑠 : ℝ𝑑 ×

ℝ𝑑 → ℝ to compute the similarity 𝜋𝑒
𝑢 between a user and an interaction: 

cs⁡(𝑢, 𝑒) =
𝑢⋅𝑒

∥𝑢∥∥𝑒∥
. 

where 𝑢 ∈ ℝ𝑑  and 𝑒 ∈ ℝ𝑑  are the embedding of features vector of user 𝑢  and 

interaction 𝑒 , and 𝑑  is the dimension of embedding. We compute the normalized 

similarity of user 𝑢 ‘s neighborhood: 

𝜋
~

𝑒𝑢,𝑖
𝑢 =

exp(𝜋𝑒𝑢,𝑖
𝑢 )

∑ exp⁡(𝜋𝑒𝑢,𝑖
𝑢 )

𝑖∈𝒩(𝑢)

. 

where 𝑖  is the embedding of item features vector. 𝜋
~

𝑒𝑢,𝑖
𝑢   act as interpretability 

personalized filters when computing the user’s neighborhood embedding, since we 

aggregate the items with bias with respect to these user-interactions similarity. 

So, we define an interpretability attention mechanism to differentiate the 

importance weight 𝑤𝑢,𝑖 of dynamic subgraph users interaction. The weight 𝑤𝑢,𝑖 taking 

𝑙 − 1-th layer node embedding h𝑢
(𝑙−1)

 and h𝑖
(𝑙−1)

as the input, formulated as: 
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𝑤𝑢,𝑖 =
(𝑊1

(𝑙−1)
⋅ℎ𝑢

(𝑙−1)
)𝑇⋅(𝑊2

(𝑙−1)
⋅ℎ𝑖

(𝑙−1)
+𝜋
~
𝑒𝑢,𝑖
𝑢 )

√𝑑
. 

where ℎ𝑢
(0)
⁡and ℎ𝑖

(0)
 are the user 𝑢 features vector embedding and item 𝑖 features 

vector embedding, respectively. 𝑑 is the embedding dimension, and the scale factor 

√𝑑 is used to speed up convergence by avoiding excessively large dot products. The 

weighting scores between users and their neighbors are obtained via the SoftMax 

function: 

𝛼𝑢,𝑖 = softmax⁡(𝑤𝑢,𝑖). 

Thus, the interpretability preference of user can be obtained by aggregating the 

information from its all neighbors adaptively: 

ℎ𝑢
𝐼 =∑ (𝛼𝑢𝑖(𝑊1

(𝑙−1)
ℎ𝑖
(𝑙−1)

) + 𝜋
~

𝑒𝑢,𝑖
𝑢 )

𝑖∈𝒩𝑢

. 

The temporal interpretability attention weights 𝛼𝑢,𝑖 have already been calculated 

using 𝜋
~

 in the weight formula 𝑤𝑢,𝑖. At this point, the interactions features are no longer 

mixed with the features of neighboring nodes, but is used as a global correction term. 

The final feature of the target node is adjusted directly by the interaction’s features, 

rather than propagating through neighboring nodes, which prevents the influence of 

the interactions feature from being amplified and even introduces redundancy. 

Considering temporal, in the same time, we can also define a temporal attention 

mechanism to differentiate the importance weight 𝑤𝑢,𝑖
′   of dynamic subgraph users’ 

interaction. 

𝑤𝑢,𝑖
′ =

(𝑊1
(𝑙−1)

⋅ℎ𝑢
(𝑙−1)

)𝑇⋅(𝑊2
(𝑙−1)

⋅ℎ𝑖
(𝑙−1)

+𝑃⋅𝑡𝑒)

√𝑑
. 

𝑃 is a projection matrix for encoding temporal features, which is used to map 

temporal embedding information 𝑡𝑒 to a space consistent with the node embeddings. 

The weighting scores between users and their neighbors are obtained via the SoftMax 

function: 

𝛽𝑢,𝑖 = softmax⁡(𝑤𝑢,𝑖
′ ). 

Thus, the temporal  preference of user can be obtained by aggregating the 

information from its all neighbors adaptively: 

ℎ𝑢
𝑇 =∑ (𝛼𝑢𝑖(𝑊1

(𝑙−1)
ℎ𝑖
(𝑙−1)

) + 𝑃 ⋅ 𝑡𝑒)
𝑖∈𝒩𝑢

. 

3.3.2. Node updating 

In this stage, we aggregate the interpretability  embedding and temporal 

embedding to update the node’s embedding of 𝐺𝑡(𝑢). The embedding updating rule 

from 𝑙 − 1-th layer to 𝑙-th layer can be formulated as: 

ℎ𝑢
(𝑙)

= tanℎ⁡(W3
(𝑙)
[ℎ𝑢

𝐼 ∥ ℎ𝑢
𝑇 ∥ ℎ𝑢

(𝑙−1)
]). 

where 𝑊3
(𝑙)

∈ ℝ𝑑×3𝑑 is a user update matrix to control the information of h𝑢
𝐼 , $h𝑢

𝑇 and 

ℎ𝑢
(𝑙−1)

. 
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3.3.3. LSTM mechanism for subgraphs’ sequences 

LSTM  is a powerful time series modelling tool that captures long-term 

dependencies and is therefore suitable for dealing with dynamically changing nodes 

or subgraphs in a sequence of snapshots. Suppose the DG is decomposed into 𝑇 

subgraphs 𝐺1, 𝐺2, . . . , 𝐺𝑇 and the graph features of each subgraph are represented as 

node embedding matrix 𝐻𝑡 ∈ ℝ𝑁×𝑑 , where 𝑁  is number of nodes, 𝑑  is embedding 

dimensions. Use the graph features 𝐻𝑡 as an input to the time series: 

𝑋LSTM = {𝐻1, 𝐻2, … , 𝐻𝑇}. 

We design a model that uses three LSTM modules to process subgraph sequences 

far, middle and near in time respectively, and then use a fusion LSTM module to 

aggregate the outputs of these three modules, which can efficiently model the 

dynamical properties of different time scales. When LSTM deals with subgraph 

sequences, direct input of node embedding matrix leads to mismatch of input shapes 

if the number of nodes at different time steps. The computational complexity is higher 

when the number of nodes is larger. To facilitate the problem of dynamic number of 

nodes and reduce the computational complexity, we first use Mean Pooling processing 

to transform the node embedding matrix 𝐻𝑇  into a single embedding vector at the 

graph level: 

s𝑡 =
1

𝑁
∑ h𝑣𝑣∈𝒱 . 

Meanwhile Pooling processing for DRL-compliant dynamic recommendation 

tasks requires the features of the entire subgraph as a state s𝑡 ∈ ℝ𝑑 input. Sequences 

of node embeddings from different time periods are fed into three separate LSTM 

modules as shown in Figure 3, LSTM1, 2 and 3: 

𝑠long = LSTMlong⁡({𝑠1, 𝑠2, … , 𝑠𝑘}). 

𝑠mid = LSTMmid⁡({𝑠𝑘+1, … , 𝑠𝑚}). 

𝑠short = LSTMrecent⁡({𝑠𝑚+1, … , 𝑠𝑇}). 

where s𝑙𝑜𝑛𝑔 ∈ ℝ𝑑, s𝑚𝑖𝑑 ∈ ℝ𝑑, s𝑟𝑒𝑐𝑒𝑛𝑡 ∈ ℝ𝑑. Finally, the LSTM outputs of the three 

time periods are fed into the fusion LSTM4 as a sequence shown in Figure 3: 

𝑠final = LSTMfusion⁡([𝑠long, 𝑠mid, 𝑠recent]). 

where s𝑓𝑢𝑠𝑖𝑜𝑛 ∈ ℝ𝑁×3𝑑, s𝑓𝑖𝑛𝑎𝑙 ∈ ℝ𝑑. 

The LSTM updates the hidden state ℎ𝑡 by the input 𝑠𝑡 at time step 𝑡. The output 

of the TIGNN is input to a LSTM unit, and output of the LSTM unit is the feature map. 

The LSTM unit can be defined as: 

f𝑡 = 𝜎(W𝑓 ⋅ [h𝑡−1, s𝑡] + b𝑓),

i𝑡 = 𝜎(W𝑖 ⋅ [h𝑡−1, s𝑡] + b𝑖),
o𝑡 = 𝜎(W𝑜 ⋅ [h𝑡−1, s𝑡] + b𝑜),

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ c
~

𝑡 ,
h𝑡 = o𝑡 ⊙ tanh⁡(c𝑡),

 

where 𝑓𝑡 refers to the forgotten gate, 𝑖𝑡 refers to the input gate, 𝑜𝑡 refers to the 

output gate, and ℎ𝑡−1 and 𝑐𝑡−1 are the hidden and cell states of the previous time 𝑡 −
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1  step. The feature map can be used as input for subsequent intelligent decision-

making tasks for DRL recommender systems. 

3.4. PPO DRL for intelligent decision-making optimization 

Although GNNs have advantages in modelling graph structure information, 

DRLs are more advantageous in dynamic recommender systems, especially in tasks 

that need to deal with user behavioral changes and long-term decision optimizations. 

DRL can automatically learn an adaptable recommendation strategy, continuously 

adjust the recommendation strategy based on user feedback in real-time interactions, 

and optimize the long-term return of the recommendation strategy, rather than just 

optimizing based on current feedback. 

By using LSTM outputs as DRL states and inputting them into the PPO Agent, 

the temporal dynamics of the dynamic subgraphs can be captured, and LSTM provides 

a time-sensitive embedding of the graphs, while the PPO Agent optimizes the 

recommendation strategy on this basis, and dynamically adjusts it in conjunction with 

the user’s feedback signals, ultimately realizing intelligent decision-making in an 

efficient personalized recommendation system. (Figure 4) 

 

Figure 4. Temporal-aware Dynamic Graph Neural Network Recommendation Framework with PPO Optimization. 

3.4.1. PPO agent 

PPO uses state 𝑠𝑡 as input, outputs recommended action distributions through a 

policy network, and predicts state values through a value network. The PPO agent 

consists of two main components: the policy network 𝜋𝜃 and the value network 𝑉𝜃. 

The policy network outputs a probability distribution over actions 𝑎𝑡 given the state 

𝑠𝑡: 

𝜋𝜃(𝑎𝑡|𝑠𝑡) = Softmax(𝑊𝑝 ⋅ 𝑠𝑡 + 𝑏𝑝). 

where W𝑝 and b𝑝 are learnable parameters. The value network estimates the expected 

return of the state 𝑠𝑡: 

𝑉𝜃(𝑠𝑡) = W𝑣 ⋅ 𝑠𝑡 + b𝑣. 
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where 𝑊𝑣 and 𝑏𝑣 are learnable parameters. The agent selects an action 𝑎𝑡 by sampling 

from the policy: 

𝑎𝑡 ∼ 𝜋𝜃(𝑎𝑡|𝑠𝑡). 

3.4.2. Reward mechanism 

Reward 𝑟𝑡 is defined based on user feedback signals. The reward 𝑟𝑡 is computed 

based on user feedback after executing the action 𝑎𝑡. The reward function combines 

multiple feedback signals: 

𝑟𝑡 = 𝑤1 ⋅ Click +𝑤2 ⋅ Purchase +𝑤3 ⋅ Dwell_Time. 

where 𝑤1, 𝑤2, 𝑤3 are weights that balance the importance of each feedback type. The 

reward 𝑟𝑡 is used to compute the advantage function 𝐴𝑡 for PPO training: 

𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃(𝑠𝑡+1) − 𝑉𝜃(𝑠𝑡). 

where 𝛾 is the discount factor. 

Algorithm 1 time-interpretable dynamic recommender system intelligent decision-making 

1: Input: user-item interaction graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), user feature vector 𝑥𝑣, interaction feature vector 𝑥𝑒, timestamp 𝑡 
2: Output: action Distribution 𝜋𝜃( 𝑎 ∣∣ 𝑠𝑡 ), state value 𝑉𝜃(𝑆𝑡), action 𝑎𝑡, reward 𝑟𝑡 

3: 1.     Temporal Encoding: 𝑡𝑒 = 𝑃𝐸(𝑡 − 𝑡𝑝𝑟𝑒𝑣) 

4: 𝑥𝑒 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑥𝑒 , 𝑡𝑒) 
5: 2.     Subgraph Extraction: 𝒩𝑘(𝑢) = 𝑣 ∈ 𝑉𝑡 ∣ 𝑑(𝑢, 𝑣) ≤ 𝑘 

6: 𝐸𝑢 = (𝑣, 𝑤, 𝑡) ∈ 𝐸𝑡 ∣ 𝑣, 𝑤 ∈ 𝒩𝑘(𝑢), 𝑡 ≥ 𝑡threshold  

7: 3.     Subgraph Updated: 

8: features evaluation function: 𝑓𝑛𝑜𝑑𝑒(𝑣, 𝑡), 𝑓𝑒𝑑𝑔𝑒(𝑒, 𝑡) and 𝑓𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝐺𝑢 , 𝑡) 

9: cropping the adjacency matrix: 𝐀𝑢 = 𝐀[𝑉𝑢
′, 𝑉𝑢

′] 
10: 4.     TIGNN: 

11: message propagation: 

12: considering interpretability: 𝑤𝑢,𝑖 =
(𝐖1

(𝑙−1)
⋅𝐡𝑢
(𝑙−1)

)𝑇⋅(𝐖2
(𝑙−1)

⋅𝐡𝑖
(𝑙−1)

+𝜋
~
𝑒𝑢,𝑖
𝑢 )

√𝑑
 

13: 𝐡𝑢
𝐼 =∑ (𝛼𝑢𝑖(𝐖𝟏

(𝑙−1)
𝐡𝑖
(𝑙−1)

) + 𝜋
~

𝑒𝑢,𝑖
𝑢 )

𝑖∈𝒩𝑢

 

14: considering temporal: 𝑤𝑢,𝑖
′ =

(𝐖1
(𝑙−1)

⋅𝐡𝑢
(𝑙−1)

)𝑇⋅(𝐖2
(𝑙−1)

⋅𝐡𝑖
(𝑙−1)

+𝐏⋅𝑡𝑒)

√𝑑
 

15: 𝐡𝑢
𝑇 =∑ (𝛼𝑢𝑖(𝐖𝟏

(𝑙−1)
𝐡𝑖
(𝑙−1)

) + 𝐏 ⋅ 𝑡𝑒)
𝑖∈𝒩𝑢

 

16: node updating: 𝐡𝑢
(𝑙)

= tanh⁡(𝐖𝟑
(𝑙)
[𝐡𝑢

𝐼 ∥ 𝐡𝑢
𝑇 ∥ 𝐡𝑢

(𝑙−1)
]) 

17: 5.     LSTM: 

18: pooling node embedding matrix:𝐬𝑡 =
1

𝑁
∑ 𝐡𝑣𝑣∈𝒱  

19: far middle and near future:𝐬final = LSTMfusion ⁡([𝐬long , 𝐬mid , 𝐬recent ]) 

20: 6.     PPO DRL: 

21: PPO agent: 𝜋𝜃(𝑎𝑡|𝑠𝑡) = Softmax(𝐖𝑝 ⋅ 𝑠𝑡 + 𝐛𝑝) 

22: value state: 𝑉𝜃(𝑠𝑡) = 𝐖𝑣 ⋅ 𝑠𝑡 + 𝐛𝑣 

23: Reward: 𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃(𝑠𝑡+1) − 𝑉𝜃(𝑠𝑡) 
24: 7.     Loss function: 𝐿PPO = 𝐿clip − 𝑐1 ⋅ 𝐿

value + 𝑐2 ⋅ 𝐿
entropy  

25: 8.     Joint training: 𝐿PPO → 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡), 𝑉𝜃(𝑠𝑡) → 𝑠𝑡 → TIGNNparameter 

3.5. Training and evaluation 

In the absence of a distinct TIGNN loss function, the gradient can be propagated 

through the PPO’s loss function, enabling the GNN to learn embedding vectors that 

are conducive to the PPO’s effective execution of the recommendation task. The loss 

function of PPO consists of three parts: clipped surrogate loss, value function loss and 
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entropy regularization term. Optimize the recommendation strategy so that 

recommended items have a higher probability with the current strategy. Learning the 

value of states and evaluating the long-term cumulative benefit of the current state. 

Increase the exploratory nature of the strategy to prevent it from converging to a local 

optimum prematurely. Taken together, the total loss function of the PPO is: 

𝐿PPO = 𝐿clip − 𝑐1 ⋅ 𝐿
value + 𝑐2 ⋅ 𝐿

entropy. 

where 𝐿clip  is clipped surrogate loss, 𝐿value   is value loss, 𝐿entropy  is entropy 

regularizations term and 𝑐1, 𝑐2 control the importance of losses. 

The loss function of PPO is back-propagated into the TIGNN through the 

gradient of the state 𝑠𝑡 to optimize the parameters of the TIGNN: 

𝐿PPO → 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡), 𝑉𝜃(𝑠𝑡) → 𝑠𝑡 → TIGNNparameter. 

The embedding 𝑠𝑡 of the TIGNN is automatically tuned to orientations that are 

more effective for the PPO recommendation task. The goal of the GNN is implicit in 

the goal of the PPO, which is to learn graph embeddings that enable better policy 𝜋𝜃. 

In this section we describe in detail the time-interpretable dynamic recommender 

system intelligent decision-making algorithm in Algorithm 1. We will compare and 

analyzes our TIGNN with some representative recommendation models in section 

Discussion. 

4. Experiments 

In this section, we perform experiments on three real-world datasets to evaluate 

the performance of our model. The results demonstrate the effectiveness of the system 

in improving recommendation accuracy, personalization, and decision-making 

intelligence. 

4.1. Datasets 

To evaluate the effectiveness of our model, we conduct experiments on three 

datasets from real-world: 

a) Last. fm1K: The dataset is annotated with timestamps for each user’s music 

playing behaviors and is suitable for training time-sensitive recommender 

systems. The small size of the dataset is ideal for validating the dynamic 

properties of the algorithm and training the model quickly and iteratively. 

b) MovieLens⁡1M: User rating behaviors for films tends to be temporally dynamic. 

The data size is medium and suitable for validating the effectiveness of time-

dynamic recommendation algorithms. 

c) Amazon⁡Product⁡Review: User purchasing behaviors is distinctly temporal and 

interactions can be modelled with timestamps. The data is large and needs to be 

preprocessed and sampled to form a subset suitable for training. 

In all of the sets of data, we treat the presence of comments or ratings as implicit 

feedback and exclude users and items with fewer than five relevant actions. After 

processed, the data statistics are shown in Table 2. 
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Table 2. Basic statistics for the three datasets. 

Datasets Last.FM 1K MovieLens 1M 
Amazon Product 

Review 

#of Users 992 6,039 9,985 

#of Items 1,998 3,679 1,1467 

#of Interactions 25,990 576,724 97,853 

Average length 26.2 95.5 9.8 

Density 1.31% 2.59% 0.08% 

According to the characteristics of the dataset, the division by time series can 

ensure the time continuity of the training set and the test set, which is in line with the 

workflow of the recommender system in the real scenario, and can better test the 

performance of the dynamic recommendation model. Last.FM 1K data is sparser, can 

capture the time dynamic characteristics of user interest, time dynamic 

recommendation. MovieLens 1M data is denser, can use the time information to 

capture the change of user interest, long-term interest modelling. Amazon Product 

Review data is very sparse, the long-tail effect is obvious, suitable for long-tail 

recommendation. 

4.2. Experiments setting 

4.2.1. Baselines 

We compare the proposed TIGNN with the following, all of them use GNNs for 

augmenting DRL-based RS, except for the first one, which is a GCN approach:  

KGCN: propose a variant of GCN to learn the embedding for KG. 

KERL: uses a traditional graph embedding method 𝑇𝑟𝑎𝑛𝑠𝐸 to generate the state 

representation for DRL-based RS. 

DGN : propose a graph convolutional RL (DGN) method which integrates the 

GCN into the Q-learning framework for general RL problems by replacing the state 

encoding layer with the GCN layer. 

GCQN : extend this method into the deep learning field and apply it to 

recommender systems. 

KGRL: employs KG inside the actor-critic algorithm to help the agent learn the 

policy. 

RLfD: adopts a Graph Attention Network (GAT) into the actor-critic network to 

conduct recommendation. 

4.2.2. Evaluation metrics 

We adopt two widely-used metrics, NDCG@K and Hit@K, to evaluate all 

methods. 

NDCG@K is a ranking indicator, and higher NDCG means target items tend to 

have more top rank positions, while Hit@K only cares if the ground-truth item appears 

in Top-K and does not take into account the sorting quality of the other items in the 

recommended list.  

For each test sample, we randomly sample 100 negative items, and rank these 

items with the ground-truth item. We evaluate Hit@K and NDCG@K based on these 

101 items. By default, we set K = 10. 
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4.2.3. Parameter setup 

We implement our model in DGL + PyTorch. The maximum subgraphs length n 

is set to 50. The embedding size is fixed to 50 for all methods. All trainable parameters 

are optimized by Adam algorithm, the learning rate is set to 0.01. Batch size is 50. 𝜆 

is 1𝑒 − 4. The TIGNNN layer number L is set to 3 for Last.FM and MovieLens, 2 for 

Amazon. For each dataset, the ratio of training, evaluation, and test set is 6: 2: 2. Each 

experiment is repeated 3 times, and the average performance is reported. For the 

compared methods, we use the default hyperparameters except for dimensions. 

4.3. Results 

4.3.1. Performance comparison 

We use Table 3 to present the sorting quality of recommended lists NDCG@10 

values and recommended list hit rate Hit@10 values for the recommender system 

TOP-10 predictions, respectively (other variants are not plotted in the graphs for 

clarity). We have the following observations: 

Table 3. Performance of TIGNN and compared methods in terms of Hit@10 and NDCG@10.  

Datasets Metric KGCN KERL DGN GCQN KGRL RLfD TIGNN Gain 

Last.FM 
NDCG@10 22.10 29.00 33.10 32.80 32.95 31.00 36.50 10.27% 

Hit@10 38.00 44.00 49.10 48.80 49.00 47.00 53.00 7.95% 

MovieLens 
NDCG@10 29.00 47.00 54.00 53.90 50.10 51.20 56.80 5.19% 

Hit@10 38.00 68.00 74.00 73.50 72.20 72.50 76.00 2.70% 

Amazon 
NDCG@10 37.00 34.00 50.00 49.50 50.30 50.20 52.00 3.40% 

Hit@10 57.00 52.00 72.00 70.50 72.50 71.50 73.80 1.80% 

Note: “Gain” means the improvement over the best compared methods. 

TIGNN-RL achieves the best performance on three datasets with most evaluation 

metrics. In particular, DGSR improves over the strongest baselines w.r.t NDCG@10 

by 10.27%, 5.19%, 3.40% in Music, Movies, and Shopping, respectively. Notably, 

Last.FM is the most sparse and short dataset, so many users and items only have a few 

interactions. In our model, the high-order connectivity of a dynamic graph alleviates 

this issue. So, there is a significant improvement in Last.FM. By stacking the TIGNN 

layers, TIGNN can utilize time-sensitive and context-aware information explicitly to 

provide more auxiliary information for prediction. While KERL, DGN, GCQN, and 

KGRL only encode each information independently as the user’s dynamic interest 

representation. Significantly, RLfD utilizes many correlated user interaction 

information, but performs worse than our DGSR, especially on Music and Movies. We 

believe that the reason is RLfD ignores the refine interaction context-aware 

information of subgraphs. And Music and Movies have stronger context-aware 

properties than Amazon, resulting in significant improvement in the performance of 

TIGNN over RLfD on Music and Movies. 

4.3.2. The sensitivity of hyper-parameters 

To explore the effect of temporal and interpretability user-interactions 

information on TIGNN, we study how two hyperparameters, the TIGNN layer number 

𝑙 and the maximum length of subgraph 𝑛 affect the performance of TIGNN. 
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We conduct our method with different TIGNN layer number 𝑙 on Amazon and 

Last.FM datasets. TIGNN-0 represents only use user embedding for recommendation. 

DGSR-1 represents the DGRN with one layer, indicating to use first-order neighbor 

samples and fixed number of neighbor node samples information perform an 

aggregation for prediction. 

 

Figure 5. Effect of propagation layer numbers (the y-axis on the left is Hit@10 value, and the right is NGCD@10 

value). 

From Figure 5, we find that increasing the layer of TIGNN is capable of 

promoting the performance substantially. It demonstrates that exploiting high-order 

user-interactions information explicitly can effectively improve recommendation 

performance. TIGNN-2 and TIGNN-3 achieve the best performance on Last.FM and 

Amazon, respectively. The possible reason is that Amazon is sparser than Last.FM, a 

larger number of layers may be required to introduce a more contextual information. 

When further stacking propagation layer, we find that the performance of DGSR-

3 and DGSR-4 begin to deteriorate. The reason might be that the use of far more 

propagation layers may lead to over smoothing. 

We train and test our method on the Last.FM and Amazon datasets with n from 

10 to 60, while keeping other optimal hyperparameters unchanged. Besides, to further 

investigate the benefit of information, we also conduct TIGNN-1 with different 𝑛 . 

Figure 6 shows the Hit@10 results. 

 

Figure 6. Effect of the maximum length of subgraphs. 
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Increasing the n of TIGNN from 10 to 50 consistently improves the performance 

of Amazon data. TIGNN performs better on the Last.FM when set n to be 20 and 50. 

However, blindly increasing the n does not necessarily improve the performance of 

TIGNN and TIGNN-1. It is likely to bring noise and cause the performance to 

attenuate. 

Compared with TIGNN-1, TIGNN performs better than TIGNN-1 at each value 

of 𝑛 . To be specific, even when n is set to 10, TIGNN is still better than the best 

performance of TIGNN-1, which implies that explicitly utilizing high-order 

information of user can alleviate the issue of insufficient user history information, thus 

improving the performance of recommendation. 

We further analyze the impact of different dimensionality of embedding size. 

Figure 7 describes the performance of model under the embedding size from 16 to 80. 

We can observe that the performance of model gradually improves as the 

dimensionality increases. With the further increase of the dimensionality, the 

performance tends to be stable. This verifies the stability of our model in different 

dimensions. 

 

Figure 7. Effect of the embedding size. 

5. Discussion and future directions 

The experimental results demonstrate the effectiveness of the proposed Temporal 

Interpretability Graph Neural Network with Reinforcement Learning (TIGNN-RL) 

framework in capturing dynamic user preferences and balancing short-term accuracy 

with long-term user engagement. In this section, we discuss the key findings, 

challenges, and implications of this work. Additionally, integrating biomechanics 

knowledge is also explored to reshape and enhance these aspects 

5.1. Key contributions 

Temporal Adaptability: By modeling user preferences dynamically using 

temporal encoding and reinforcement learning, TIGNN-RL effectively adapts to both 

short-term and long-term preference shifts, which is critical in real-world 

recommendation scenarios. When considering biomechanics, in applications like 

fitness recommendation systems, this adaptability becomes more significant. For 

instance, as a user engages in different physical activities over time, their body’s 
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biomechanical responses will change. The muscles adapt, and the flexibility may 

improve or change. The user’s physical capabilities and comfort levels with various 

exercises will also evolve. TIGNN-RL can potentially leverage this knowledge to 

adjust recommendations in real-time. If a user initially prefers low-impact exercises at 

first but gradually builds up strength later, the system will adapt and suggest more 

intense workouts that align with their new biomechanical state. 

Explainability: The temporal interpretability module provides insights into the 

temporal importance of user-item interactions, enabling explainable recommendations, 

which are becoming increasingly valuable in recommendation system applications. 

And with the context of biomechanics, this feature will be extremely beneficial. In a 

sports equipment recommendation scenario, the system can explain why the 

equipment is recommended based on the user’s previous biomechanical interactions 

with similar equipment. This will enhance the transparency of the recommendation 

process and build trust between the user and the system. 

5.2. Challenges 

Scalability: While TIGNN-RL achieves strong performance on mid-sized 

datasets, scaling the framework to very large datasets (e.g., hundreds of millions of 

users and items) may be computationally expensive due to the iterative nature of GNN 

message passing and reinforcement learning updates. Under the background of 

biomechanics, the problem becomes more compounded. Biomechanical data is often 

complex and high-dimensional. It involves factors like body dimensions, movement 

patterns, and physiological responses. Incorporating such data into the TIGNN-RL 

framework for large datasets would require more computational resources. Thus, it is 

needed to explore efficient algorithms and distributed computing techniques to address 

this scalability issue. Additionally, it is also worthwhile to explore the emerging graph 

computation optimization algorithms and cloud-based distributed training frameworks, 

and analyze their applicability and potential improvement directions within the 

TIGNN-RL framework. 

Cold Start Problem: Although TIGNN-RL leverages dynamic graphs and 

temporal embeddings, its performance on cold-start scenarios, where new users or 

items have very limited historical data, is not fully optimized. However, their 

biomechanical characteristics, such as body type, muscle strength, and flexibility, play 

a crucial role in making accurate recommendations. But integrating this biomechanical 

information into the TIGNN - RL framework during the cold start phase is a challenge 

and requires further research.  

Tradeoff Between Accuracy and Diversity: Balancing accuracy and diversity 

remains a challenge. While TIGNN-RL improves diversity without significant loss of 

accuracy, real-world applications might require further fine-tuning to meet specific 

business or user objectives. 

5.3. Implications 

Personalized Recommendation: By leveraging dynamic graphs and temporal 

interpretability, TIGNN-RL can generate highly personalized recommendations 

tailored to evolving user preferences. 
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Fairness and Diversity: Improved diversity metrics suggest that TIGNN-RL can 

mitigate popularity bias, making it suitable for applications requiring fairness and 

inclusivity. 

Real-Time Applications: The framework’s ability to adapt to dynamic user 

behaviors makes it a strong candidate for real-time recommendation systems, such as 

music streaming platforms or e-commerce. 

6. Conclusions 

The proposed TIGNN-RL framework represents a significant step toward 

dynamic, interpretable, and effective recommendation systems. By combining 

temporal modeling, graph neural networks, and reinforcement learning, it addresses 

several key challenges in modern recommender systems. However, further research is 

needed to improve scalability, interpretability, and applicability to cold-start scenarios 

and other domains. By understanding and leveraging the complex relationship 

between user behaviors and their biomechanical characteristics, the TIGNN - RL 

framework can be optimized to provide more accurate, personalized, and context-

aware recommendations. With continued advancements, this framework has the 

potential to set a new standard for intelligent decision-making in recommender 

systems. 

The introduction of the TIGNN-RL framework is expected to bring significant 

breakthroughs to the field of recommendation systems, offering not only improved 

performance for existing platforms but also laying the groundwork for intelligent 

recommendation methods in emerging domains such as healthcare, financial 

technology, and education. By dynamically adapting to user behavior and leveraging 

advanced graph-based representations, this framework can address challenges like 

cold start problems and dynamic preference shifts more effectively. 

Looking ahead, future research could explore the integration of TIGNN-RL with 

other transformative technologies, such as blockchain for secure and decentralized 

recommendations or quantum computing to enhance computational efficiency in 

large-scale systems. These explorations could significantly expand the functionality 

and application scope of recommendation systems, enabling smarter, more efficient, 

and personalized services across diverse fields. Such advancements would further 

bridge the gap between theoretical innovation and practical application, paving the 

way for new possibilities in intelligent decision-making and user-centric technologies. 

The introduction of the TIGNN-RL framework is expected to bring new breakthroughs 

to the field of recommendation systems, not only enhancing the performance of 

existing recommendation systems but also potentially providing new ideas and 

methods for the application of intelligent recommendations in emerging fields (such 

as fintech, healthcare, etc.). With the continuous development of technology, future 

explorations could further investigate the integration with other emerging technologies 

(such as quantum computing, blockchain, etc.), expanding the functionality and 

application scope of recommendation systems to achieve smarter, more efficient, and 

personalized recommendation services. 
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