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Abstract: Aiming at the traditional fatigue driving detection system with a single function, 

unable to locate the face, greatly affected by external lighting factors and high hardware 

requirements, this design proposes a system that uses OpenMV equipped with a CMOS camera 

as the main controller, recognizes the face contour by using Haar classifiers, and controls the 

two-dimensional gimbal to realize the face localization function, with the MCU as the slave, 

and utilizes the MCU to read the blinking frequency per time unit to determine the fatigue 

driving. The microcontroller is the slave, using the microcontroller to read the blinking 

frequency captured by OpenMV per unit time to judge the fatigue driving, when the blinking 

frequency is higher than 30 times/min, the microcontroller triggers the sound and light alarm. 

At the same time, the neck and waist signal analysis module is added to collect more 

comprehensive driver fatigue information. For complex road conditions such as sharp curves, 

up and down slopes, the microcontroller can pre-judge in advance through the positioning 

module to remind the driver in the form of alarm. The experiment proves that the system adopts 

lightweight design scheme, applicable to the field of in-vehicle electronics, both with the 

advantages of diversified functions, high measurement accuracy, intuitive display, stable 

operation, etc. The combination of 2D PTZ face localization and fatigue driving detection in 

the mode of master-slave improves the real-time and robustness of the control system, which 

is useful for the improvement of fatigue driving detection by using machine vision. 
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1. Introduction 

If the method of PERCLOS is used in the detection of unsafe driving, there is a 

certain monitoring blind spot due to the influence of the driver’s head swing, and the 

amount of data combined with body movements such as smoking and yawning is often 

very large, and it is difficult to run the analysis program on a PC in real time in the 

vehicle embedded electronic equipment. Relying on PERCLOS to identify fatigue 

driving, there is a better recognition accuracy for heavy fatigue and a poorer 

recognition accuracy for shallow fatigue; there is also a slow recognition of fatigue 

driving, reminders are not timely, leaving the driver’s response time is too short; by 

the driver’s individual differences in the impact of the threshold of these indicators is 

also to be carried out to determine the threshold of the more practical driving tests. 

Neck and lumbar muscle fatigue is a common problem during long driving, especially 

the fatigue of the trapezius muscle in the neck and the lumbar erector ridge muscle 

will directly affect the driver’s posture and reaction ability. Through the introduction 

of EMG signal analysis, the system can more comprehensively evaluate the fatigue 

state of the driver from the perspective of muscle activity, making up for the shortage 

of relying on visual information only. Zhang et al. studied sEMG and accelerometer 

signals and used multimodal fusion convolutional neural networks to improve the 
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accuracy of cross-individual upper limb motion classification. By introducing the two-

flow convolution model, the common information between different individuals can 

be extracted, which significantly improves the classification performance, especially 

under the training of multiple individual data, the performance is better than the 

traditional single signal input model. This method effectively overcomes the problem 

of data distribution differences among individuals [1]. Salah et al. proposed a method 

of combining event-driven neuromorphic vision sensors with traditional vision 

techniques to improve the speed and accuracy of hole and slot detection. The 

introduction of motion compensation and mean offset clustering algorithms can reduce 

the uncertainty of sensor output and significantly improve the detection accuracy and 

response speed, demonstrating the advantages of multi-modal technology in the 

manufacturing process [2]. Therefore, this paper proposes a lightweight fatigue 

driving detection scheme applicable to the field of in-vehicle electronics, using the 

OpenMV equipped with CMOS camera OV5640 as the main controller, combined 

with the slave microcontroller, the main controller camera using Haar classifier and 

PID control algorithms to achieve face feature extraction and control the steering of 

the 2D gimbal, to achieve the function of face localization; the slave machine unit of 

time The slave machine reads the blinking frequency of the host machine to determine 

whether it is fatigue driving and provides driving road condition information. Using 

the neck and waist signal analysis as an auxiliary technology to analyze the driver’s 

state more comprehensively. Adopting the master-slave mode improves the data 

acquisition efficiency of the master controller and makes up for the problem of limited 

hardware resources and low real-time performance of the in-vehicle electronic system. 

2. System architecture analysis 

The overall scheme of the face localization and fatigue driving detection system 

is shown in Figure 1, the whole system consists of an image recognition and 

processing module OpenMV, a 2D gimbal, a MSP430F5529 microcontroller, an alarm 

module, a localization module, a storage module, and a display module, OpenMV 

carries a camera component, and the face detection is done by using a Haar Cascade 

feature detector on the image to recognition, which can acquire the driver’s face image 

data, analyze the captured face, drive the servo, and control the gimbal to track the 

face. According to the face using the Haar operator of the eye to locate the human eye, 

determine the position of the pupil through the recognition of the color depth, 

combined with the microcontroller timer real-time calculation of the driver’s blinking 

frequency and determine whether the driver is fatigued driving [3–5]. The Haar 

classifier has excellent performance in complex environments, especially when the 

driver’s head is moving quickly and glasses are worn. By adjusting the image 

resolution and frame rate, the system can effectively track the face in rapid motion, 

ensuring that the head can be adjusted in time to maintain face positioning. In addition, 

the Haar classifier effectively deals with lens reflection and light interference through 

dynamic exposure and gain adjustment, improving the recognition accuracy under 

complex lighting conditions. Combined with optimization strategies, the system 

operates stably in a variety of complex environments, ensuring accurate face 

positioning and fatigue monitoring. OpenMV communicates with the MSP430F5529 
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microcontroller through the serial port to transmit the driver’s abnormal driving 

signals [6–9]. The microcontroller uses GPS or BDS to obtain the current location 

information through the positioning module, and the storage module stores the 

location information for traffic accidents that are prone to occur, and the 

microcontroller combines the storage information and the positioning information to 

warn the driver in the process of driving on special road sections through the alarm 

module. 

MCU
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Image 

Recognition 

and Processing

2D Gimbal
Alarm 

Module

Display 

Module

Positioning 

Module

Storage 

Module

 

Figure 1. System architecture diagram. 

3. 2D gimbal control and fatigue detection algorithm 

3.1. Face recognition algorithm 

Common face detection methods include Haar, Hog, CNN, SSD, MTCNN, etc [10–

12]. Haar is fast and suitable for in-vehicle electronic systems with small computing 

power. In this design, the Haar feature classifier on OpenMV is used to quickly 

recognize faces within the field of view and obtain the X, Y-axis coordinates of the 

faces [13–16]. The specific face detection effect is shown in Figure 2. 

 

Figure 2. Effect of face detection. 

3.2. Human eye recognition algorithm 

In the application environment inside a car, the driver’s face position is relatively 

fixed, so the Haar operator for faces can be utilized to quickly recognize the driver’s 

face [17–20]. Then the Cascade classifier of Haar features is utilized to detect the 

driver’s eye position, thus marking the eye region and obtaining the pupil 

coordinates [21,22]. Figure 3 shows the recognition of human eyes in different states. 



Molecular & Cellular Biomechanics 2025, 22(3), 1359.  

4 

 

Figure 3. Human eye recognition without and with glasses. 

3.3. 2D gimbal control algorithm 

The 2D gimbal consists of a combination of two servos, equipped with OpenMV 

to enable the camera to achieve 360° rotation in the horizontal direction and 180° 

rotation in the vertical direction. Its physical assembly diagram is shown in Figure 4. 

 
Figure 4. 2D gimbal 3D drawing and physical drawing. 

Using OpenMV to obtain the X and Y axis coordinates of the target object, 

calculate the coordinates of the center point of the detection frame, and when the offset 

of the center point position exceeds the pre-set threshold, get the offset and control the 

direction of the gimbal according to its magnitude, so that the center of the camera’s 

field of view is always the same as the geometric center of the human face [23,24]. 

Under the pixel coordinate system, judging the relationship between the center of the 

object tracked by the gimbal and the rotation of the gimbal, the steering direction of 

the gimbal can be classified into the following eight cases, as shown in Figure 5. 

 
Figure 5. Direction of motion of the head. 
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PID algorithms are divided into two types: positional and incremental. The 

integral link of positional PID is to integrate the deviation of the whole control system, 

and each output value obtained is closely related to the motion state of the object in 

the previous frame, which is easy to cause integral saturation. The output of 

incremental PID algorithm is related to the deviation value of three consecutive 

frames, and the final output value is obtained through the comparison of three 

moments, which prevents the error from accumulating too much and affects the control 

accuracy [25,26]. Therefore, this design adopts the incremental PID algorithm to 

control the gimbal without considering the integral saturation, which simplifies the 

software design, and its incremental flowchart is shown in Figure 6. 
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Figure 6. Head steering PID control schematic diagram. 

PID parameters should be adjusted according to the dynamic characteristics of 

the system. The proportional gain determines the influence of the current error on the 

control output. Choosing the right Kp value is the key to ensure the fast and accurate 

positioning of the PTZ. Integral control acts on the cumulative error and can eliminate 

the steady-state error of the system. Therefore, when selecting Ki values, it is 

necessary to ensure that the system can maintain stability in long-term operation and 

that errors will not accumulate excessively. Differential control acts on the rate of error 

change and can effectively suppress the oscillation and overshoot of the system. By 

calculating the error change of the first few frames, incremental PID avoids the integral 

saturation problem caused by the integral link in the traditional PID, so as to improve 

the real-time and stability of the control. When tuning parameters, the proportional 

gain is set to 5, and the integral gain and differential gain are initially set to 0. Increase 

the Kp value to make the system respond faster until the head quickly approaches the 

target face without significant oscillations. Adjust the Kd value to reduce oscillations 

and ensure smooth system transition. 

3.4. Fatigue detection algorithm 

3.4.1. PERCLOS algorithm 

Eye changes are an effective indicator of fatigue status, and the PERCLOS 

algorithm detects fatigue status by calculating the ratio of a driver’s eyes closed to a 

specific degree over a period of time. Several common standards for this algorithm 

include P70, P80, and EM, and the specific method is to calculate the ratio of the time 

in which the eye closure ratio exceeds 70%, 80%, and 50% to the total observation 

time in a specific time interval [27,28]. 
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3.4.2. Blink frequency algorithm 

The blink frequency algorithm determines the number and frequency of blinks 

by comparing the pupil area of the driver in normal and fatigued driving conditions. 

The method recognizes each blinking action and accumulates it. Taking the P80 

standard as an example, only one blink is recorded when the degree of eye closure 

reaches or exceeds 80%, without the need to accurately grasp the closure time, which 

reduces the requirements of hardware configuration and is more suitable for 

application in vehicle electronic systems. 

The detection algorithm, as illustrated in Figure 7, is also based on the P80 

standard, which records only one blink when the eye closure is at or above 80%, thus 

calculating the total number of blinks in a time period, c. Let f be the blink frequency, 

which can be calculated from the corresponding Equation (1).  

 

Figure 7. Schematic diagram of blink frequency detection algorithm. 

𝑓 =
𝑐

𝑡4 − 𝑡1
 (1) 

4. Hardware circuit design 

OpenMV as an open source and low-cost machine vision module, provides rich 

machine vision development modules and rich functional interfaces through 

MicroPython language at the software level, which enables developers to quickly 

realize software development and debugging, and it is more convenient to obtain 

image information and control peripheral devices. The OpenMV4 version, equipped 

with ARM Cortex M7 STM32H743VI processor, has a high-frequency main 

processor, provides a variety of common interfaces in order to communicate with 

external MCUs, and also supports a variety of camera modules and real-time image 

transmission, which provides a good hardware support for the realization of the face 

positioning and fatigue detection system. 

The MSP430F5529 is a chip based on the MSP430 microcontroller architecture, 

which has a built-in MSP430 core with 16-bit RISC architecture for fast operation and 

effective reduction of power consumption. It also includes a variety of standard 

interfaces such as UART, I2C, SPI, etc., which facilitates communication with external 

devices. 

OpenMV’s P5, P4 pins are connected to the MSP430F5529 microcontroller’s 

P3.3, P3.4, P7 connects to the PWM signal terminal of the pan servo, P8 connects to 



Molecular & Cellular Biomechanics 2025, 22(3), 1359.  

7 

the PWM signal terminal of the tilt servo. 3.3V, GND are connected to the 

MSP430F5529 microcontroller’s 3.3V, GND. 

MSP430F5529 through the hardware I2C bus interface P4.1, P4.2 and the I2C bus 

type E2PROM memory module AT24C512 SDA, SCL connected, AT24C512 has 

512KB of storage space for storing special road information, when the MSP430F5529 

read the positioning module information and the storage of special road position When 

MSP430F5529 reads the information of the positioning module and the stored special 

road condition location information, it triggers the sound and light alarm to remind the 

driver to pay more attention; the SDA and SCL of the I2C OLED are connected to the 

P3.0 and P3.1 of the MSP430F5529 to realize the data communication of the I2C bus 

mode through the software configuration; the positioning module adopts the serial 

communication, and the TXD and RXD of the transmit and receive bits are connected 

to the P2.3 of the MSP430F5529, P8.1 of the MSP430F5529, using an ordinary port 

to simulate the serial port to achieve data transmission. Alarm circuit is driven by a 

PNP-type transistor, P3.7 connected to the transistor base, when the control terminal 

P3.7 is a low level, the transistor saturated conduction, the buzzer alarm, when the 

base is extremely high level, the transistor cutoff, the buzzer to stop the alarm; LED 

using the current-flooding driver, P8.2 is a low level, the LED light, high level when 

the LED is extinguished. The specific hardware circuit is shown in the figure below. 

The whole system uses external DC 5 V power supply, the specific circuit shown in 

Figure 8. 

 

Figure 8. System hardware circuit diagram. 

5. Software design 

5.1. Software architecture 

The software of the system consists of two parts. One is the image recognition 

and processing program running on the OpenMV main controller, which realizes face 

tracking, fatigue monitoring and communicates with the MSP430F5529 

microcontroller. The second is the monitoring program downloaded in the 

MSP430F5529 microcontroller, which mainly receives the signal of blinking 
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frequency, display, alarm, and real-time comparison of positioning information and 

stored information. The general structure of the software is illustrated in Figure 9. 
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Figure 9. Overall software structure of the system. 

5.1.1. OpenMV face localization software design 

Face localization is mainly realized by OpenMV camera and two servos in 

hardware, and its flowchart is shown in Figure 10. 

Setting the resolution

Photograph

Image grayscale

Calling the Haar 

operator

Face recognition

Driving the  

gimbal

Tracking faces

Camera 

initialization

Return  

Figure 10. Flowchart of face positioning software. 
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First the camera is initialized, the resolution of the OV5640 camera is adjusted to 

be able to achieve a frame rate of 60 FPS, and a single frame image is captured after 

completing the camera settings. The captured color image is converted into a grayscale 

map as a preprocessing part of image processing. Load the Haar operator of the face 

to recognize the grayscale map, if the recognition is successful, the system generates 

a rectangular tuple (x,y,w,h) containing the position and size information of the face. 

If the recognition is not successful, the system returns an empty tuple, i.e., the driver 

is not found. Then, based on the rectangular tuple of face position and size (x,y,w,h), 

the deviation is calculated and fed back to the servo controlling the gimbal, so as to 

adjust to the angle that keeps the face in the center of the screen [29,30]. 

5.1.2. OpenMV pupil recognition software design 

The program flow for implementing pupil recognition for OpenMV in this design 

is shown in Figure 11. 

Setting the resolution

Photograph

Image grayscale

Calling the Haar 

operator

Eyes that 

recognize faces

Recognizing the 

pupil of a face

Camera 

initialization

Return
 

Figure 11. Pupil recognition flowchart. 

Before image processing, the camera is first reset and its contrast and gain are 

set. The resolution of OV5640 is adjusted to 640 × 480. after completing the setup, the 

camera is operated to take an image frame, the color photograph taken is converted 

into a grayscale map, the Haar operator of the human eye is used to locate the human 

eye in the grayscale map, and if successful, a rectangular tuple representing the 

position and size of the eye (x,y,w,h) is obtained, otherwise an empty tuple is returned. 

Based on the specific size and location information of the eye region, the darkest 

part of the color is retrieved to determine the pupil location, if the location and size of 

the pupil is detected, the recognition is successful, if an empty tuple is returned, the 

recognition process fails. Assuming that the driver is blinking, after completing a pupil 

detection cycle, the obtained pupil position and size information is analyzed to 

determine whether the detection was successful or failed. An empty return result 
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means that the pupil was not recognized and it is assumed that the driver is in the 

blinking period. By monitoring the number of times a driver blinks in a given period 

of time, it is possible to assess whether he or she is at risk of driving fatigue [31]. 

5.1.3. Pupil recognition to determine fatigue driving monitoring software design 

Usually the normal blinking frequency range for adults is 16 to 20 times/min, 

each lasting about 0.3 s. In the state of driving fatigue, the blinking frequency will rise. 

Studies have shown that the blinking frequency increases when drivers drive 

continuously for a long period of time and their fatigue level deepens, and when the 

frequency rises to 30 times/min, an obvious fatigue signal will appear. Therefore, in 

order to accurately determine whether a driver is fatigued or not, the blinking 

frequency is set at 30 times/min as the critical criterion for fatigue. Under normal 

circumstances, the length of a human’s blinking and closing time is about 0.2 to 0.8 s. 

Taking this physiological feature into account, the system is unable to detect the pupil 

during the 0.8-s time period, and the system recognizes this as a complete blinking 

action and counts it. 

5.1.4. Design of auxiliary module for cervical lumbar EMG analysis 

In order to further supplement the existing fatigue driving detection system, the 

study introduced the neck and waist EMG analysis from the perspective of 

biomechanics to evaluate the fatigue state of drivers more comprehensively. The 

muscle activity of the neck and waist is closely related to the driver’s posture and 

fatigue, especially during a long driving process, the muscle fatigue of the neck and 

waist will significantly affect the driver’s reaction ability and attention. The use of 

surface myoelectric sensors (sEMG) attached to the driver’s neck and lower back key 

muscle groups, these muscles are prone to fatigue during prolonged driving, and their 

activity can reflect the fatigue of the driver. The sensor wirelessly transmits the 

collected EMG signals to OpenMV for real-time processing and analysis. The 

collected EMG signal is first filtered to remove high-frequency noise and low-

frequency drift. The filtered signal is rectified and smoothed to obtain the envelope of 

muscle activity, which is convenient for subsequent feature extraction. Multiple time-

domain and frequency-domain features were extracted from the pre-processed EMG 

signals to reflect the intensity and fatigue of muscle activity. The extracted EMG 

features were compared with the preset fatigue thresholds. When the fatigue index of 

the neck and waist muscles exceeds the set threshold, the system determines that the 

driver is in a state of fatigue. The results of EMG signal analysis were fused with the 

existing blink frequency and facial positioning data, and the fatigue state of drivers 

was evaluated comprehensively by multi-modal data fusion algorithm. 

6. System testing 

6.1. Face recognition test gimbal positioning 

The recognition effect of the face after changing the light intensity is shown in 

Figures 12 and 13. 
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Figure 12. Face recognition test chart under strong light without glasses. 

 
Figure 13. Face recognition test chart under bright light with glasses. 

When executing the actual driver facial positioning test, the OpenMV camera is 

first connected to the two servos of the gimbal, and then connected to the PC, and the 

facial positioning subroutine is loaded and debugged through the OpenMV IDE. 

Under the condition that the camera captures the face, the head moves along the 

horizontal direction with different speeds, and the deviation and control output 

adjustment values of the horizontal servos change in real time. The deviation and 

output data sent from the serial port are shown in Figure 14. 

 

Figure 14. Face level moving servo deviation and output parameter. 
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The control period of the servo is 20 ms, and a dual-channel oscilloscope is 

utilized for observation, and the PWM waveforms of the horizontal servo and tilt servo 

are shown in Figure 15 when the face moves. By verifying the data sent from the 

OpenMV integrated development environment (IDE) serial terminal and against the 

response actions of the servos, the results show that the subroutine for face localization 

is able to quickly track and locate the position of the face once it enters the field of 

view of the camera and moves. 

 
Figure 15. Oscilloscope observation of face-moving horizontal and tilting. 

When conducting a PTZ face tracking experiment, the delay is quantified by 

measuring the time from the PTZ capturing the target to accurately targeting the target 

face. Experiments show that the average tracking delay of PTZ is 400 ms when PID 

parameters are not adjusted, and the delay can reach 600 ms when facing fast head 

movement, showing a significant lag. The effect of PID tuning: The adjusted system 

is more responsive, and the average tracking delay is reduced to about 250 ms. In the 

case of rapid head movements, the tracking delay is also kept to less than 350 ms, 

greatly reducing lag. It shows that the improved PID adjustment process improves the 

real-time tracking ability of PTZ, and makes PTZ more stable and efficient in the 

complex scene. 

6.2. Human eye recognition and fatigue detection 

6.2.1. Human eye recognition detection 

In a bright light environment, the pupil of the left eye without glasses is 

recognized, as shown in Figure 16. Pupil recognition of the left eye wearing glasses 

in a bright light environment, as shown in Figure 17. 
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Figure 16. Left eye recognition test chart in bright light without glasses. 

 
Figure 17. Left eye recognition test plot under bright light with glasses. 

Regardless of whether the driver is wearing glasses or not, with or without glare, 

as long as both eyes are in the detection area of the camera to make any movement, 

the pupil recognition subroutine can quickly and accurately capture the human eye and 

its pupil position, at this time will be in the IDE interface with a square box marked 

with the human eye. 

6.2.2. Fatigue detection 

Before implementing the blink frequency measurement experiment, OpenMV’s 

pupil tracking function should be calibrated for accuracy. Configure the OpenMV 

hardware, start the pupil recognition subroutine with image frame buffer, ensure that 

the eye moves left and right within the camera field of view, and at the same time 

manually record the number of blinks to calculate the blinking frequency and compare 

it with the data automatically measured by the system. The test of the system blink 

frequency is a dynamic measurement process, Table 1 counts the number of blinks 

and the actual blink frequency that appear most frequently in the system blink 

frequency within 1 minute and the microcontroller determines whether it is fatigued 

or not. 

Table 1. Sampling table for blink frequency measurements. 

System blink frequency (cycles/min) Actual blinking frequency (cycles/min) Does the system determine fatigue Experimental time 

15 15 No 12:00–12:01 

25 25 No 12:05–12:06 

35 35 Yes 12:10–12:11 

60 60 Yes 12:15–12:16 

15 15 No 12:20–12:21 

25 25 No 12:25–12:26 

 



Molecular & Cellular Biomechanics 2025, 22(3), 1359.  

14 

Table 1. (Continued). 

System blink frequency (cycles/min) Actual blinking frequency (cycles/min) Does the system determine fatigue Experimental time 

35 35 Yes 12:30–12:31 

56 60 Yes 12:35–12:36 

15 15 No 12:40–12:41 

25 25 No 12:45–12:46 

34 32 Yes 12:50–12:51 

57 60 Yes 13:00–13:01 

In Table 1, there are some deviations between the System blink frequency and 

the Actual blinking frequency. The main sources of deviations are detection 

limitations, hardware limitations and external factors. The system may miss part of the 

blinking action during rapid blinking, especially at higher frequencies. Moreover, the 

processing speed of the main control chip STM32H743 may cause that the detection 

of rapid blinking is not completely accurate. When some special lighting changes or 

interference actions appear, the recognition accuracy of the camera may also be 

affected. In the EMG analysis experiment, the EMG signal is filtered to remove high-

frequency noise and low-frequency drift, and then the envelope signal of muscle 

activity is extracted by rectification and smoothing. Muscle fatigue was evaluated by 

extracting time-domain and frequency-domain features from the processed signals. 

During the experiment, different fatigue thresholds were set. When the muscle fatigue 

index exceeded the threshold, the system would detect the fatigue state of the driver. 

The results of the experiment showed that after more than 90 min of continuous 

driving, the EMG in the neck and waist showed clear signs of fatigue. Specifically, the 

average frequency of activity of the filtered trapezius muscle in the neck increased 

from 0.5 Hz under normal conditions to 0.8 Hz under fatigue conditions, and the 

frequency of activity of the lumbar erector spine muscle also increased from 0.4 Hz to 

0.7 Hz. At this time, the system detects that the fatigue index of the electromyographic 

signal exceeds the preset threshold, and the fatigue alarm is issued. In addition, 

combined with the blink rate and facial positioning data, the system’s judgment 

accuracy reached more than 95% under fatigue. By combining neck and waist EMG 

with eye blink frequency, the experimental results show that the introduction of EMG 

significantly improves the detection accuracy of tired driving. Compared with relying 

solely on blink frequency, the added auxiliary module improves the overall evaluation 

ability of the system for driver fatigue state. These data fully verify the effectiveness 

of the EMG analysis module in practical applications. 

6.3. Complex scene testing 

In order to verify the robustness of the system under different lighting 

environments, four tests of typical complex lighting scenarios were added. The low 

light environment at night is 50 Lux, simulating night driving without street lights. 

The strong backlight environment is 1000 Lux, simulating direct sunlight or direct 

headlights. Dynamic shadow interference is a periodic change in light intensity 

between 200 and 800 Lux, simulating the occlusion of trees or buildings. The hybrid 

light environment consists of headlights, street lamps and natural light with a light 
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intensity of 300–600 Lux. Use the camera resolution of 640 × 480, frame rate of 60 

frames per second, dynamic exposure adjustment is enabled. The test subjects were 10 

drivers, five of whom wore glasses and five without glasses, and each driver was tested 

three times in each environment. Test results of complex scenarios are shown in Table 

2. 

Table 2. Test results of complex scenarios. 

Test scenario 
Facial positioning 

success rate (%) 

Accuracy (95% 

CI) 

Pupil recognition 

accuracy (%) 

Average response 

time (ms) 

Fatigue detection false 

alarm rate (%) 

Low light at night 93.3 91.2–94.1 88.6 210 4.2 

Strong backlight 

environment 
87.5 86.5–88.3 82.4 230 6.8 

Dynamic shadow 

jamming 
91.0 90.2–92.1 85.1 195 5.5 

Mixed light 

environment 
95.6 93.7–96.6 90.2 185 3.7 

As can be seen from Table 2, the system dynamically improves the camera gain, 

and the success rate of facial positioning is maintained at 93.3%, while the false 

positive rate is relatively low (4.2%), mainly due to the loss of some frames in the 

blink action under low light. The backlight reduced the contrast of the face area, and 

the localization success rate dropped to 87.5%. Through the adaptive threshold 

adjustment of Haar classifier, the pupil recognition accuracy is still 82.4%. In dynamic 

shadow interference, the system compensates for light mutation by fast interframe 

difference method, the response time is reduced to 195 ms, and the performance is 

better than static environment. Experiments show that the system can maintain high 

precision and real-time performance under complex lighting conditions, especially in 

dynamic shadow and mixed light scenes. Through dynamic exposure adjustment, Haar 

classifier optimization and multi-modal data fusion, the interference of ambient light 

on fatigue detection is significantly reduced, and the robustness and practicability of 

the design scheme are verified. To further ensure the superiority of the research 

method. This study introduces the current mainstream Method based on convolutional 

neural network and Traditional Face Localization in Mixed light environment for 

comparison. As shown in Table 3. 

Table 3. Comparison of fatigue detection algorithms. 

Algorithm 
Accuracy 

(%) 

Mean Squared Error 

(MSE) 

Confidence Interval 

(95% CI) 

Speed (ms per 

frame) 

False Alarm Rate 

(%) 

Research method 95.6 0.01 93.7–96.6 185 3.7 

Method based on convolutional neural 

network 
89.5 0.03 87.0–92.0 250 5.5 

Traditional Face Localization 93.3 0.02 91.2–94.1 210 4.2 

As can be seen from Table 3, in terms of accuracy, 95.6% of the research Method 

is higher than 89.5% of the Method based on convolutional neural network and 93.3% 

of the Traditional Face Localization. And the research method has faster 

computational efficiency, becoming the only one that takes less than 200 ms. It shows 
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that the research method has stronger performance in complex environment. In the 

same scene for a long time test, within 6 h, the system’s face positioning accuracy has 

been maintained at more than 92%, and the blink frequency detection accuracy has 

reached 96%. In addition, the system’s response time is maintained at around 210 ms, 

ensuring real-time performance. During the whole experiment period, the false 

positive rate of the system is only 3.8%, showing good stability. In the simulated 

fatigue driving scenario, when the driver’s blink frequency reaches 30 times/min, the 

system accurately determines the fatigue state and issues an alarm in time. These data 

prove the effectiveness and stability of the research method in long-term driving, and 

it is suitable for fatigue detection in practical driving scenarios. 

7. Conclusion 

Because the pupil is small, to improve the detection distance can choose a 

telephoto lens, the design tries to increase the LCD on top of OpenMV, but it reduces 

the real-time graphics acquisition. This design takes light weight, real-time and high 

precision as the design index, compares the advantages and disadvantages of 

traditional machine vision detection methods in fatigue driving, and proposes a design 

scheme of face positioning and fatigue driving detection system based on OpenMV 

and microcontroller. According to the proportion of eye closure of the driver during 

driving, fatigue driving is judged. The information of the driver’s lumbar muscles is 

analyzed through the neck and lumbar EMG to provide assistance for the system 

judgment. The positioning information is obtained through the positioning module, 

and is compared with the information prone to traffic accidents in the storage module 

to provide the driver with the function of road condition prediction and alarm. The 

system adopts OpenMV image processing module, whose onboard camera and 

supported firmware make the development easy and fast. Optimized for master-slave 

mode, the system combines the advantages of high efficiency and high functionality, 

which helps to improve driving safety. However, the research method also has some 

limitations. The low hardware performance may limit the complexity and real-time 

processing ability of the algorithm in the long run. Complex road conditions and 

individual differences of drivers make it difficult for the system to provide a unified 

fatigue detection standard, and more personalized adjustments are needed. The system 

also faces integration difficulties and costs, especially when embedded and deployed 

in existing vehicle electronic systems. Therefore, although the system has the potential 

to improve driving safety, the above problems still need to be solved in practical 

applications to improve its reliability and practicality. 

Author contributions: Conceptualization, PZ and YJ; methodology, PZ; software, 

YJ; validation, PZ, YJ and YZ; formal analysis, PZ; investigation, YZ; resources, PZ; 

data curation, PZ; writing—original draft preparation, PZ; writing—review and 

editing, YJ; visualization, YZ; supervision, YJ; project administration, PZ; funding 

acquisition, PZ. All authors have read and agreed to the published version of the 

manuscript. 

Acknowledgments: “Tianchi Talent” Introduction Plan Funding Project. 

Ethical approval: Not applicable. 



Molecular & Cellular Biomechanics 2025, 22(3), 1359.  

17 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Zhang A, Li Q, Li Z, Li J. Multimodal fusion convolutional neural network based on sEMG and accelerometer signals for 

intersubject upper limb movement classification. IEEE Sensors Journal. 2023; 23(11): 12334–12345. 

2. Salah M, Ayyad A, Ramadan M, et al. High speed neuromorphic vision-based inspection of countersinks in automated 

manufacturing processes. Journal of Intelligent Manufacturing. 2024; 35(7): 3067–3081. 

3. Yang H, Liu L, Min W, et al. Driver yawning detection based on subtle facial action recognition. IEEE Transactions on 

Multimedia. 2020; 23: 572–583. 

4. Bai J, Yu W, Xiao Z, et al. Two-stream spatial–temporal graph convolutional networks for driver drowsiness detection. IEEE 

Transactions on Cybernetics. 2022; 52(12): 13821–13833. 

5. Ansari S, Naghdy F, Du H P. Driver mental fatigue detection based on head posture using new modified ReLU-BiLSTM 

deep neural network. IEEE Transactions on Intelligent Transportation Systems. 2022; 23(8): 10957–10969. 

6. Brar DS, Kumar A, Mittal U, et al. Face detection for real world application. In: Proceedings of the 2021 2nd International 

Conference on Intelligent Engineering and Management (ICIEM); 28–30 April 2021; Moscow, Russia; pp. 239–242. 

7. Wang R, Qin JM. Fuzzy PID control method of air conditioning supply air temperature based on multi-sensing features 

fusion (Chinese). Chinese Journal of Sensors and Actuators. 2023; 36(6): 943–948. 

8. Xu Y, Yan W, Yang G, et al. CenterFace: Joint face detection and alignment using face as point. Scientific Programming. 

2020; (2): 1–8. 

9. Liu Y, Deng J, Wang F, et al. DamoFD: Digging into Backbone Design on Face Detection. In: Proceedings of the Eleventh 

International Conference on Learning Representations (ICLR); 1–5 May 2023; Kigali, Rwanda. 

10. Praveen KS, Kesava JV, Subramanya V, et al. A multiple face recognition system with dlibs resnet network using deep 

metric learning. Journal of Critical Reviews. 2020; 7(6): 856–859. 

11. Wang X, Zhang S, Wang S, et al. Mis-classified vector guided softmax loss for face recognition. In: Proceedings of the 

AAAI Conference on Artificial Intelligence; 7–12 February 2020; New York, USA. pp. 12241–12248. 

12. Cai M, Cheng N, Cao C, et al. Adaptive hardness indicator softmax for deep face recognition. International Journal of 

Pattern Recognition and Artificial Intelligence. 2022; 36(4). 

13. Kim M, Jain A K, Liu XM. Adaface: Quality adaptive margin for face recognition. In: Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition; 18–24 June 2022; New Orleans, LA, USA. pp. 18750–18759. 

14. El-Nabi SA, El-Shafai W, El-Rabaie ESM, et al. Machine learning and deep learning techniques for driver fatigue and 

drowsiness detection: A review. Multimedia Tools and Applications. 2024; 83: 9441–9477. 

15. Zhou Y, Zeng CQ, Mu ZD. Optimal feature‐algorithm combination research for EEG fatigue driving detection based on 

functional brain network. IET Biometrics. 2023; 12(2): 65–76. 

16. Akrout B, Mahdi W. A novel approach for driver fatigue detection based on visual characteristics analysis. Journal of 

Ambient Intelligence and Humanized Computing. 2023; 14(1): 527–552. 

17. Dogan S, Tuncer I, Baygin M, Tuncer T. A new hand-modeled learning framework for driving fatigue detection using EEG 

signals. Neural Computing and Applications. 2023; 35(20): 14837–14854. 

18. Jiao Y, Chen X, Sun Z, et al. Data-driven detection and assessment for urban railway transit driver fatigue in real work 

conditions. Transportation research record. 2023; 2677(1): 1367–1375. 

19. Yi Y, Zhou Z, Zhang W, et al. Fatigue detection algorithm based on eye multifeature fusion. IEEE Sensors Journal. 2023; 

23(7): 7949–7955. 

20. Saleem AA, Siddiqui HUR, Raza MA, et al. A systematic review of physiological signals based driver drowsiness detection 

systems. Cognitive neurodynamics. 2023; 17(5): 1229–1259. 

21. Sharma S, Kumar V. Distracted driver detection using learning representations. Multimedia Tools and Applications. 2023; 

82(15): 22777–22794. 

22. Hussein RM, Miften FS, George LE. Driver drowsiness detection methods using EEG signals: A systematic review. 

Computer methods in biomechanics and biomedical engineering. 2023; 26(11): 1237–1249. 

23. Tao K, Xie K, Wen C, He J. Multi-feature fusion prediction of fatigue driving based on improved optical flow algorithm. 

Signal, Image and Video Processing. 2023; 17(2): 371–379. 



Molecular & Cellular Biomechanics 2025, 22(3), 1359.  

18 

24. Min J, Cai M, Gou C, et al. Fusion of forehead EEG with machine vision for real-time fatigue detection in an automatic 

processing pipeline. Neural Computing and Applications. 2023; 35(12): 8859–8872. 

25. Yi Y, Zhang H, Zhang W, et al. Fatigue working detection based on facial multifeature fusion. IEEE Sensors Journal. 2023; 

23(6): 5956–5961. 

26. Lyu H, Yue J, Zhang W, et al. Fatigue Detection for Ship OOWs Based on input Data Features, from the Perspective of 

Comparison with Vehicle Drivers: A Review. IEEE Sensors Journal. 2023; 23(14): 15239–15252. 

27. Sar I, Routray A, Mahanty B. A review on existing technologies for the identification and measurement of abnormal driving. 

International journal of intelligent transportation systems research. 2023; 21(1): 159–177. 

28. Cheng W, Wang X, Mao B. A multi-feature fusion algorithm for driver fatigue detection based on a lightweight 

convolutional neural network. The Visual Computer. 2024; 40(4): 2419–2441. 

29. Pan L, Yan C, Zheng Y, et al. Fatigue detection method for UAV remote pilot based on multi feature fusion. Electronic 

Research Archive. 2023; 31(1): 442–466. 

30. Lu Y, Liu C, Chang F, et al. JHPFA-Net: Joint head pose and facial action network for driver yawning detection across 

arbitrary poses in videos. IEEE Transactions on Intelligent Transportation Systems. 2023; 24(11): 11850–11863. 

31. Kumar V, Sharma S, Ranjeet. Driver drowsiness detection using modified deep learning architecture. Evolutionary 

Intelligence. 2023; 16(6): 1907–1916. 


