
Molecular & Cellular Biomechanics 2025, 22(3), 1339.

https://doi.org/10.62617/mcb1339

1

Article

TIGNN-RL: Enabling time-sensitive and context-aware intelligent decision-

making with dynamic graphs in recommender systems and biomechanics

knowledge

Hui Yang, Changchun Yang*

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China

* Corresponding author: Changchun Yang, ycc@cczu.edu.cn

Abstract: Intelligent decision-making in dynamic recommender systems is crucial for

capturing temporal user preferences and optimizing long-term user satisfaction. Traditional

recommender systems often rely on static modeling, neglecting the temporal dynamics of user-

item interactions. To address this limitation, we propose a novel framework, Temporal

Interpretability Graph Neural Network with Reinforcement Learning (TIGNN-RL), which

integrates dynamic graph neural networks (DGNNs) and Proximal Policy Optimization (PPO)

to optimize personalized recommendations. Specifically, our method models user-item

interactions as dynamic graphs and utilizes temporal interpretability modules to encode both

temporal features and node-specific static features. The temporal interpretability module

assigns time-aware and interactions weights to user-item, enabling more time-sensitive and

explainable dynamic embeddings. This TIGNN dynamic graph sequential embedding is

processed by some LSTM modules to be used as the state of the deep reinforcement learning

agent and states. We take a joint approach to training, earn graph embeddings that enable better

PPO policy. To evaluate the proposed framework, we conduct experiments on three benchmark

datasets: Last.fm 1K, MovieLens 1M, and Amazon Product Review. Results show that

TIGNN-RL outperforms state-of-the-art baselines, which use GNNs for augmenting DRL-

based RS, in terms of accuracy (NDCG@K) and diversity (ILD@K@K), demonstrating its

effectiveness in dynamic and interpretable recommendation scenarios. In this research, some

biomechanics knowledge is integrated to further enhance the understanding and application of

the proposed framework in scenarios where user behavior is influenced by physical factors.

Keywords: recommender systems; subgraphs extraction; dynamic graph neural network; deep

reinforcement learning; intelligent decision-making; LSTM; biomechanics

1. Introduction

Intelligent decision-making has become a cornerstone of modern recommender

systems, enabling them to provide more accurate, adaptive, and context-aware

recommendations [1–4]. As users interact with systems across multiple sessions, their

preferences evolve dynamically, creating new challenges for recommendation models

[5]. Conventional recommender systems frequently depend on static user profiles or

aggregated historical behaviors, which are inadequate in capturing the temporal

intricacies of user preferences or the intricate dependencies among items. This

limitation severely restricts the capacity of recommender systems to make intelligent,

context-sensitive decisions, particularly in multi-round interaction scenarios where

long-term user satisfaction and engagement are of paramount importance [6–8]. An

existing study have demonstrated through experiments that using static models in

CITATION

Yang H, Yang C. TIGNN-RL:

Enabling time-sensitive and context-

aware intelligent decision-making

with dynamic graphs in recommender

systems and biomechanics

knowledge. Molecular & Cellular

Biomechanics. 2025; 22(3): 1339.

https://doi.org/10.62617/mcb1339

ARTICLE INFO

Received: 10 January 2025

Accepted: 26 January 2025

Available online: 13 February 2025

COPYRIGHT

Copyright © 2025 by author(s).

Molecular & Cellular Biomechanics

is published by Sin-Chn Scientific

Press Pte. Ltd. This work is licensed

under the Creative Commons

Attribution (CC BY) license.

https://creativecommons.org/licenses/

by/4.0/

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

2

traditional recommendation systems results in an accuracy of predicting user interests

of no more than 65% [9].

Graph-based data representations have emerged as a powerful tool for modelling

the complex relational structures inherent in recommender systems, such as user-item

interactions and item-item associations. Graph Neural Networks (GNNs) have

advanced the field by enabling rich feature extraction and representation learning on

such graph structures. However, the majority of GNN-based methods are constrained

to static graphs, thus disregarding the dynamic nature of user preferences and the

temporal evolution of item relationships. These dynamic aspects are critical for

intelligent decision-making, as they reflect the underlying processes that drive user

behavior and item popularity over time [10–12].

Recent studies have demonstrated the considerable potential of Reinforcement

Learning (RL) in the domain of recommender systems. By conceptualizing

recommendation tasks within the framework of sequential decision-making problems,

RL has exhibited notable efficacy. RL-based approaches have the capacity to optimize

long-term objectives, such as user retention or lifetime value, through the

implementation of meticulously designed reward mechanisms. However, existing RL

methods frequently encounter limitations in state representation, relying on simplistic

or static inputs that fail to account for the dynamic nature of user-item interactions

[10,13–17]. This shortcoming reduces their ability to make informed decisions across

multiple recommendation rounds. Furthermore, the sparsity of user feedback and the

vast action space in real-world recommendation scenarios exacerbate the challenges

of effective decision-making.

In the context of user interactions with recommendation systems, biomechanics

can provide valuable insights. For example, in applications related to physical

activities such as fitness apps or sports equipment recommendations, understanding

the biomechanics of human movement can help athletes to improve their mechanical

insights and enhance their performance. Gongbing Shan [18] explores the role of

multidisciplinary collaboration on enhancing human physical ability. By integrating

such biomechanics knowledge into our TIGNN-RL framework, we can enhance the

understanding of user behavior and improve the recommendation process.

In order to address the aforementioned issues, a novel framework has been

proposed. This is known as TIGNN-RL (Temporal Interpretability Graph Neural

Network-Reinforcement Learning), and it integrates Dynamic Graph Neural Networks

(DGNNs) with RL in order to enable intelligent decision-making in personalized

recommendation systems. TIGNN-RL captures the temporal evolution of user

preferences and user-item interaction features through DGNNs, generating time-

sensitive graph-structured state representations that reflect the dynamic nature of the

recommendation environment [10,19,20]. These representations form the basis of an

RL-based decision-making strategy, which aims to balance short-term accuracy with

long-term user engagement across multiple rounds of interaction.

The primary innovation of TIGNN-RL lies in its capacity to integrate dynamic

graph modelling with intelligent decision-making for recommendation tasks. The

utilization of DGNNs within the framework facilitates a more nuanced comprehension

of the temporal variations in user preferences and item characteristics. This dynamic

state modelling, in combination with RL’s capacity for sequential optimization,

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

3

enables TIGNN-RL to make more informed, context-aware decisions. The intelligent

decisions made by TIGNN-RL have the potential to enhance not only the immediate

recommendation relevance but also to optimize long-term metrics such as user loyalty,

diversity, and overall satisfaction [21–22].

In summary, intelligent decision-making in recommender systems requires a

combination of dynamic modelling and strategic optimization. The TIGNN-RL system

addresses this need by integrating DGNNs and RL to create a unified framework

capable of adapting to temporal changes and optimizing multi-round recommendation

strategies. The integration of biomechanics knowledge further enriches the framework,

allowing for more accurate predictions in scenarios where physical factors influence

user behavior.

The subsequent sections of this paper offer a detailed exposition of the design,

implementation, and evaluation of TIGNN-RL. This provides a compelling case study

in demonstrating the effectiveness of the proposed framework in propelling the state

of the art in intelligent recommendation systems. In this study, it provides a

comprehensive overview of the related work in the field of TIGNN-RL, including the

development of deep neural networks (DGNNs), research on reinforcement learning

(RL) in recommender systems, and the current state-of-the-art research on the

integration of dynamic graphs and RL. Besides, the methodology and architecture of

DGNNs, discussion of the experimental results, performance evaluation, discussion of

the results of the work, and the suggestion of future research directions are described

in this research.

2. Related work

2.1. DGNNs

DGNNs have emerged as a powerful tool for modelling time-evolving graph-

structured data. In contradistinction to static graphs, which assume a fixed structure,

dynamic graphs capture temporal changes in nodes, edges, and their features,

rendering them particularly suitable for dynamic environments such as recommender

systems. Existing DGNN models can be broadly categorized into two approaches:

discrete-time and continuous-time modeling.

In discrete-time DGNNs, the temporal evolution of the graph is divided into

snapshots, where each snapshot represents the graph’s state at a specific time. The

employment of techniques such as temporal convolutional networks (TCN) and

recurrent neural networks (RNN) is prevalent in the modelling of dependencies across

snapshots. To illustrate this point, consider the Evolved GCN model, which updates

GCN parameters over time using an RNN, thereby facilitating the capture of temporal

changes in graph structure.

In contrast, continuous-time DGNNs treat graph evolution as a continuous

process, often using event-driven methods to model changes in the graph. Notable

examples in this category include Graph Neural Ordinary Differential Equations

(GraphODE) and Temporal Graph Networks (TGNs). These methods capture finer-

grained temporal dynamics by modelling edge creation, deletion, or attribute updates

as asynchronous events. While continuous-time models are more expressive, they are

computationally intensive and challenging to scale for large graphs.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

4

Notwithstanding the advances achieved, the implementation of DGNNs within

the domain of recommender systems poses distinctive challenges. Primarily, user-item

interactions are inherently sparse and dynamic, necessitating efficient techniques to

handle real-time updates. Secondly, DGNNs must be capable of capturing the evolving

preferences of users and the changing characteristics of items while maintaining

scalability. Addressing these challenges remains an active area of research.

2.2. RL in recommender systems

The field of RL has garnered considerable attention within the domain of

recommender systems, primarily due to its capacity to enhance the efficacy of

sequential decision-making processes. In contradistinction to conventional

methodologies that emphasize static recommendations, RL-based approaches are

oriented towards the maximization of long-term objectives, including, but not limited

to, user satisfaction, retention, and lifetime value.

One of the foundational RL applications in the field of recommendation is the use

of deep Q-networks (DQN) to model user interactions as a Markov decision process

(MDP). To illustrate this point, RL agents are able to learn optimal recommendation

strategies by maximizing cumulative rewards based on user feedback (e.g., clicks,

purchases). The development of advanced versions, such as Double DQN and Dueling

DQN, has led to significant improvements in the stability and accuracy of Q-value

estimation in recommendation tasks\cite{lei2020reinforcement}.

Another popular RL paradigm in recommender systems is policy gradient

methods, including REINFORCE, A2C, and PPO. These methods directly optimize

the recommendation policy by learning a probability distribution over actions, thereby

enabling more flexible and adaptive strategies. To illustrate this point, consider the use

of Proximal Policy Optimization (PPO) in conversational recommender systems. This

approach enables the dynamic adaptation of recommendations based on user responses

in multi-turn interactions.

Nevertheless, RL methods in recommender systems encounter numerous

challenges. State representation is frequently dependent on static features or

aggregated histories, which are unable to account for dynamic user preferences.

Additionally, the reward signal is typically sparse and delayed, which hinders the

evaluation of the immediate impact of recommendations. Furthermore, the extensive

action space, corresponding to a vast catalog of items, introduces scalability issues for

traditional RL algorithms. Addressing these limitations through improved state

modelling and efficient exploration strategies is an ongoing area of research.

2.3. Integration of DGs and RL

The integration of Dynamic Graphs (DGs) and RL is a promising avenue for

enhancing intelligent decision-making in recommender systems. By utilizing the

temporal modelling capabilities of DGNNs and the sequential optimization strengths

of RL, these approaches have the potential to address the limitations of static

modelling and enhance recommendation performance over time.

Recent studies have begun to explore this intersection. For instance, Graph-based

Q-learning methods have incorporated GNNs to extract relational features from graphs,

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

5

while RL agents have been employed to optimize recommendation strategies based on

these features. A notable extension is the use of DGNNs to dynamically update graph

representations, enabling the RL agent to adapt to evolving user-item interactions.

These frameworks facilitate the capture of both the structural dependencies within

graphs and the temporal evolution of relationships.

In a similar manner, policy gradient methods have been combined with graph-

based state representations to enhance multi-round recommendation systems. For

instance, attention-based DGNNs have been used to encode user-item interaction

sequences, thereby providing RL agents with time-sensitive state representations. This

approach has been shown to facilitate more informed decision-making, especially in

scenarios where user preferences are subject to rapid change over time.

Notwithstanding the aforementioned advances, the integration of DGNNs and RL

remains challenging. Primarily, the computational intricacy of dynamic graph updates

and RL training can be substantial, particularly in the context of large-scale

recommender systems. Secondly, the design of effective reward mechanisms that align

with both immediate user feedback and long-term engagement is non-trivial. Finally,

the question of how to ensure the interpretability of decisions made by such integrated

frameworks remains unresolved.

The proposed TIGNN-RL framework aims to address these challenges by

combining the strengths of DGNNs and RL into a unified system. By leveraging DGs

modelling for state representation and reinforcement learning for sequential

optimization, TIGNN-RL seeks to advance the frontiers of intelligent decision-making

in recommender systems. In addition, by considering biomechanics knowledge, we

can further enhance the understanding of user behavior and improve the performance

of the framework in relevant application scenarios. For example, in a fitness

recommendation system, biomechanics principles can help in understanding how

different exercises affect the body and predict user preferences based on their physical

capabilities and goals [1].

3. Materials and methods

3.1. Problem formulation

The capacity for intelligent and context-aware decision-making in recommender

systems necessitates the capability to adapt to dynamic environments, wherein user

preferences and item features undergo evolution over time. This dynamic environment

is represented by a temporal user-item interaction graph 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡) , where 𝑉𝑡

includes users and items as nodes, and 𝐸𝑡 represents their interactions at time 𝑡. Each

interaction 𝑒𝑡 ∈ 𝐸𝑡 is associated with contextual featyres such as timestamps,

interaction types, and user-specific data. These interactions capture the complex,

evolving relationships that form the basis of personalized recommendations.

In relevant biomechanics scenarios, such as in fitness or sports-related

recommendations, the interactions can also be influenced by factors such as the

physical demands of an activity and the user’s physical capabilities. For example, a

user’s past interactions with different types of fitness equipment may be related to their

body strength, flexibility, and injury history. The system incorporates biomechanical

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

6

contextual features in dynamic environments by leveraging measurable physical

ability indicators, such as joint range of motion, muscle strength, and postural stability.

Understanding these biomechanical factors can help in providing more accurate

recommendations. Incorporating user-specific data related to biomechanics can enable

the system to better learn and understand these features.

The core challenge lies in designing a system that balances immediate user

engagement with long-term satisfaction. To address this, we model the

recommendation process as a Deep RL, where the state 𝑠𝑡 represents the system’s

knowledge at time 𝑡, derived from the temporal graph 𝐺𝑡. This state encapsulates user

behaviors, item properties, and temporal dynamics, ensuring a comprehensive

understanding of the current context. The system generates recommendations as

actions 𝑎𝑡, selecting a subset of items from the catalog to maximize engagement. The

user’s feedback on these recommendations influences the transition to a new state 𝑠𝑡+1,

as the interaction graph evolves with newly observed behaviors and relationships.

To quantify the effectiveness of the recommendations, a reward function 𝑟𝑡 is

defined to integrate both immediate feedback, such as clicks or purchases, and long-

term objectives, such as user retention or repeat engagement. The reward is designed

to reflect the system’s dual goals: optimizing short-term relevance while fostering

sustained user satisfaction. This balance is achieved by combining immediate and

long-term rewards, weighted by a parameter 𝜆 , allowing the system to prioritize

contextually appropriate strategies. The cumulative reward over multiple rounds is

then maximized using a policy 𝜋(𝑎𝑡 ∣ 𝑠𝑡), which maps states to actions and evolves

dynamically with user preferences.

The objective of the system is formalized as finding an optimal policy 𝜋∗ that

maximizes the expected cumulative reward over a finite horizon 𝑇. This is expressed

mathematically as:

𝜋∗ = arg⁡𝑚𝑎𝑥
𝜋

𝔼𝜋[∑ 𝛾𝑡𝑟𝑡
𝑇

𝑡=0
].

where 𝛾 is a discount factor that balances the importance of immediate versus future

rewards. By incorporating this temporal perspective, the system is equipped to make

intelligent, adaptive decisions that respond to both current user needs and anticipated

future behaviors.

The framework under discussion is predicated on the state representation, which

integrates multi-faceted information to enable intelligent decision-making. The graph

topology captures the relational structure of user-item interactions, including both

direct links and higher-order dependencies. Temporal encoding techniques are utilized

to embed recency and frequency of interactions, thereby reflecting shifts in user

interests. Additionally, the system incorporates static features, alongside dynamic

embeddings derived from graph neural networks. The integration of these components

ensures that the state representation provides a rich, context-aware foundation for

generating recommendations.

The transition dynamics further enhance the system’s adaptivity by updating the

interaction graph based on user feedback. Positive responses, introduce new edges or

update existing ones, while changes in item features or user profiles modify node

features. This evolving graph structure enables the system to remain responsive to the

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

7

continuous interplay between user preferences and item relevance, ensuring that the

recommendations remain both timely and personalized.

The formulation of the recommendation task as an DRL, in conjunction with the

dynamic interaction graph, facilitates a balance between immediate user engagement

and long-term satisfaction. This intelligent, context-aware approach provides a robust

foundation for multi-round decision-making, integrating dynamic graph modeling and

reinforcement learning to optimize the recommendation process in real time.

Incorporating biomechanics knowledge into the state representation and reward

function can further improve the decision-making process. And it also allows the

system to take into account physical factors that may influence user preferences and

behaviors.

3.2. DGs representation

In the recommender systems, the interactions between users and items are subject

to dynamic evolution, reflecting complex temporal dependencies. The objective of

DGs representation is to capture these temporal changes in user preferences, item

features, and their relationships, constructing a graph-structured representation of the

system’s state in real time.

In Figure 1, We use a snapshot approach to describe the process of dynamic graph

𝐺𝑡 over time, with each subgraph view 𝐺𝑡 then state at different points in time. Each

subgraph contains not only nodes and edges, but also node features, edge features, and

timestamps.

Figure 1. Temporal user-item interaction graph.

3.2.1. Subgraph and edge features

When using DGs as input to the DGNN, if the node features contain dynamic

features, and each dynamic feature is time-dependent sequential data, it will

correspond to multiple values. If the dynamic features of each node are directly

expanded into multiple rows, this will result in the repetition of user nodes in the

feature matrix. This repetition may interfere with the embedding processing of the

DGNN, since traditional graph neural networks assume that each node corresponds to

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

8

one row in the feature matrix. We avoid this problem by using the method of extracting

dynamic subgraphs, where the dynamic features are not directly embedded into the

node feature matrix, but are modeled as dynamic subgraphs to capture time-dependent

information.

The core of the extracting dynamic subgraphs is a temporal user-item interaction

graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), where 𝑉𝑡 consists of user 𝑢 and item 𝑖 nodes, and 𝐸𝑡 represents

interactions at time 𝑡 as Figure 1 show. Each node 𝑣 ∈ 𝑉𝑡 has a feature vector 𝑥𝑣 that

includes static features (e.g., user demographics or item metadata) and dynamic

features (e.g., recent behaviors or current popularity). Each interaction 𝑒𝑡 = (𝑢, 𝑖, 𝑡) ∈

𝐸𝑡 includes a timestamp 𝑡 and optional features 𝑥𝑒 , such as interaction type or

contextual features. As described in Table 1.

Table 1. Part of temporal subgraph at time point 𝑡𝑛, timestamps are examples.

optional 𝒙𝒆 user node 𝒖 item node 𝒊 timestamp 𝒕

Like 𝑢1 𝑖1 2024-01-01 10:00

Buy 𝑢1 𝑖2 2024-01-01 10:05

Favorite 𝑢2 𝑖2 2024-01-01 10:10

Dislike 𝑢2 𝑖4 2024-01-01 10:15

Rate 𝑢3 𝑖2 2024-01-01 10:20

Share 𝑢3 𝑖3 2024-01-01 10:25

3.2.2. Temporal encoding

As new interactions occur, the graph evolves dynamically, with edges being

added or updated to reflect changes in user preferences and item relevance. We use

timestamps to represent the temporal state of the edges. Timestamps are usually

represented as continuous numerical values, and in order to enable GNNs to

effectively recognize and utilize temporal information and understand it’s while

significance in the temporal dimension, and thus significantly improve the embedding

ability of GNNs for dynamic graphs, we temporally encode timestamps.

We encode the timestamp 𝑡 of each edge as a feature vector 𝑡𝑒:

PE(Δ𝑡) = {
sin⁡(

𝑡−𝑡prev

100002𝑖/𝑑
), 2𝑖

cos⁡(
𝑡−𝑡prev

100002𝑖/𝑑
), 2𝑖 + 1

.

where $Δ𝑡 = 𝑡 − 𝑡prev$, 𝑡prev is the timestamp of the previous interaction. This

enables the model to incorporate the influence of temporal changes on user preferences

and item relationships. Edge temporal features and edge semantic features can be

combined into complete edge feature vectors:

𝑥𝑒
final = Concat⁡(𝑥𝑒 , 𝑡𝑒).

Since we use a snapshot extraction of dynamic subgraphs to provide inputs to the

DGNNs, the dynamic features in the node features can be considered without temporal

encoding, since their dynamic node features can be considered invariant in each

dynamic subgraph.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

9

3.2.3. Subgraph extraction method

In order to improve computational efficiency and focus recommendation on users,

we use user nodes as target nodes to extract subgraphs, which include the target users

and their associated higher-order neighbors like Figure 2. This local subgraph retains

context while reducing computational overhead:

𝐺𝑡(𝑢) = (𝑉𝑢, 𝐸𝑢).

The nodes and edges in the subgraph 𝐺𝑡(𝑢) are directly or indirectly related to

the target node 𝑢 . It is imperative that the subgraph 𝐺𝑡(𝑢) guarantees the

establishment of connections between nodes, with the objective of capturing

contextual information between users and items. Furthermore, the subgraph 𝐺𝑡(𝑢)

should be designed to reflect temporal evolution, including recent interactions and

time-sensitive relationships.

We focus on the target user node for subgraph extraction to improve

computational efficiency (Figure 2).

Figure 2. Target user node and subgraph extraction.

The local neighborhood of the query vertex u is identified based on its direct

and higher-order neighbors. Include all nodes directly connected to u through edges

in 𝐸𝑡:

𝒩1(𝑢) = 𝑖 ∣ (𝑢, 𝑖) ∈ 𝐸𝑡.

where 𝑖 ∈ 𝐼 represents items interacted with by user 𝑢. Extend the neighborhood to

second-order or higher-order connections to capture indirect relationships:

𝒩2(𝑢) = 𝑗 ∣ ∃𝑖 ∈ 𝒩1(𝑢), (𝑖, 𝑗) ∈ 𝐸𝑡.

𝒩𝑘(𝑢) = 𝑣 ∈ 𝑉𝑡 ∣ 𝑑(𝑢, 𝑣) ≤ 𝑘.

where 𝑑(𝑢, 𝑣) represents the shortest path distance between nodes u and v, and 𝑘 is

the range of hops. This allows the inclusion of items co-interacted with by other users,

enriching the subgraph with collaborative signals.

After selecting the neighborhood, further filter the time-sensitive edge set 𝐸𝑢
𝑡

associated with the target node 𝑢, defined as:

𝐸𝑢 = (𝑣,𝑤, 𝑡) ∈ 𝐸𝑡 ∣ 𝑣, 𝑤 ∈ 𝒩𝑘(𝑢), 𝑡 ≥ 𝑡threshold.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

10

where 𝑡threshold is the set time threshold used to filter out early interactions. To ensure

relevance, temporal constraints only interactions within a specified time window Δ𝑡

are considered. This reduces noise and focuses on recent, contextually meaningful

relationships.

Further optimize the node set 𝑉𝑢 and edge set 𝐸𝑢 of the subgraph based on the

features values of the nodes or edges. Define the attribute filtering function:

𝑉𝑢
′ = 𝑣 ∈ 𝑉𝑢

𝑡 ∣ Attr⁡(𝑣) ∈ 𝒞𝑣.

𝐸𝑢
′ = 𝑒 ∈ 𝐸𝑢

𝑡 ∣ Attr⁡(𝑒) ∈ 𝒞𝑒.

where 𝒞𝑣 and 𝒞𝑒 are sets of filter conditions for node and edge features.

For example, node properties could be category labels for items, and filtering

could keep only items in certain categories. Edges could be filtered based on

interaction types for high-value relationships.

Combine the selected node 𝑉𝑢
′ and edge 𝐸𝑢

′ to generate the final subgraph

𝐺𝑡(𝑢) = (𝑉𝑢
′, 𝐸𝑢

′) . The generation of subgraphs can be achieved by cropping the

adjacency matrix:

A𝑢 = A[𝑉𝑢
′, 𝑉𝑢

′].

where 𝐴 is the adjacency matrix of the original complete graph and 𝐴𝑢 is the

adjacency matrix of the extracted subgraph.

For the DGs scenario, the subgraph needs to be updated in real time to reflect the

latest interactions and relationships as time 𝑡 changes. When a new edge e is added to

the full graph 𝐺𝑡, determine whether the filter conditions of the subgraph are satisfied.

If so, add (𝑣, 𝑤, 𝑡) to 𝐺𝑡(𝑢). Remove edges that exceed the 𝑡threshold from the subgraph.

When the features of nodes or edges change, re-evaluate whether they satisfy the filter

conditions, and add or delete nodes or edges from the subgraph.

The attribute evaluation function of a node is used to determine whether a node

meets the filtering conditions of the current subgraph, the evaluation function can be

defined as:

𝑓node (𝑣, 𝑡) = {
1, if 𝐱𝑣(𝑡) ∈ 𝒞𝑣
0, otherwise

.

where 𝑥𝑣(𝑡) represents the dynamic features value of node v at time 𝑡, such as the

current preferences of a user or the status of an item. 𝒞𝑣 is a constraint set of node

features, such as the user’s preference for a specific category of items or whether the

item is valid at the current time. Recalculate 𝑓node (𝑣, 𝑡) when the features of a node

change. If the evaluation changes from 1 to 0, remove the node from the subgraph.

Add new or previously removed nodes to the subgraph if their updated features

satisfy 𝒞𝑣.

The features evaluation function of an edge is used to determine whether edge

𝑒 = (𝑣,𝑤, 𝑡) satisfies the filter conditions of the current subgraph. The evaluation

function is defined as follows:

𝑓edge (𝑒, 𝑡) = {
1, if x𝑒(𝑡) ∈ 𝒞𝑒 and 𝑡 ≥ 𝑡threshold

0, otherwise
.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

11

where 𝑥𝑒(𝑡)⁡represents the dynamic features value of edge e at time 𝑡, such as the

interaction type, weight etc. 𝒞𝑒 is the constraint set of edge features, such as filtering

purchases or interactions with a frequency above a certain threshold. 𝑡threshold is a

temporal constraint used to filter expired or historical interactions. Recalculate

𝑓edge(𝑒, 𝑡) when the edge features 𝑥𝑒(𝑡) or the timestamp t is updated. If the evaluation

value changes from 1 to 0, remove the edge; if the evaluation value changes from 0 to

1, add the edge to the subgraph. Adding new interactions automatically evaluates the

features to ensure that they meet the filter conditions before adding them to the

subgraph.

During subgraph extraction, the features adjustments of nodes and edges need to

be considered comprehensively with respect to contextual constraints. In order to

maintain the connectivity of the subgraph, a comprehensive evaluation function is

introduced using the evaluation functions of nodes and edges:

𝑓subgraph (𝐺𝑢, 𝑡) =
1

|𝑉𝑢|+|𝐸𝑢|
(∑ 𝑓node (𝑣, 𝑡)𝑣∈𝑉𝑢

+∑ 𝑓edge (𝑒, 𝑡)
𝑒∈𝐸𝑢

).

where |𝑉𝑢|⁡and |𝐸𝑢| are the total numbers of subgraph nodes and edges, respectively.

This formula is used to measure the extent to which a subgraph as a whole satisfies

the property constraints by normalizing the evaluation scores of nodes and edges.

When the value of 𝑓subgraph(𝐺𝑢, 𝑡) is lower than the set threshold (for example, 0.8), it

indicates that a large number of nodes or edges in the subgraph do not satisfy the

constraints, and the entire subgraph needs to be rebuilt or re-extracted. Through this

reasoning process, the extracted subgraph not only captures the local relationships of

the target node, but also generates a contextually relevant graph structure by

combining temporal evolution and attribute information. This dynamic subgraph

provides high-quality input for subsequent DGNNs modeling.

3.3. DGNNs modeling

DGNNs play a critical role in capturing the temporal and structural dynamics of

user-item interaction graphs in recommender systems. In this study, we integrate

advanced DGNN models, such as STGCN (design a temporal convolution layer to

capture dynamic behaviors) and DySAT (introduces self-attention mechanism), while

introducing innovations in attention mechanisms and memory modules to enhance

embeddings interpretability.

The dynamic graph is a spatial-temporal graph, and we consider spatial features

by designing a Temporal Interpretability Graph Neural Network (TIGNN) that focuses

on temporal coding as well as node and interaction features during aggregation, using

the LSTM mechanism to focus on temporal of dynamic subgraphs’ sequences (Figure

3).

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

12

Figure 3. Temporal Interpretability Graph Neural Network (TIGNN).

3.3.1. Message propagation

For each interaction quaternion (𝑢, 𝑖, 𝑒, 𝑡𝑒) , the TIGNN we design takes into

account both the user nodes 𝑢 and item nodes 𝑖 interactions feature vector 𝑒 as well as

the temporal features of the time-encoded vector 𝑒𝑡 in message propagation stage, in

order to increase the temporal interpretability.

Considering interpretability , we use a cosine similarity function 𝑐𝑠 : ℝ𝑑 ×

ℝ𝑑 → ℝ to compute the similarity 𝜋𝑒
𝑢 between a user and an interaction:

cs⁡(𝑢, 𝑒) =
𝑢⋅𝑒

∥𝑢∥∥𝑒∥
.

where 𝑢 ∈ ℝ𝑑 and 𝑒 ∈ ℝ𝑑 are the embedding of features vector of user 𝑢 and

interaction 𝑒 , and 𝑑 is the dimension of embedding. We compute the normalized

similarity of user 𝑢 ‘s neighborhood:

𝜋
~

𝑒𝑢,𝑖
𝑢 =

exp(𝜋𝑒𝑢,𝑖
𝑢)

∑ exp⁡(𝜋𝑒𝑢,𝑖
𝑢)

𝑖∈𝒩(𝑢)

.

where 𝑖 is the embedding of item features vector. 𝜋
~

𝑒𝑢,𝑖
𝑢 act as interpretability

personalized filters when computing the user’s neighborhood embedding, since we

aggregate the items with bias with respect to these user-interactions similarity.

So, we define an interpretability attention mechanism to differentiate the

importance weight 𝑤𝑢,𝑖 of dynamic subgraph users interaction. The weight 𝑤𝑢,𝑖 taking

𝑙 − 1-th layer node embedding h𝑢
(𝑙−1)

 and h𝑖
(𝑙−1)

as the input, formulated as:

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

13

𝑤𝑢,𝑖 =
(𝑊1

(𝑙−1)
⋅ℎ𝑢

(𝑙−1)
)𝑇⋅(𝑊2

(𝑙−1)
⋅ℎ𝑖

(𝑙−1)
+𝜋
~
𝑒𝑢,𝑖
𝑢)

√𝑑
.

where ℎ𝑢
(0)
⁡and ℎ𝑖

(0)
 are the user 𝑢 features vector embedding and item 𝑖 features

vector embedding, respectively. 𝑑 is the embedding dimension, and the scale factor

√𝑑 is used to speed up convergence by avoiding excessively large dot products. The

weighting scores between users and their neighbors are obtained via the SoftMax

function:

𝛼𝑢,𝑖 = softmax⁡(𝑤𝑢,𝑖).

Thus, the interpretability preference of user can be obtained by aggregating the

information from its all neighbors adaptively:

ℎ𝑢
𝐼 =∑ (𝛼𝑢𝑖(𝑊1

(𝑙−1)
ℎ𝑖
(𝑙−1)

) + 𝜋
~

𝑒𝑢,𝑖
𝑢)

𝑖∈𝒩𝑢

.

The temporal interpretability attention weights 𝛼𝑢,𝑖 have already been calculated

using 𝜋
~

 in the weight formula 𝑤𝑢,𝑖. At this point, the interactions features are no longer

mixed with the features of neighboring nodes, but is used as a global correction term.

The final feature of the target node is adjusted directly by the interaction’s features,

rather than propagating through neighboring nodes, which prevents the influence of

the interactions feature from being amplified and even introduces redundancy.

Considering temporal, in the same time, we can also define a temporal attention

mechanism to differentiate the importance weight 𝑤𝑢,𝑖
′ of dynamic subgraph users’

interaction.

𝑤𝑢,𝑖
′ =

(𝑊1
(𝑙−1)

⋅ℎ𝑢
(𝑙−1)

)𝑇⋅(𝑊2
(𝑙−1)

⋅ℎ𝑖
(𝑙−1)

+𝑃⋅𝑡𝑒)

√𝑑
.

𝑃 is a projection matrix for encoding temporal features, which is used to map

temporal embedding information 𝑡𝑒 to a space consistent with the node embeddings.

The weighting scores between users and their neighbors are obtained via the SoftMax

function:

𝛽𝑢,𝑖 = softmax⁡(𝑤𝑢,𝑖
′).

Thus, the temporal preference of user can be obtained by aggregating the

information from its all neighbors adaptively:

ℎ𝑢
𝑇 =∑ (𝛼𝑢𝑖(𝑊1

(𝑙−1)
ℎ𝑖
(𝑙−1)

) + 𝑃 ⋅ 𝑡𝑒)
𝑖∈𝒩𝑢

.

3.3.2. Node updating

In this stage, we aggregate the interpretability embedding and temporal

embedding to update the node’s embedding of 𝐺𝑡(𝑢). The embedding updating rule

from 𝑙 − 1-th layer to 𝑙-th layer can be formulated as:

ℎ𝑢
(𝑙)

= tanℎ⁡(W3
(𝑙)
[ℎ𝑢

𝐼 ∥ ℎ𝑢
𝑇 ∥ ℎ𝑢

(𝑙−1)
]).

where 𝑊3
(𝑙)

∈ ℝ𝑑×3𝑑 is a user update matrix to control the information of h𝑢
𝐼 , $h𝑢

𝑇 and

ℎ𝑢
(𝑙−1)

.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

14

3.3.3. LSTM mechanism for subgraphs’ sequences

LSTM is a powerful time series modelling tool that captures long-term

dependencies and is therefore suitable for dealing with dynamically changing nodes

or subgraphs in a sequence of snapshots. Suppose the DG is decomposed into 𝑇

subgraphs 𝐺1, 𝐺2, . . . , 𝐺𝑇 and the graph features of each subgraph are represented as

node embedding matrix 𝐻𝑡 ∈ ℝ𝑁×𝑑 , where 𝑁 is number of nodes, 𝑑 is embedding

dimensions. Use the graph features 𝐻𝑡 as an input to the time series:

𝑋LSTM = {𝐻1, 𝐻2, … , 𝐻𝑇}.

We design a model that uses three LSTM modules to process subgraph sequences

far, middle and near in time respectively, and then use a fusion LSTM module to

aggregate the outputs of these three modules, which can efficiently model the

dynamical properties of different time scales. When LSTM deals with subgraph

sequences, direct input of node embedding matrix leads to mismatch of input shapes

if the number of nodes at different time steps. The computational complexity is higher

when the number of nodes is larger. To facilitate the problem of dynamic number of

nodes and reduce the computational complexity, we first use Mean Pooling processing

to transform the node embedding matrix 𝐻𝑇 into a single embedding vector at the

graph level:

s𝑡 =
1

𝑁
∑ h𝑣𝑣∈𝒱 .

Meanwhile Pooling processing for DRL-compliant dynamic recommendation

tasks requires the features of the entire subgraph as a state s𝑡 ∈ ℝ𝑑 input. Sequences

of node embeddings from different time periods are fed into three separate LSTM

modules as shown in Figure 3, LSTM1, 2 and 3:

𝑠long = LSTMlong⁡({𝑠1, 𝑠2, … , 𝑠𝑘}).

𝑠mid = LSTMmid⁡({𝑠𝑘+1, … , 𝑠𝑚}).

𝑠short = LSTMrecent⁡({𝑠𝑚+1, … , 𝑠𝑇}).

where s𝑙𝑜𝑛𝑔 ∈ ℝ𝑑, s𝑚𝑖𝑑 ∈ ℝ𝑑, s𝑟𝑒𝑐𝑒𝑛𝑡 ∈ ℝ𝑑. Finally, the LSTM outputs of the three

time periods are fed into the fusion LSTM4 as a sequence shown in Figure 3:

𝑠final = LSTMfusion⁡([𝑠long, 𝑠mid, 𝑠recent]).

where s𝑓𝑢𝑠𝑖𝑜𝑛 ∈ ℝ𝑁×3𝑑, s𝑓𝑖𝑛𝑎𝑙 ∈ ℝ𝑑.

The LSTM updates the hidden state ℎ𝑡 by the input 𝑠𝑡 at time step 𝑡. The output

of the TIGNN is input to a LSTM unit, and output of the LSTM unit is the feature map.

The LSTM unit can be defined as:

f𝑡 = 𝜎(W𝑓 ⋅ [h𝑡−1, s𝑡] + b𝑓),

i𝑡 = 𝜎(W𝑖 ⋅ [h𝑡−1, s𝑡] + b𝑖),
o𝑡 = 𝜎(W𝑜 ⋅ [h𝑡−1, s𝑡] + b𝑜),

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ c
~

𝑡 ,
h𝑡 = o𝑡 ⊙ tanh⁡(c𝑡),

where 𝑓𝑡 refers to the forgotten gate, 𝑖𝑡 refers to the input gate, 𝑜𝑡 refers to the

output gate, and ℎ𝑡−1 and 𝑐𝑡−1 are the hidden and cell states of the previous time 𝑡 −

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

15

1 step. The feature map can be used as input for subsequent intelligent decision-

making tasks for DRL recommender systems.

3.4. PPO DRL for intelligent decision-making optimization

Although GNNs have advantages in modelling graph structure information,

DRLs are more advantageous in dynamic recommender systems, especially in tasks

that need to deal with user behavioral changes and long-term decision optimizations.

DRL can automatically learn an adaptable recommendation strategy, continuously

adjust the recommendation strategy based on user feedback in real-time interactions,

and optimize the long-term return of the recommendation strategy, rather than just

optimizing based on current feedback.

By using LSTM outputs as DRL states and inputting them into the PPO Agent,

the temporal dynamics of the dynamic subgraphs can be captured, and LSTM provides

a time-sensitive embedding of the graphs, while the PPO Agent optimizes the

recommendation strategy on this basis, and dynamically adjusts it in conjunction with

the user’s feedback signals, ultimately realizing intelligent decision-making in an

efficient personalized recommendation system. (Figure 4)

Figure 4. Temporal-aware Dynamic Graph Neural Network Recommendation Framework with PPO Optimization.

3.4.1. PPO agent

PPO uses state 𝑠𝑡 as input, outputs recommended action distributions through a

policy network, and predicts state values through a value network. The PPO agent

consists of two main components: the policy network 𝜋𝜃 and the value network 𝑉𝜃.

The policy network outputs a probability distribution over actions 𝑎𝑡 given the state

𝑠𝑡:

𝜋𝜃(𝑎𝑡|𝑠𝑡) = Softmax(𝑊𝑝 ⋅ 𝑠𝑡 + 𝑏𝑝).

where W𝑝 and b𝑝 are learnable parameters. The value network estimates the expected

return of the state 𝑠𝑡:

𝑉𝜃(𝑠𝑡) = W𝑣 ⋅ 𝑠𝑡 + b𝑣.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

16

where 𝑊𝑣 and 𝑏𝑣 are learnable parameters. The agent selects an action 𝑎𝑡 by sampling

from the policy:

𝑎𝑡 ∼ 𝜋𝜃(𝑎𝑡|𝑠𝑡).

3.4.2. Reward mechanism

Reward 𝑟𝑡 is defined based on user feedback signals. The reward 𝑟𝑡 is computed

based on user feedback after executing the action 𝑎𝑡. The reward function combines

multiple feedback signals:

𝑟𝑡 = 𝑤1 ⋅ Click +𝑤2 ⋅ Purchase +𝑤3 ⋅ Dwell_Time.

where 𝑤1, 𝑤2, 𝑤3 are weights that balance the importance of each feedback type. The

reward 𝑟𝑡 is used to compute the advantage function 𝐴𝑡 for PPO training:

𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃(𝑠𝑡+1) − 𝑉𝜃(𝑠𝑡).

where 𝛾 is the discount factor.

Algorithm 1 time-interpretable dynamic recommender system intelligent decision-making

1: Input: user-item interaction graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), user feature vector 𝑥𝑣, interaction feature vector 𝑥𝑒, timestamp 𝑡
2: Output: action Distribution 𝜋𝜃(𝑎 ∣∣ 𝑠𝑡), state value 𝑉𝜃(𝑆𝑡), action 𝑎𝑡, reward 𝑟𝑡

3: 1. Temporal Encoding: 𝑡𝑒 = 𝑃𝐸(𝑡 − 𝑡𝑝𝑟𝑒𝑣)

4: 𝑥𝑒 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑥𝑒 , 𝑡𝑒)
5: 2. Subgraph Extraction: 𝒩𝑘(𝑢) = 𝑣 ∈ 𝑉𝑡 ∣ 𝑑(𝑢, 𝑣) ≤ 𝑘

6: 𝐸𝑢 = (𝑣, 𝑤, 𝑡) ∈ 𝐸𝑡 ∣ 𝑣, 𝑤 ∈ 𝒩𝑘(𝑢), 𝑡 ≥ 𝑡threshold

7: 3. Subgraph Updated:

8: features evaluation function: 𝑓𝑛𝑜𝑑𝑒(𝑣, 𝑡), 𝑓𝑒𝑑𝑔𝑒(𝑒, 𝑡) and 𝑓𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝐺𝑢 , 𝑡)

9: cropping the adjacency matrix: 𝐀𝑢 = 𝐀[𝑉𝑢
′, 𝑉𝑢

′]
10: 4. TIGNN:

11: message propagation:

12: considering interpretability: 𝑤𝑢,𝑖 =
(𝐖1

(𝑙−1)
⋅𝐡𝑢
(𝑙−1)

)𝑇⋅(𝐖2
(𝑙−1)

⋅𝐡𝑖
(𝑙−1)

+𝜋
~
𝑒𝑢,𝑖
𝑢)

√𝑑

13: 𝐡𝑢
𝐼 =∑ (𝛼𝑢𝑖(𝐖𝟏

(𝑙−1)
𝐡𝑖
(𝑙−1)

) + 𝜋
~

𝑒𝑢,𝑖
𝑢)

𝑖∈𝒩𝑢

14: considering temporal: 𝑤𝑢,𝑖
′ =

(𝐖1
(𝑙−1)

⋅𝐡𝑢
(𝑙−1)

)𝑇⋅(𝐖2
(𝑙−1)

⋅𝐡𝑖
(𝑙−1)

+𝐏⋅𝑡𝑒)

√𝑑

15: 𝐡𝑢
𝑇 =∑ (𝛼𝑢𝑖(𝐖𝟏

(𝑙−1)
𝐡𝑖
(𝑙−1)

) + 𝐏 ⋅ 𝑡𝑒)
𝑖∈𝒩𝑢

16: node updating: 𝐡𝑢
(𝑙)

= tanh⁡(𝐖𝟑
(𝑙)
[𝐡𝑢

𝐼 ∥ 𝐡𝑢
𝑇 ∥ 𝐡𝑢

(𝑙−1)
])

17: 5. LSTM:

18: pooling node embedding matrix:𝐬𝑡 =
1

𝑁
∑ 𝐡𝑣𝑣∈𝒱

19: far middle and near future:𝐬final = LSTMfusion ⁡([𝐬long , 𝐬mid , 𝐬recent])

20: 6. PPO DRL:

21: PPO agent: 𝜋𝜃(𝑎𝑡|𝑠𝑡) = Softmax(𝐖𝑝 ⋅ 𝑠𝑡 + 𝐛𝑝)

22: value state: 𝑉𝜃(𝑠𝑡) = 𝐖𝑣 ⋅ 𝑠𝑡 + 𝐛𝑣

23: Reward: 𝐴𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃(𝑠𝑡+1) − 𝑉𝜃(𝑠𝑡)
24: 7. Loss function: 𝐿PPO = 𝐿clip − 𝑐1 ⋅ 𝐿

value + 𝑐2 ⋅ 𝐿
entropy

25: 8. Joint training: 𝐿PPO → 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡), 𝑉𝜃(𝑠𝑡) → 𝑠𝑡 → TIGNNparameter

3.5. Training and evaluation

In the absence of a distinct TIGNN loss function, the gradient can be propagated

through the PPO’s loss function, enabling the GNN to learn embedding vectors that

are conducive to the PPO’s effective execution of the recommendation task. The loss

function of PPO consists of three parts: clipped surrogate loss, value function loss and

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

17

entropy regularization term. Optimize the recommendation strategy so that

recommended items have a higher probability with the current strategy. Learning the

value of states and evaluating the long-term cumulative benefit of the current state.

Increase the exploratory nature of the strategy to prevent it from converging to a local

optimum prematurely. Taken together, the total loss function of the PPO is:

𝐿PPO = 𝐿clip − 𝑐1 ⋅ 𝐿
value + 𝑐2 ⋅ 𝐿

entropy.

where 𝐿clip is clipped surrogate loss, 𝐿value is value loss, 𝐿entropy is entropy

regularizations term and 𝑐1, 𝑐2 control the importance of losses.

The loss function of PPO is back-propagated into the TIGNN through the

gradient of the state 𝑠𝑡 to optimize the parameters of the TIGNN:

𝐿PPO → 𝜋𝜃(𝑎𝑡 ∣ 𝑠𝑡), 𝑉𝜃(𝑠𝑡) → 𝑠𝑡 → TIGNNparameter.

The embedding 𝑠𝑡 of the TIGNN is automatically tuned to orientations that are

more effective for the PPO recommendation task. The goal of the GNN is implicit in

the goal of the PPO, which is to learn graph embeddings that enable better policy 𝜋𝜃.

In this section we describe in detail the time-interpretable dynamic recommender

system intelligent decision-making algorithm in Algorithm 1. We will compare and

analyzes our TIGNN with some representative recommendation models in section

Discussion.

4. Experiments

In this section, we perform experiments on three real-world datasets to evaluate

the performance of our model. The results demonstrate the effectiveness of the system

in improving recommendation accuracy, personalization, and decision-making

intelligence.

4.1. Datasets

To evaluate the effectiveness of our model, we conduct experiments on three

datasets from real-world:

a) Last. fm1K: The dataset is annotated with timestamps for each user’s music

playing behaviors and is suitable for training time-sensitive recommender

systems. The small size of the dataset is ideal for validating the dynamic

properties of the algorithm and training the model quickly and iteratively.

b) MovieLens⁡1M: User rating behaviors for films tends to be temporally dynamic.

The data size is medium and suitable for validating the effectiveness of time-

dynamic recommendation algorithms.

c) Amazon⁡Product⁡Review: User purchasing behaviors is distinctly temporal and

interactions can be modelled with timestamps. The data is large and needs to be

preprocessed and sampled to form a subset suitable for training.

In all of the sets of data, we treat the presence of comments or ratings as implicit

feedback and exclude users and items with fewer than five relevant actions. After

processed, the data statistics are shown in Table 2.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

18

Table 2. Basic statistics for the three datasets.

Datasets Last.FM 1K MovieLens 1M
Amazon Product

Review

#of Users 992 6,039 9,985

#of Items 1,998 3,679 1,1467

#of Interactions 25,990 576,724 97,853

Average length 26.2 95.5 9.8

Density 1.31% 2.59% 0.08%

According to the characteristics of the dataset, the division by time series can

ensure the time continuity of the training set and the test set, which is in line with the

workflow of the recommender system in the real scenario, and can better test the

performance of the dynamic recommendation model. Last.FM 1K data is sparser, can

capture the time dynamic characteristics of user interest, time dynamic

recommendation. MovieLens 1M data is denser, can use the time information to

capture the change of user interest, long-term interest modelling. Amazon Product

Review data is very sparse, the long-tail effect is obvious, suitable for long-tail

recommendation.

4.2. Experiments setting

4.2.1. Baselines

We compare the proposed TIGNN with the following, all of them use GNNs for

augmenting DRL-based RS, except for the first one, which is a GCN approach:

KGCN: propose a variant of GCN to learn the embedding for KG.

KERL: uses a traditional graph embedding method 𝑇𝑟𝑎𝑛𝑠𝐸 to generate the state

representation for DRL-based RS.

DGN : propose a graph convolutional RL (DGN) method which integrates the

GCN into the Q-learning framework for general RL problems by replacing the state

encoding layer with the GCN layer.

GCQN : extend this method into the deep learning field and apply it to

recommender systems.

KGRL: employs KG inside the actor-critic algorithm to help the agent learn the

policy.

RLfD: adopts a Graph Attention Network (GAT) into the actor-critic network to

conduct recommendation.

4.2.2. Evaluation metrics

We adopt two widely-used metrics, NDCG@K and Hit@K, to evaluate all

methods.

NDCG@K is a ranking indicator, and higher NDCG means target items tend to

have more top rank positions, while Hit@K only cares if the ground-truth item appears

in Top-K and does not take into account the sorting quality of the other items in the

recommended list.

For each test sample, we randomly sample 100 negative items, and rank these

items with the ground-truth item. We evaluate Hit@K and NDCG@K based on these

101 items. By default, we set K = 10.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

19

4.2.3. Parameter setup

We implement our model in DGL + PyTorch. The maximum subgraphs length n

is set to 50. The embedding size is fixed to 50 for all methods. All trainable parameters

are optimized by Adam algorithm, the learning rate is set to 0.01. Batch size is 50. 𝜆

is 1𝑒 − 4. The TIGNNN layer number L is set to 3 for Last.FM and MovieLens, 2 for

Amazon. For each dataset, the ratio of training, evaluation, and test set is 6: 2: 2. Each

experiment is repeated 3 times, and the average performance is reported. For the

compared methods, we use the default hyperparameters except for dimensions.

4.3. Results

4.3.1. Performance comparison

We use Table 3 to present the sorting quality of recommended lists NDCG@10

values and recommended list hit rate Hit@10 values for the recommender system

TOP-10 predictions, respectively (other variants are not plotted in the graphs for

clarity). We have the following observations:

Table 3. Performance of TIGNN and compared methods in terms of Hit@10 and NDCG@10.

Datasets Metric KGCN KERL DGN GCQN KGRL RLfD TIGNN Gain

Last.FM
NDCG@10 22.10 29.00 33.10 32.80 32.95 31.00 36.50 10.27%

Hit@10 38.00 44.00 49.10 48.80 49.00 47.00 53.00 7.95%

MovieLens
NDCG@10 29.00 47.00 54.00 53.90 50.10 51.20 56.80 5.19%

Hit@10 38.00 68.00 74.00 73.50 72.20 72.50 76.00 2.70%

Amazon
NDCG@10 37.00 34.00 50.00 49.50 50.30 50.20 52.00 3.40%

Hit@10 57.00 52.00 72.00 70.50 72.50 71.50 73.80 1.80%

Note: “Gain” means the improvement over the best compared methods.

TIGNN-RL achieves the best performance on three datasets with most evaluation

metrics. In particular, DGSR improves over the strongest baselines w.r.t NDCG@10

by 10.27%, 5.19%, 3.40% in Music, Movies, and Shopping, respectively. Notably,

Last.FM is the most sparse and short dataset, so many users and items only have a few

interactions. In our model, the high-order connectivity of a dynamic graph alleviates

this issue. So, there is a significant improvement in Last.FM. By stacking the TIGNN

layers, TIGNN can utilize time-sensitive and context-aware information explicitly to

provide more auxiliary information for prediction. While KERL, DGN, GCQN, and

KGRL only encode each information independently as the user’s dynamic interest

representation. Significantly, RLfD utilizes many correlated user interaction

information, but performs worse than our DGSR, especially on Music and Movies. We

believe that the reason is RLfD ignores the refine interaction context-aware

information of subgraphs. And Music and Movies have stronger context-aware

properties than Amazon, resulting in significant improvement in the performance of

TIGNN over RLfD on Music and Movies.

4.3.2. The sensitivity of hyper-parameters

To explore the effect of temporal and interpretability user-interactions

information on TIGNN, we study how two hyperparameters, the TIGNN layer number

𝑙 and the maximum length of subgraph 𝑛 affect the performance of TIGNN.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

20

We conduct our method with different TIGNN layer number 𝑙 on Amazon and

Last.FM datasets. TIGNN-0 represents only use user embedding for recommendation.

DGSR-1 represents the DGRN with one layer, indicating to use first-order neighbor

samples and fixed number of neighbor node samples information perform an

aggregation for prediction.

Figure 5. Effect of propagation layer numbers (the y-axis on the left is Hit@10 value, and the right is NGCD@10

value).

From Figure 5, we find that increasing the layer of TIGNN is capable of

promoting the performance substantially. It demonstrates that exploiting high-order

user-interactions information explicitly can effectively improve recommendation

performance. TIGNN-2 and TIGNN-3 achieve the best performance on Last.FM and

Amazon, respectively. The possible reason is that Amazon is sparser than Last.FM, a

larger number of layers may be required to introduce a more contextual information.

When further stacking propagation layer, we find that the performance of DGSR-

3 and DGSR-4 begin to deteriorate. The reason might be that the use of far more

propagation layers may lead to over smoothing.

We train and test our method on the Last.FM and Amazon datasets with n from

10 to 60, while keeping other optimal hyperparameters unchanged. Besides, to further

investigate the benefit of information, we also conduct TIGNN-1 with different 𝑛 .

Figure 6 shows the Hit@10 results.

Figure 6. Effect of the maximum length of subgraphs.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

21

Increasing the n of TIGNN from 10 to 50 consistently improves the performance

of Amazon data. TIGNN performs better on the Last.FM when set n to be 20 and 50.

However, blindly increasing the n does not necessarily improve the performance of

TIGNN and TIGNN-1. It is likely to bring noise and cause the performance to

attenuate.

Compared with TIGNN-1, TIGNN performs better than TIGNN-1 at each value

of 𝑛 . To be specific, even when n is set to 10, TIGNN is still better than the best

performance of TIGNN-1, which implies that explicitly utilizing high-order

information of user can alleviate the issue of insufficient user history information, thus

improving the performance of recommendation.

We further analyze the impact of different dimensionality of embedding size.

Figure 7 describes the performance of model under the embedding size from 16 to 80.

We can observe that the performance of model gradually improves as the

dimensionality increases. With the further increase of the dimensionality, the

performance tends to be stable. This verifies the stability of our model in different

dimensions.

Figure 7. Effect of the embedding size.

5. Discussion and future directions

The experimental results demonstrate the effectiveness of the proposed Temporal

Interpretability Graph Neural Network with Reinforcement Learning (TIGNN-RL)

framework in capturing dynamic user preferences and balancing short-term accuracy

with long-term user engagement. In this section, we discuss the key findings,

challenges, and implications of this work. Additionally, integrating biomechanics

knowledge is also explored to reshape and enhance these aspects

5.1. Key contributions

Temporal Adaptability: By modeling user preferences dynamically using

temporal encoding and reinforcement learning, TIGNN-RL effectively adapts to both

short-term and long-term preference shifts, which is critical in real-world

recommendation scenarios. When considering biomechanics, in applications like

fitness recommendation systems, this adaptability becomes more significant. For

instance, as a user engages in different physical activities over time, their body’s

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

22

biomechanical responses will change. The muscles adapt, and the flexibility may

improve or change. The user’s physical capabilities and comfort levels with various

exercises will also evolve. TIGNN-RL can potentially leverage this knowledge to

adjust recommendations in real-time. If a user initially prefers low-impact exercises at

first but gradually builds up strength later, the system will adapt and suggest more

intense workouts that align with their new biomechanical state.

Explainability: The temporal interpretability module provides insights into the

temporal importance of user-item interactions, enabling explainable recommendations,

which are becoming increasingly valuable in recommendation system applications.

And with the context of biomechanics, this feature will be extremely beneficial. In a

sports equipment recommendation scenario, the system can explain why the

equipment is recommended based on the user’s previous biomechanical interactions

with similar equipment. This will enhance the transparency of the recommendation

process and build trust between the user and the system.

5.2. Challenges

Scalability: While TIGNN-RL achieves strong performance on mid-sized

datasets, scaling the framework to very large datasets (e.g., hundreds of millions of

users and items) may be computationally expensive due to the iterative nature of GNN

message passing and reinforcement learning updates. Under the background of

biomechanics, the problem becomes more compounded. Biomechanical data is often

complex and high-dimensional. It involves factors like body dimensions, movement

patterns, and physiological responses. Incorporating such data into the TIGNN-RL

framework for large datasets would require more computational resources. Thus, it is

needed to explore efficient algorithms and distributed computing techniques to address

this scalability issue. Additionally, it is also worthwhile to explore the emerging graph

computation optimization algorithms and cloud-based distributed training frameworks,

and analyze their applicability and potential improvement directions within the

TIGNN-RL framework.

Cold Start Problem: Although TIGNN-RL leverages dynamic graphs and

temporal embeddings, its performance on cold-start scenarios, where new users or

items have very limited historical data, is not fully optimized. However, their

biomechanical characteristics, such as body type, muscle strength, and flexibility, play

a crucial role in making accurate recommendations. But integrating this biomechanical

information into the TIGNN - RL framework during the cold start phase is a challenge

and requires further research.

Tradeoff Between Accuracy and Diversity: Balancing accuracy and diversity

remains a challenge. While TIGNN-RL improves diversity without significant loss of

accuracy, real-world applications might require further fine-tuning to meet specific

business or user objectives.

5.3. Implications

Personalized Recommendation: By leveraging dynamic graphs and temporal

interpretability, TIGNN-RL can generate highly personalized recommendations

tailored to evolving user preferences.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

23

Fairness and Diversity: Improved diversity metrics suggest that TIGNN-RL can

mitigate popularity bias, making it suitable for applications requiring fairness and

inclusivity.

Real-Time Applications: The framework’s ability to adapt to dynamic user

behaviors makes it a strong candidate for real-time recommendation systems, such as

music streaming platforms or e-commerce.

6. Conclusions

The proposed TIGNN-RL framework represents a significant step toward

dynamic, interpretable, and effective recommendation systems. By combining

temporal modeling, graph neural networks, and reinforcement learning, it addresses

several key challenges in modern recommender systems. However, further research is

needed to improve scalability, interpretability, and applicability to cold-start scenarios

and other domains. By understanding and leveraging the complex relationship

between user behaviors and their biomechanical characteristics, the TIGNN - RL

framework can be optimized to provide more accurate, personalized, and context-

aware recommendations. With continued advancements, this framework has the

potential to set a new standard for intelligent decision-making in recommender

systems.

The introduction of the TIGNN-RL framework is expected to bring significant

breakthroughs to the field of recommendation systems, offering not only improved

performance for existing platforms but also laying the groundwork for intelligent

recommendation methods in emerging domains such as healthcare, financial

technology, and education. By dynamically adapting to user behavior and leveraging

advanced graph-based representations, this framework can address challenges like

cold start problems and dynamic preference shifts more effectively.

Looking ahead, future research could explore the integration of TIGNN-RL with

other transformative technologies, such as blockchain for secure and decentralized

recommendations or quantum computing to enhance computational efficiency in

large-scale systems. These explorations could significantly expand the functionality

and application scope of recommendation systems, enabling smarter, more efficient,

and personalized services across diverse fields. Such advancements would further

bridge the gap between theoretical innovation and practical application, paving the

way for new possibilities in intelligent decision-making and user-centric technologies.

The introduction of the TIGNN-RL framework is expected to bring new breakthroughs

to the field of recommendation systems, not only enhancing the performance of

existing recommendation systems but also potentially providing new ideas and

methods for the application of intelligent recommendations in emerging fields (such

as fintech, healthcare, etc.). With the continuous development of technology, future

explorations could further investigate the integration with other emerging technologies

(such as quantum computing, blockchain, etc.), expanding the functionality and

application scope of recommendation systems to achieve smarter, more efficient, and

personalized recommendation services.

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

24

Author contributions: Conceptualization, HY and CY; methodology, YH; software,

CY; validation, HY and CY; investigation, HY; resources, CY; data curation, CY;

writing—original draft preparation, HY; writing—review and editing, CY;

visualization, HY; supervision, HY; project administration, HY; funding acquisition,

CY. All authors have read and agreed to the published version of the manuscript.

Ethical approval: Not applicable.

Conflict of interest: The authors declare no conflict of interest.

References

1. F. Ricci, L. Rokach, B. Shapira, P. B. Kantor. Recommender systems survey. Knowledge-Based Systems; 2013. doi：

10.1016/j.knosys.2011.12.005

2. C. Wang, M. Zhang, W. Ma, et al. Modeling item-specific temporal dynamics of repeat consumption for recommender

systems. In: Proceedings of the World Wide Web Conference; 2019.

3. Yunzhi Tan, Min Yang, Chengming Li, Ruifeng Xu, Yating Liu. A time-aware graph neural network for session-based

recommendation. IEEE Access: Practical Innovations, Open Solutions; 2020. DOI: 10.1109/ACCESS.2020.3015480

4. Yan Zhao, Chong Chen, Xiangyu Liu, Ziliang Zhao. Two-Stage Sequential Recommendation for Side Information Fusion

and Long-Term and Short-Term Preferences Modeling. Journal of Intelligent Information Systems. 2022. DOI:

10.1007/s10844-021-00683-4

5. J. Tang, K. Wang, H. Liu, et al. Time-sensitive recommendation from recurrent user activities. Advances in Neural

Information Processing Systems; 2015.

6. H. Yu, J. Jannach. STAMP: Short-Term Attention / Memory Priority Model for Session-Based Recommendation. In:

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; 2018. doi：

10.1145/3219819.3220003

7. Suhaim AB, Berri J. Context-Aware Recommender Systems for Social Networks: Review, Challenges and Opportunities.

IEEE Access. 2021; 9: 57440–57463. doi: 10.1109/access.2021.3072165

8. Venkatachalam P, Ray S. How do context-aware artificial intelligence algorithms used in fitness recommender systems? A

literature review and research agenda. International Journal of Information Management Data Insights. 2022; 2(2): 100139.

doi: 10.1016/j.jjimei.2022.100139

9. Zhou S, Hudin NS. Advancing e-commerce user purchase prediction: Integration of time-series attention with event-based

timestamp encoding and Graph Neural Network-Enhanced user profiling. Zhu J, ed. PLOS ONE. 2024; 19(4): e0299087.

doi: 10.1371/journal.pone.0299087

10. Hou Z, Bu F, Zhou Y, et al. DyCARS: A dynamic context-aware recommendation system. Mathematical Biosciences and

Engineering. 2024; 21(3): 3563–3593. doi: 10.3934/mbe.2024157

11. Ali W, Kumar J, Mawuli CB, et al. Dynamic context management in context-aware recommender systems. Computers and

Electrical Engineering. 2023; 107: 108622. doi: 10.1016/j.compeleceng.2023.108622

12. Ma L, Chen Z, Fu Y, Li, Y. Heterogeneous Graph Neural Network for Multi-behavior Feature-Interaction Recommendation.

In: Pimenidis E, Angelov P, Jayne C, et al. (editors). Artificial Neural Networks and Machine Learning—ICANN 2022.

Springer, Cham; 2022.

13. Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin, Yong Li. Adaptive user modeling with long and short-term preferences

for personalized recommendation. IJCAI; 2019. DOI: 10.24963/ijcai.2019/375

14. Jeong SY, Kim YK. Deep Learning-Based Context-Aware Recommender System Considering Change in Preference.

Electronics. 2023; 12(10): 2337. doi: 10.3390/electronics12102337

15. Zhiheng Liu, Le Wu, Lei Chen, Richang Hong. Dynamic time-aware collaborative sequential recommendation with

attention-based network. Knowledge and Information Systems; 2023. DOI: 10.1007/s10115-023-01857-y

16. Xiaokun Zhang, Bo Xu, Liang Yang, Hongfei Lin. Time interval-aware graph with self-attention for sequential

recommendation. In: Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial

Intelligence; 2023. DOI: 10.1145/3576836.3576852

Molecular & Cellular Biomechanics 2025, 22(3), 1339.

25

17. B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk. Session-based Recommendations with recurrent neural networks. doi:

10.48550/arXiv.1511.06939.

18. Wang L, Jin D. A Time-Sensitive Graph Neural Network for Session-Based New Item Recommendation. Electronics. 2024;

13: 223. doi:10.3390/electronics13010223

19. Shan G. Exploring the intersection of equipment design and human physical ability: Leveraging biomechanics,

ergonomics/anthropometry, and wearable technology for enhancing human physical performance. Advanced Design

Research. 2023; 1(1): 7–11. doi: 10.1016/j.ijadr.2023.04.001

20. Z. Wu, S. Pan, F. Chen, et. al. Graph Neural Networks: A Review of Methods and Applications. AI Open; 2018.

21. R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud. Deep learning for sequential recommendation: algorithms, influential

factors, and evaluations. doi:10.1145/342672

22. R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud. Latent ODEs for irregularly-sampled time series. doi:

10.48550/arXiv.1907.03907.

