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Abstract: This study explores bio-inspired strategies for recycling cathode materials in lithium 

batteries by integrating biomechanical models with optimization algorithms to enhance 

recycling efficiency. We developed a biomechanical model to examine the recovery process of 

metal ions, analyzing their dynamic behavior and reaction rates to assess the potential of bio-

inspired algorithms for model optimization. Based on this model, we designed an optimization 

algorithm to boost metal ion recovery by varying experimental conditions such as reaction 

temperature, solvent concentration, pH, and reaction time. Experimental results indicate that 

reaction temperature, solvent concentration, adsorption and desorption rates, and pH 

significantly influence recovery efficiency. The optimal conditions identified were 55 ℃, a 

solvent concentration of 0.7 mol/L, and a pH of 5.5, yielding a recovery efficiency of 80.3%. 

Additionally, extending the reaction time positively correlated with recovery rates, achieving 

a maximum of 86.4% at 50 min. By combining biomechanical analysis with algorithm 

optimization, this research enhances our understanding of material recycling mechanisms and 

provides a theoretical foundation and technical support for future industrial recycling 

processes. These findings offer valuable insights for optimizing lithium battery recycling 

technologies and improving resource utilization efficiency. 

Keywords: bio inspired strategies; lithium battery cathode materials; recycling efficiency; 
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1. Introduction 

With increasing global focus on sustainable development, the recycling and reuse 

of lithium batteries has become a critical issue in the energy sector. As the core energy 

storage devices for modern electronics and new energy vehicles, recycling lithium 

battery cathode materials plays a vital role in reducing resource waste and mitigating 

environmental pollution [1]. Traditional recycling methods often suffer from low 

efficiency and high costs, creating an urgent need for more effective solutions. Bio-

inspired strategies have emerged as an innovative approach in material recycling, 

showing promise in improving recovery processes [2]. 

Globally, policies are evolving to address this challenge. The European Union’s 

Battery Directive aims to ensure that all batteries are recycled in an environmentally 

friendly way, with a target of 65% recovery rate for nickel, cobalt, and lithium from 

battery recycling by 2025 [3]. China’s battery recycling regulations emphasize the 

development of a closed-loop recycling system, aiming for significant increases in 

recovery rates [4]. In the U.S., the EPA has outlined regulations for the safe disposal 

and recycling of batteries, highlighting the growing regulatory focus on sustainability 

in the sector [5]. 
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With increasing market demand for lithium batteries, coupled with rising 

recycling targets and policies, the development of efficient recycling technologies is 

more urgent than ever. This paper explores the application of bio-inspired strategies 

in lithium-ion cathode material recycling and proposes optimization methods through 

biomechanical analysis to improve efficiency and align with evolving global 

regulations. 

2. Related work 

2.1. Current status of recycling technology for lithium battery positive 

electrode materials 

The cathode materials cathode materials of lithium batteries usually include metal 

elements such as cobalt, nickel, and lithium, which have high economic value, so their 

recycling technology has received widespread attention [6]. At present, common 

methods for recycling lithium batteries include wet metallurgy, pyrolysis [7], and 

mechanical sorting. Although these methods can recover a certain amount of metals, 

most of them suffer from low recovery rates, environmental pollution, and high energy 

consumption [8,9]. With the deepening of research, new technologies are constantly 

emerging, but they still face the challenge of how to improve recycling efficiency and 

reduce costs. Therefore, seeking a greener and more efficient recycling strategy is 

particularly important [10,11]. 

2.2. Application of bio inspired strategies in material recycling 

The bio inspired strategy is an innovative approach that draws on the 

mechanisms, structures, and processes of natural organisms, and has achieved 

significant results in many fields [12,13]. In the field of material recycling, bio inspired 

strategies improve recycling efficiency by simulating molecular recognition, catalytic 

action, separation mechanisms, and other features within living organisms [14,15]. For 

example, selective adsorption and decomposition of materials by biomolecules such 

as enzymes and proteins can improve the recovery rate of metal resources [16]. 

Especially in the recycling process of lithium battery cathode materials, bio inspired 

methods can reduce environmental pollution while ensuring high recovery rates, 

demonstrating their unique advantages [17]. 

2.3. Research content and innovation of this article 

This article mainly studies the recycling method of lithium battery cathode 

materials based on bio inspired strategies, and conducts in-depth optimization analysis 

of the recycling process in combination with biomechanical models [18]. With the 

widespread application of lithium batteries, how to efficiently recycle lithium battery 

cathode materials has become an urgent technical problem to be solved [19]. In order 

to improve recycling efficiency and reduce environmental pollution, this article 

proposes an innovative recycling strategy by introducing the interaction mechanism 

between biomolecules and metal ions [20]. By constructing a biomechanical system 

model, the recycling process was further simulated and optimized, ultimately 

achieving an increase in recycling efficiency while also enhancing the economic and 
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sustainable aspects of the recycling process [21]. In addition, biologically inspired 

algorithms are used to regulate key parameters during the recycling process, making 

the recycling process more efficient and accurate [22]. This study not only provides 

new theoretical basis for the recycling of cathode materials cathode materials for 

lithium batteries, but also provides valuable reference for future industrial recycling 

technologies. 

The innovation of this article can be summarized into the following three points: 

1) Construction and optimization of biomechanical system model: This article 

introduces for the first time the interaction between biomolecules and metal ions 

into the recycling process of lithium-ion battery cathode materials, and constructs 

a biomechanical system model to provide more accurate dynamic analysis for the 

recycling process. This innovative model not only reveals the behavior of metal 

ions during the recycling process, but also deeply explores the reaction rate and 

material conversion mechanism from a biomechanical perspective, providing 

theoretical support for subsequent optimization. 

2) Application of bio inspired algorithm: Based on bio inspired strategy, this paper 

adopts optimization algorithm to regulate key variables (such as reaction 

temperature, solvent concentration, pH value, etc.) in the recycling process, 

thereby improving the recycling efficiency. This algorithm combines biologically 

inspired ideas and can flexibly find the optimal parameter configuration during 

simulation and optimization processes, achieving the best recycling effect and 

having significant practical value. 

3) Economic and sustainable optimization of the recycling process: In addition to 

improving efficiency, this article also pays special attention to the economic and 

environmentally friendly aspects of the recycling process. By optimizing reaction 

conditions and using biologically inspired algorithms to adjust various 

parameters of the recycling process, not only has the recovery rate of metal ions 

been improved, but resource waste and environmental pollution have also been 

reduced, promoting the development of lithium battery recycling technology 

towards a more sustainable direction. 

3. Application models and algorithm design 

3.1. Construction of biomechanical model 

The biomechanical model is the core of research, which is based on biological 

principles and combined with mechanical constraints to simulate the material flow and 

interaction during the recycling process of lithium battery cathode materials [23]. 

Especially in the recycling process, the interaction between metal ions and 

biomolecules plays a decisive role. By simulating this interaction, the direction and 

rate of material flow during the recycling process can be accurately predicted at the 

molecular level, thereby calculating the energy conversion efficiency [24,25]. In order 

to establish this model, we first need to define the molecular dynamics behavior in the 

process of adsorption and desorption. Assuming that the adsorption of a substance is 

described by the following equation: 
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𝑑𝜃

𝑑𝑡
= 𝑘1(𝐶𝑚 − 𝜃) − 𝑘2𝜃 (1) 

Among them, (𝜃)  represents adsorption capacity, represents (𝐶𝑚)  metal ion 

concentration, (𝑘1) and represents (𝑘2) adsorption and desorption rate constants. By 

modeling the adsorption process, the distribution of metal ions in the recovery medium 

can be obtained. Meanwhile, it is also necessary to consider the equilibrium between 

adsorption and desorption reactions, which can be described by the following formula 

[26,27]: 

𝐾 =
𝑘1
𝑘2

 (2) 

In the process of lithium battery recycling, the adsorption between biomolecules 

and metal ions is closely related to mechanical constraints. Especially, by simulating 

the process of molecular recognition and force transfer, changes in adsorption force 

can be revealed, thereby further predicting the recovery efficiency of materials [28]. 

The analysis of mechanical constraints helps to understand the interaction modes 

between biomolecules and metal ions under different environmental conditions, such 

as the influence of factors such as temperature, pH value, and electric field [29]. 

In the recycling process, the transport of substances can be described by fluid 

mechanics equations. Assuming that the liquid flow in the recycling system follows 

the Navier Stokes equation, describe the rate and direction of material transport in the 

liquid: 

𝜌 (
𝜕𝑣⃗

𝜕𝑡
+ 𝑣⃗ × 𝛻𝑣⃗) = −𝛻𝑝 + 𝜇𝛻2𝑣⃗ + 𝑓 (3) 

Among them, (𝜌) is fluid density, (𝑣⃗) is (𝜇) fluid velocity, (𝑝) is pressure, is 

fluid viscosity, and (𝑓) is volumetric force. 

In addition, biomechanical models also need to consider the role of 

thermodynamic principles. The energy conversion during the recycling process can be 

analyzed through thermodynamic equations, especially in terms of the impact of 

temperature changes on recycling efficiency. The relationship between temperature 

and reaction rate can be described by the Arrhenius equation: 

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇 (4) 

Among them, (𝑘)  is the reaction rate constant, (𝐴)  is the frequency factor, 

(𝑅)(𝐸𝑎) is the activation energy, is the gas constant, and (𝑇) is the temperature [30]. 

Through the comprehensive application of the above models, it is possible to 

more accurately predict the conversion path and energy efficiency of substances in the 

recycling process, thereby providing theoretical guidance for practical recycling 

process design and optimization. In addition, these mathematical models provide 

important support for parameter optimization and improvement of recycling efficiency 

in the recycling process [31]. By continuously adjusting parameters and improving 

models, future lithium battery cathode material recycling technologies will be more 

efficient and green, promoting circular economy and sustainable resource 

development [32]. 
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3.2. Algorithm design and optimization 

Bio-inspired strategies can significantly enhance the recycling efficiency of 

lithium-ion cathode materials through optimized algorithm design. Nature offers 

inspiration via mechanisms like bioinformatics and swarm intelligence, which help 

address complex recycling challenges [33]. This paper introduces an adaptive, self-

regulating algorithm that adjusts key parameters—such as temperature, humidity, and 

reaction time—based on system dynamics to optimize recycling conditions. Drawing 

from the ant colony optimization algorithm, which simulates cooperative behavior and 

information exchange among ants, the proposed method explores global optimization. 

Ants represent recycling parameter combinations [34], and pheromone levels indicate 

process effectiveness. Over iterations, pheromones accumulate along the optimal path, 

guiding the system toward the best solution. Biomechanical constraints are also 

integral to the optimization process. The recycling system must balance physical, 

chemical, and mechanical factors, ensuring stability under thermodynamic and 

mechanical conditions [35]. This paper integrates these constraints with bio-inspired 

strategies by embedding them into the ant colony algorithm’s objective function, 

improving both recovery rates and mechanical stability. 

To further illustrate the optimization problem under biomechanical constraints, 

this article assumes that the objective function of the recycling process is (𝑓(𝑥)), 

where (𝑥) represents the various parameters that need to be optimized during the 

recycling process (such as temperature, humidity, reaction time, etc.). The objective 

function needs to satisfy the following constraints: 

Biomechanics constraints: (𝑔(𝑥) ≤ 0). Here (𝑔(𝑥)) represent functions related 

to mechanical constraints during the recycling process, such as the mechanical 

strength and stability of materials. 

Physical constraints: (ℎ(𝑥) ≤ 0). Here (ℎ(𝑥)) represent the limiting conditions 

related to thermodynamics and chemical reactions in the recycling process. 

The goal of the optimization process is to maximize recycling efficiency while 

satisfying all the constraints mentioned above. It can be formalized as the following 

mathematical problem: 

max𝑓(𝑥) 

subject to 𝑔(𝑥) ≤ 0, ℎ(𝑥) ≤ 0 (5) 

To solve this optimization problem, the Lagrange multiplier method is 

introduced, and the constraints are embedded into the objective function to obtain the 

Lagrange function (𝐿(𝑥, 𝜆, 𝜇)): 

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆𝑔(𝑥) + 𝜇ℎ(𝑥) (6) 

Among them, (𝜆) and (𝜇) are Lagrange multipliers, representing the strength of 

constraints. By (𝐿(𝑥, 𝜆, 𝜇)) taking the derivative and setting it to zero, the solution to 

the optimization problem can be obtained. 

In ant colony algorithm, by embedding the optimization problem into the fitness 

function of the algorithm, individual ants will continuously adjust the concentration of 

pheromones during each search process to guide the search process to meet 
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biomechanical constraints and maximize recovery efficiency. The specific iterative 

update formula is as follows [36,37]: 

Δ𝜏𝑖 = 𝛼𝑓(𝑥𝑖)(updateinfo) (7) 

𝜏𝑖+1 = 𝜏𝑖 + Δ𝜏𝑖(updatinfo) (8) 

Through multiple iterations, the final optimal solution not only maximizes the 

recovery rate, but also ensures that the recovery process meets all biomechanical and 

physical constraints, thereby achieving a more efficient and sustainable recovery 

effect. 

3.3. Integration design of models and algorithms 

In the fusion design of models and algorithms, this article combines 

biomechanical models with biologically inspired algorithms to design a method that 

can comprehensively optimize the recycling process of lithium-ion positive electrode 

materials [38]. The physical and mechanical constraints that need to be considered 

during the recycling process pose special requirements for optimizing the recycling 

plan. Bioinspired algorithms can effectively search for the optimal solution by 

simulating intelligent behavior in nature. Combining these characteristics, the 

recycling optimization method proposed in this article can not only improve the 

recycling rate, but also effectively reduce the recycling cost, thus providing an 

efficient and sustainable recycling strategy in practical applications [39,40]. 

Firstly, the biomechanical model provides a quantitative basis by describing the 

physical and mechanical constraints during the recycling process. In the recycling 

process of lithium batteries, factors such as temperature, humidity, and reaction time 

must be maintained within a certain range to ensure recycling efficiency and material 

quality stability [41]. Specifically, variables such as temperature and humidity 

involved in the recycling process are constrained by material mechanical properties 

and reaction thermodynamics, and these constraints must be reasonably considered in 

the recycling plan. Assuming that the objective function (𝑓(𝑥))  of the recycling 

process represents the recycling efficiency, where (𝑥) are the control variables that 

need to be optimized during the recycling process, including temperature, humidity, 

and reaction time. In addition, physical and mechanical constraints can be represented 

by the following mathematical models: 

𝑔(𝑥) = 𝑥1 − 𝑇min ≤ 0, 𝑔2(𝑥) = 𝑇max − 𝑥1 ≤ 0 (9) 

ℎ(𝑥) = 𝑥2 − 𝐻min ≤ 0, ℎ2(𝑥) = 𝐻max − 𝑥2 ≤ 0 (10) 

Among them, (𝑥1) and (𝑥2) represent temperature and humidity respectively, 

(𝑇min)  and (𝑇max)  are the minimum and maximum (𝐻min)  limits of temperature, 

(𝐻min)  and are the limits of humidity. Through these physical and mechanical 

constraints, we ensure that the recycling process is carried out within a reasonable 

parameter range. 

In the bio inspired algorithm section, this article chooses Ant Colony 

Optimization (ACO) algorithm to optimize the recycling process. Ant colony 

algorithm simulates the process of ants searching for food sources and can effectively 
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search for the optimal solution during the recycling process. During the recycling 

process, each ant represents a combination of recycling schemes, and the search path 

is guided by the concentration of pheromones. The (𝜏)  formula for updating the 

concentration of pheromones is as follows: 

𝜏𝑖+1 = 𝜌 × 𝜏𝑖 + 𝛥𝜏𝑖 (11) 

𝛥𝜏𝑖 = 𝛼𝑓(𝑥𝑖)ℎ(𝑥) = 𝑥2 −𝐻min ≤ 0, ℎ2(𝑥) = 𝐻max − 𝑥2 ≤ 0 (12) 

Among them, (𝜏𝑖) is the (𝑖) local pheromone concentration of the path in the 

second iteration, is the (𝜌) volatilization factor, controls the volatilization rate of 

pheromones, is the (𝛼) weight factor of pheromone importance, is the (𝑓(𝑥𝑖)) fitness 

function of the path, that is, the recovery efficiency. Through continuous iteration and 

updating of pheromones, ant colonies can gradually find the optimal recovery plan that 

conforms to biomechanical constraints. 

In addition, in order to meet biomechanical constraints, the (𝑓(𝑥)) Lagrange 

multiplier method was introduced into the optimization objective function. In the 

process of recycling optimization, the objective function (𝑓(𝑥)) needs to (ℎ(𝑥)) be 

maximized under both mechanical (𝑔(𝑥)) and physical constraints. The Lagrange 

function (𝐿(𝑥, 𝜆, 𝜇)) is defined as: 

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆 × 𝑔(𝑥) + 𝜇 × ℎ(𝑥) (13) 

Among them, (𝜆) and (𝜇) are Lagrange multipliers used to balance the weights 

of constraints and objective functions. By (𝐿(𝑥, 𝜆, 𝜇)) taking the derivative and setting 

it to zero, the optimal solution that satisfies the constraint conditions can be obtained. 

The solving process is as follows: 

𝜕𝐿(𝑥, 𝜆, 𝜇)

𝜕𝑥
= 0,

𝜕𝐿(𝑥, 𝜆, 𝜇)

𝜕𝜆
= 0,

𝜕𝐿(𝑥, 𝜆, 𝜇)

𝜕𝜇
= 0 (14) 

In ant colony algorithm, the optimization of the recycling scheme is achieved 

through alternating updates of pheromone concentration and fitness function, ensuring 

that after multiple iterations, the recycling process can achieve optimal recycling 

efficiency and meet all biomechanical and physical constraints [42]. 

In summary, the fusion design of the bio inspired strategy and biomechanical 

model proposed in this article provides a new optimization path for the recycling of 

lithium-ion cathode materials, which not only improves recycling efficiency but also 

effectively reduces costs, and has good practical application prospects. 

4. Experimental simulation and analysis 

4.1. Experimental design and simulation framework 

In order to verify the effectiveness of the proposed model and algorithm, this 

paper designed a series of experiments and conducted simulation analysis based on a 

simulation platform [43]. The simulation framework utilizes various computational 

tools to simulate the recycling process of lithium battery cathode materials, including 

metal separation, adsorption, and desorption processes. Through different experiments 

and simulation analyses [44], we can gain a deeper understanding of the application 
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of bio inspired strategies in the recycling of cathode materials cathode materials for 

lithium batteries, and optimize the recycling efficiency through biomechanical 

analysis. 

This experiment uses MATLAB for simulation due to its powerful mathematical 

and data analysis capabilities. MATLAB’s Simulink toolbox allows modeling and 

simulating fluid mechanics, thermodynamics [45], and material migration in the 

recycling process of lithium battery cathode materials, enabling efficiency analysis 

under various schemes. Using MATLAB’s numerical functions, we simulate the 

diffusion and adsorption of metal ions in solution, evaluating how variables like 

temperature and solvent concentration affect recovery efficiency [46]. Custom scripts 

simulate the desorption and separation of metals, assessing reaction kinetics and 

comparing optimization schemes. Molecular dynamics simulations (e.g., LAMMPS) 

study material behavior at the microscale, particularly adsorption and desorption 

processes [47]. These simulations also explore the impact of bio-inspired strategies, 

like mimicking cell membrane interactions with metal ions, on recovery efficiency, 

offering atomic-level insights into material transformation and micro-kinetic data. The 

MATLAB platform supports the implementation of various optimization algorithms, 

such as genetic algorithms, particle swarm optimization (PSO), etc., to optimize 

various parameter settings in the recycling process and achieve maximum recycling 

efficiency. Optimization algorithms can be combined with simulation results to 

adaptively adjust the recycling process under different conditions, thereby improving 

the feasibility and efficiency of experiments [48]. 

Through the comprehensive application of the above simulation tools and 

platforms, experiments can evaluate the material and energy conversion efficiency 

during the recycling process under different recycling conditions, and provide 

technical support for subsequent experimental design and optimization [49]. In order 

to fully utilize the enhanced effect of bio inspired strategies on the recycling of lithium 

battery cathode materials, we simulated different biomechanical interactions by setting 

different experimental conditions and explored their impact on recycling efficiency. 

The specific experimental design is as follows: 

1) Selection of recycling process. 

The recycling process used in the experiment is based on biologically inspired 

concepts, such as mimicking the adsorption and desorption mechanisms of ions by cell 

membranes, and choosing a combination of Hydrometallurgy and solvent extraction. 

By simulating different reaction temperatures, solvent concentrations, and reaction 

times, the influence of these factors on recovery efficiency is studied. 

2) Setting of experimental parameters. 

During the experiment, the main parameters for recovery include reaction 

temperature, solvent concentration, metal ion adsorption rate, desorption rate, etc. By 

comparing multiple experimental data, optimize these key parameters to achieve 

efficient recycling. 

The positive electrode material used in the experiment is derived from waste 

lithium batteries and obtained through physical sorting and chemical treatment. The 

samples in the experiment need to undergo strict preprocessing to ensure the 

consistency and reproducibility of their components. The experimental data comes 
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from multiple research institutions and actual lithium battery recycling enterprises 

(https://www.sciencedirect.com/). 

The following Table 1 lists the key parameter settings involved in this 

experiment, covering multiple aspects such as recovery process, solvent concentration, 

reaction conditions, etc. By adjusting these parameters, we can test different recycling 

schemes and find the optimal solution. 

Table 1. Experimental key parameter settings. 

Parameter Name  describe  
Parameter 

Range  
Company  remarks  

reaction 

temperature  
Temperature during the recycling process  25–80  ℃ 

The impact on recycling efficiency needs 

to be experimentally adjusted  

Solvent 

concentration  

Used to extract solvent concentration during the 

process  
0.1–1.0 mol/L  Select based on solvent type  

Adsorption rate  
Adsorption rate of metal ions in cathode 

materials cathode materials of lithium batteries  
0.01–0.5  mol/(L·s)  

Simulating the rate of adsorption process 

in living organisms  

desorption rate  
The desorption rate of metal ions from 

adsorption sites  
0.01–0.5  mol/(L·s)  

The desorption rate has a significant 

impact on the recovery efficiency  

reaction time  Duration of recycling process  1–24 h 
Select different reaction times based on 

experimental design  

PH value  PH of solvent solution  2–12 - 
Affects the dissolution and adsorption 

process of metals  

Fluid dynamics 

parameters  

Parameters affecting the reaction, such as liquid 

fluidity and viscosity  
1–10  mPa·s 

Influence the mixing and substance 

migration during the reaction process  

Particle size  
Diameter of positive electrode material particles 

for lithium batteries  
5–100 μm 

Affects the adsorption and separation 

efficiency of metal ions 

4.2. Biomechanics analysis experiment 

In the biomechanical analysis experiment, we focused on analyzing the 

adsorption and desorption processes between metal ions and biomolecules, as well as 

the influence of external mechanical factors (such as temperature, pressure, etc.) on 

the recovery process. The collection and analysis of experimental data provide a basis 

for the correction and optimization of the model. 

Collection and analysis of experimental data: 

The collection of experimental data includes the measurement of mechanical 

properties, changes in metal ion concentration, etc. By conducting multidimensional 

analysis of the data, we are able to evaluate the recovery effectiveness of bio inspired 

strategies under different conditions, and further validate the accuracy of the 

biomechanical model through experimental results. 

Verification and correction of mechanical models: 

In order to improve the applicability of the model, it is necessary to modify the 

model to more accurately reflect the mechanical properties in the actual recycling 

process. Here are several common correction methods, accompanied by relevant 

formula explanations: 

1) Correction of elastic modulus (elastic response adjustment). 

The initial model may have used conventional linear elasticity assumptions, 

ignoring the nonlinear behavior of materials in high temperatures or complex 

environments. The correction of elastic modulus (𝐸)  can be adjusted through 
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experimental data to make it more in line with the actual situation. The correction 

formula can be: 

𝐸𝑎𝑑𝑗 = 𝐸0(1 + 𝛼𝑇) (15) 

Among them, (𝐸0)  is the initial elastic (𝛼)  modulus, (𝑇)  is the temperature 

dependent coefficient, and is the temperature. This correction method enables the 

model to accurately describe the deformation characteristics of materials at different 

temperatures. 

2) Nonlinear correction considering stress-strain relationship. 

In the actual recycling process, materials often exhibit nonlinear stress-strain 

relationships, especially during the plastic deformation stage. To more accurately 

describe this behavior, a more complex nonlinear constitutive model can be used, such 

as the modified Hooke’s law: 

𝜎 = 𝜎0 + 𝑘𝜀𝑛 (16) 

Among them, (𝜎) is stress, (𝜎0) is initial stress, (𝑘) is the hardening coefficient 

of the material, (𝜀) is strain, and (𝑛) is the strain hardening index of the material. By 

using this formula, the model can be modified to adapt to stress distribution under high 

strain conditions. 

3) Thermal effect correction (effect of temperature on mechanical properties). 

The temperature changes during the recycling process significantly affect the 

mechanical properties of the material. Therefore, the influence of temperature on 

material strength must be considered. By introducing a temperature stress correction 

model, such as: 

𝜎(𝑇) = 𝜎0(1 − 𝛽𝑇) (17) 

Among them, (𝛽) is the thermal sensitivity coefficient of the material and (𝑇) is 

the temperature. This modification can better adapt the model to changes in material 

strength under high temperature environments. 

4) Temperature dependent correction of friction coefficient. 

In the recycling process, especially in scenarios involving friction, the friction 

coefficient may vary with temperature and surface conditions. When modifying the 

friction coefficient model, the following formula can be used: 

𝜇(𝑇) = 𝜇0(1 + 𝛾𝑇) (18) 

Among them, (𝜇0) is the initial friction (𝛾) coefficient and is the temperature 

dependent parameter of the friction coefficient. In this way, the friction force model 

can be modified to more accurately simulate the friction behavior during the actual 

recycling process. 

5) Quality transfer correction (considering particle size effect). 

In some recycling processes, particle size has a significant impact on heat transfer 

and mass transfer. By introducing a (𝑑) correction factor for particle size, the accuracy 

of the model can be improved. Common quality transfer models include: 

𝐽 = 𝑘𝑑𝑛 (19) 
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Among them, (𝐽)  is the mass transfer rate, (𝑘)  is a constant, and (𝑛)  is the 

exponential dependence of particle size. This correction helps to accurately describe 

the particle behavior during the recycling process, especially when the material 

particles are large or small. 

6) Revision of mechanical failure criteria (considering multi factor coupling 

effects). 

Due to the coupling effects of multiple factors (such as stress, temperature, 

environmental humidity, etc.) during the recycling process, it is necessary to introduce 

a multi factor coupling model to correct the mechanical failure criteria. A common 

correction formula is: 

𝜎fail = 𝜎0(1 + 𝜆𝑇 + 𝜇𝜀) (20) 

Among them, (𝜎fail)  is the failure stress, (𝑇)(𝜆)  and (𝜇)  are the coupling 

coefficients of temperature and strain, and (𝜀) are temperature and strain, respectively. 

This correction method helps improve the predictive ability of the model for material 

failure behavior in complex recycling processes. 

Through these modifications, the mechanical model can more accurately reflect 

the complex behavior of experimental data and actual recycling processes. Each 

correction formula aims to optimize the prediction accuracy of the model, eliminate 

or reduce errors caused by simplified assumptions, and make the final model more 

applicable and reliable in actual recycling operations. 

4.3. Experimental process and result analysis 

4.3.1. Experimental analysis of lithium positive electrode recovery 

Different reaction temperatures were used during the experiment, and the 

recovery efficiency under each temperature condition was measured. During the 

experiment, five different temperatures were first set: 25 ℃, 40 ℃, 55 ℃, 70 ℃, and 

80 ℃. At each temperature, we mix the same mass of metal ion solution with reactants, 

maintain the same reaction time, and ensure that other conditions remain unchanged. 

Then, the recovery rate of metal ions at each temperature was determined by chemical 

analysis methods. All experiments were conducted in the same experimental 

environment to ensure comparability and accuracy of the data. After collecting 

experimental data, we compared the recovery efficiency at different temperatures to 

understand the effect of temperature on the reaction process. The results are shown in 

Table 2. 

Table2. Relationship between reaction temperature and recovery efficiency. 

Reaction temperature (℃)  Recycling efficiency (%)  

25  56.2  

40  61.4  

55  71.1  

70  73.3  

80  71.4 
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From the data in Table 1, it can be seen that as the reaction temperature increases, 

As the temperature increases from 25 ℃ to 70 ℃, the recycling efficiency improves, 

reaching its peak at 70 ℃ with an efficiency of 76.7%. Specifically, at 25 ℃, the 

efficiency is 58.6%, increasing to 63.6% at 40 ℃, 72.7% at 55 ℃, and 76.7% at 70 ℃. 

However, beyond this point, as the temperature rises to 80 ℃, the efficiency decreases 

slightly to 71.4%. This trend indicates that higher reaction temperatures generally 

enhance the recovery efficiency, but there is an optimal temperature range (70 ℃) 

beyond which the efficiency starts to decline. These findings highlight the importance 

of carefully controlling the reaction temperature during the recycling process to 

maximize the recovery of valuable materials. 

By plotting the relationship curve between reaction temperature and recovery 

efficiency, further verify the influence of temperature on recovery efficiency. The 

experiment used five different temperature values: 25 ℃, 40 ℃, 55 ℃, 70 ℃, and 

80 ℃. At each temperature, maintain the same reaction time and reactant 

concentration, and determine the recovery rate through chemical analysis. All 

experimental conditions are kept consistent, only the temperature is changed to ensure 

the accuracy of experimental data. The experimental results will be plotted to show 

the trend of temperature’s impact on recovery efficiency, helping us understand the 

effect of temperature on reaction rate and final recovery effect. 

It can be clearly seen from the curve in Figure 1 that there is a positive correlation 

between reaction temperature and recovery efficiency, and the recovery efficiency 

gradually increases with the increase of temperature. Especially when the temperature 

increases from 25 ℃ to 55 ℃, the recovery efficiency is significantly improved, 

demonstrating the promoting effect of temperature on reaction rate. However, as the 

temperature further increased to 70 ℃ and 80 ℃, the recovery efficiency decreased 

and the curve began to flatten. This phenomenon may be due to the rapid reaction rate 

under high temperature conditions, resulting in incomplete recovery of some metal 

ions, or adverse effects from side reactions during the reaction. Therefore, the 

temperature range for optimal recovery efficiency should be around 55 ℃. 

 
Figure 1. Relationship between reaction temperature and recovery efficiency. 
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Five different solvent concentrations were selected: 0.1 mol/L, 0.3 mol/L, 0.5 

mol/L, 0.7 mol/L, and 1.0 mol/L. At each concentration, maintain a fixed solution 

volume and temperature conditions, and calculate the adsorption rate by measuring 

the adsorption amount of metal ions over a certain period of time. All experiments 

were conducted under the same environmental conditions to reduce external 

interference. The experimental results will help evaluate the effect of solvent 

concentration on the adsorption process of metal ions and provide theoretical basis for 

optimizing the metal recovery process. 

The data in Table 3 indicates that as the solvent concentration increases, the 

adsorption rate of metal ions shows a linear upward trend. At 0.1 mol/L, the adsorption 

rate is relatively low, only 0.02 mol/(L·s), while at 1.0 mol/L, the adsorption rate has 

reached 0.14 mol/(L·s). reaching a peak at 2.0 mol/L with a rate of 0.19 mol/(L·s). 

This further supports the observation that higher solvent concentrations can enhance 

the adsorption rate, but it is important to consider the potential impact of excessively 

high concentrations on the overall process efficiency. This change indicates that the 

higher the solvent concentration, the greater the concentration of metal ions in the 

solution, thereby accelerating the adsorption process of metal ions. However, 

excessive solvent concentration may also lead to an increase in the viscosity of the 

solution, affecting the further improvement of adsorption rate. Therefore, the 

optimized solvent concentration should be selected based on the characteristics of the 

specific reaction system to achieve the best adsorption effect. 

Table 3. Relationship between solvent concentration and metal ion adsorption rate. 

Solvent concentration (mol/L) Adsorption rate (mol/(L·s)) 

0.1 0.02 

0.3 0.05 

0.5 0.08 

0.7 0.11 

1.0 0.14 

1.2 0.16 

1.5 0.18 

2.0 0.19 

Analyze the effect of solvent concentration on adsorption rate by plotting the 

relationship curve between solvent concentration and metal ion adsorption rate. The 

experiment was conducted at different solvent concentrations, namely 0.1 mol/L, 0.3 

mol/L, 0.5 mol/L, 0.7 mol/L, and 1.0 mol/L. Maintain the reaction time and other 

conditions of the reactants unchanged for each experiment, only changing the solvent 

concentration. By monitoring the concentration changes of metal ions in the solution, 

calculate the adsorption rate at each concentration. Finally, the data will be plotted to 

visually observe the effect of concentration on adsorption rate. 

The data in Figure 2 clearly indicates a significant positive correlation between 

solvent concentration and metal ion adsorption rate. As the solvent concentration 

increases, the adsorption rate gradually accelerates, increasing from 0.02 mol/(L·s) to 

0.14 mol/(L·s). This trend indicates that higher solvent concentrations provide more 



Molecular & Cellular Biomechanics 2025, 22(4), 1414.  

14 

metal ions for adsorption, thereby accelerating the adsorption process. However, 

excessive solvent concentration may cause changes in the physical properties of the 

solution, such as an increase in viscosity, thereby affecting adsorption efficiency to 

some extent. Overall, moderately increasing the solvent concentration can effectively 

improve the adsorption rate, but the comprehensive influence of other factors needs to 

be considered. 

 
Figure 2. Relationship between solvent concentration and adsorption rate. 

By measuring the recovery efficiency at different adsorption and desorption rates, 

explore the comprehensive impact of both on the recovery effect. The experiment 

selected different adsorption and desorption rates, and measured the metal ion 

recovery efficiency under each condition. The setting of adsorption rate ranges from 

0.01 mol/(L·s) to 0.50 mol/(L·s), and the range of desorption rate also varies from 0.01 

mol/(L·s) to 0.50 mol/(L·s). During the experiment, the reaction time and solvent 

concentration of the solution were adjusted to maintain consistency with other 

conditions. Finally, by measuring the recovery efficiency, the recovery results under 

different combination conditions were obtained for data analysis. 

The results in Table 4 show that the adsorption rate and desorption rate have a 

significant impact on the recovery efficiency. As the adsorption rate and desorption 

rate increase, the recovery efficiency also increases accordingly. When the adsorption 

rate and desorption rate reach 0.20 mol/(L·s), the recovery efficiency has reached 

71.5%. This result indicates that when the adsorption and desorption rates are high, 

metal ions can adsorb and desorb faster, thereby improving the recovery efficiency. 

However, excessively high adsorption rates may result in insufficient adsorption of 

metal ions, and too fast desorption rates may also affect the recovery efficiency. 

Therefore, optimizing the balance between adsorption and desorption rates is crucial 

for improving recovery efficiency. 
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Table 4. Effects of adsorption rate and desorption rate on recovery efficiency. 

Adsorption rate (mol/(L·s))  Desorption rate (mol/(L·s))  Recycling efficiency (%)  

0.01  0.01  50.2  

0.05  0.05  55.8  

0.10  0.10  60.1  

0.15  0.15  65.4  

0.20  0.20  71.5  

0.25  0.25  70.8  

0.30  0.30  68.9  

0.40  0.40  66.3  

0.50  0.50  64.1 

The experiment set five different pH values: 4.0, 5.5, 7.0, 8.5, and 10.0. At each 

pH value, the concentration of metal ions in the reaction solution and other 

experimental conditions remain constant, the reaction time is fixed, and constant 

temperature is maintained. By adjusting the pH value of the solution using an acid-

base solution, the pH value of each experiment is ensured to be accurate. After the 

experiment is completed, the recovery rate is determined using chemical analysis 

methods, and the recovery efficiency at different pH values is recorded to provide a 

basis for subsequent process optimization. 

The data in Table 5 indicate that pH value has a significant impact on recovery 

efficiency. At a pH value of 5.5, the recovery efficiency was the highest, reaching 

80.3%. When the pH value is below or above 5.5, the recovery efficiency gradually 

decreases. This indicates that the recovery efficiency of metal ions is most ideal within 

a certain pH range. Low pH values may increase the solubility of metal ions, while 

high pH values may lead to the precipitation of metal ions or the formation of 

compounds that are difficult to recover. Therefore, the optimal pH range should be 

around 5.5 to achieve the best recovery efficiency. 

Table 5. Relationship between pH value and recovery efficiency. 

PH value  Recycling efficiency (%)  PH value  

4.0  55.2  4.0  

5.5  80.3  5.5  

7.0  70.5  7.0  

8.5  62.1  8.5  

10.0  58.4 10.0  

In order to further understand the influence of pH value on recovery efficiency, 

this experiment plotted the relationship curve between pH value and recovery 

efficiency. Five different pH values were selected for the experiment: 4.0, 5.5, 7.0, 

8.5, and 10.0. The reaction temperature and solution concentration were kept constant, 

and only the pH value was changed. By monitoring the recovery efficiency of metal 

ions, a relationship chart between pH value and recovery efficiency is drawn to 

visually present the impact of pH value on recovery efficiency. 
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From the curve in Figure 3, it can be seen that pH has a significant impact on the 

recovery efficiency of metal ions. At a pH value of 5.5, the recovery efficiency reaches 

its maximum, approaching 80.3%. As the pH value increases or decreases, the 

recovery efficiency shows a decreasing trend, indicating that lower or higher pH 

values are not conducive to the effective recovery of metal ions. This result indicates 

that pH value has a significant impact on the chemical behavior of metal ions, and 

adjusting the pH value to an appropriate range can significantly improve the recovery 

efficiency. 

 
Figure 3. Relationship between pH value and recovery efficiency. 

The experiment set five different reaction times: 10 min, 20 min, 30 min, 40 min, 

and 50 min. At each time point, all reaction conditions remain consistent, only the 

reaction time is changed. By collecting reaction solution samples and measuring the 

concentration changes of metal ions, the recovery rate can be calculated. The 

experimental results will help understand the impact of different reaction times on 

metal ion recovery and provide guidance for optimizing reaction times. 

The data in Table 6 indicates that as the reaction time increases, the recovery rate 

gradually increases. When the reaction time reached 30 min, the recovery rate was 

close to the maximum value, reaching 85.4%. However, at 40 and 50 min, the increase 

in recovery rate gradually decreased and remained almost unchanged. This indicates 

that extending the reaction time can improve the recovery efficiency, but after a certain 

period of time, the improvement effect of the recovery rate tends to stabilize. 

Therefore, the optimal reaction time is 30 min to maximize recovery efficiency while 

avoiding wasting time. 
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Table 6. Relationship between reaction time and recovery rate. 

Reaction time (min)  Recovery rate (%)  

10  62.1  

20  70.8  

30  85.4  

40  86.2  

50  86.4 

Further investigate the effect of reaction time on recovery rate by plotting the 

relationship curve between reaction time and recovery rate. The experiment was 

conducted at different reaction times, ranging from 10 mins to 50 min, and the changes 

in recovery rate were measured for each time period. Through graphical display, the 

effect of reaction time on metal ion recovery efficiency can be intuitively reflected, 

thereby determining the optimal reaction time. 

The curve in Figure 4 shows that as the reaction time increases, the recovery rate 

shows a trend of first increasing and then stabilizing. When the reaction time reached 

30 min, the recovery rate reached 85.4%, and the subsequent time changes had almost 

no effect on the improvement of the recovery rate. This indicates that increasing the 

reaction time helps to improve the recovery rate, but excessively long reaction times 

have no significant effect on improving the recovery rate. Therefore, 30 min is the 

optimal reaction time. 

 
Figure 4. Relationship between reaction time and recovery rate. 

Different concentrations of metal ion solutions were selected, with concentrations 

of 0.05 mol/L, 0.10 mol/L, 0.20 mol/L, 0.30 mol/L, and 0.50 mol/L. Under different 
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concentration conditions, the reaction temperature, pH value, and reaction time remain 

constant, only changing the initial concentration of metal ions. Determine the recovery 

efficiency at different concentrations through chemical analysis methods and analyze 

the influence of metal ion concentration on the recovery process. 

The data in Table 7 indicates that the concentration of metal ions has a certain 

impact on the recovery efficiency. As the concentration of metal ions increases, the 

recovery efficiency gradually improves. At a concentration of 0.20 mol/L, the 

recovery efficiency reached its highest value of 90.2%. However, as the concentration 

continued to increase to 0.30 mol/L and 0.50 mol/L, the recovery efficiency did not 

significantly improve, but instead showed a slight decrease. This indicates that an 

increase in the concentration of metal ions can promote the improvement of recovery 

efficiency, but within a certain concentration range, excessively high concentrations 

may lead to mutual inhibition between metal ions or the formation of compounds that 

are difficult to recover. Therefore, the optimal concentration of metal ions should be 

0.20 mol/L. 

Table 7. Recovery efficiency at different metal ion concentrations. 

Metal ion concentration (mol/L)  Recycling efficiency (%)  

0.05  62.1  

0.10  70.4  

0.20  90.2  

0.30  88.7  

0.50  85.4 

In order to visually demonstrate the effect of metal ion concentration on recovery 

efficiency, a relationship curve between metal ion concentration and recovery 

efficiency was plotted. Different concentrations of metal ion solutions were selected 

for the experiment: 0.05 mol/L, 0.10 mol/L, 0.20 mol/L, 0.30 mol/L, and 0.50 mol/L. 

By measuring the recovery rate at each concentration, draw a graph of the relationship 

between concentration and recovery efficiency to help optimize the concentration of 

metal ions used. 

From the curve in Figure 5, it can be seen that there is a positive correlation 

between metal ion concentration and recovery efficiency. As the concentration 

increases, the recovery efficiency gradually improves, especially at 0.20 mol/L, the 

highest recovery efficiency reaches 90.2%. However, as the concentration continues 

to increase, the recovery efficiency tends to stabilize or slightly decrease, indicating 

that excessively high concentrations of metal ions may not necessarily lead to better 

recovery results. Therefore, 0.20 mol/L is the optimal concentration of metal ions. 
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Figure 5. Relationship between metal ion concentration and recovery efficiency. 

4.3.2. Biomechanics correction simulation and result analysis 

This article adopts a bio inspired strategy to recycle lithium battery cathode 

materials and studies the mechanical properties of the materials under high 

temperature conditions. To ensure the accuracy of the experiment, the material 

samples were exposed to different high temperature conditions (40 ℃, 60 ℃, 80 ℃) 

and their stress-strain relationships were measured at different tensile rates. 

Temperature is an important environmental factor that affects the microstructure and 

mechanical behavior of lithium-ion cathode materials. Record the stress-strain curve 

of the material by gradually increasing the temperature and applying varying degrees 

of external force, as shown in Figure 6. 

 
Figure 6. Experimental study on stress-strain relationship of lithium positive electrode material at different recovery 

temperatures. 
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The experimental results indicate that under low temperature conditions, the 

mechanical properties of lithium cathode materials cathode materials are relatively 

stable, and the stress-strain curve shows a relatively linear relationship. However, as 

the temperature increases, especially when it exceeds 60 ℃, the stress-strain 

relationship of the material becomes more nonlinear. Under high temperature 

conditions, the rigidity of the material significantly decreases, resulting in a more 

curved stress-strain curve. This phenomenon indicates that high temperature affects 

the internal molecular structure of materials, leading to changes in their microstructure 

and thus affecting their mechanical response. By using a biomechanical correction 

model, the influence of temperature factors has been adjusted. By utilizing the stress-

strain model after multiple corrections, we can more accurately predict the mechanical 

behavior of materials under different high temperature conditions. This correction 

helps improve the adaptability of the material recycling process in high-temperature 

environments. 

In order to further investigate the mechanical properties of lithium cathode 

materials cathode materials under different stress states, such as tension, compression, 

and torsion. We simulate the different stress states that materials may experience 

during the recycling process, apply different types of stress loads using testing 

machines, and record the stress-strain response of the materials. The experiment 

involves stretching, compressing, and twisting material samples to analyze the effects 

of different stress conditions on material properties, as shown in Figure 7. 

 

Figure 7. Mechanical behavior of lithium cathode materials cathode materials under different stress states. 

By analyzing the experimental results under different stress states, we found that 

the material exhibits high deformation ability under tensile stress state, while the 

stress-strain response of the material is relatively weak under compression and torsion 

states. In the compressed state, the material is more prone to brittle fracture, indicating 

that compressive stress has a greater impact on the material. Under the action of 

torsional stress, the strain of the material is mainly concentrated on the surface of the 

material, and due to the non-uniformity of its microstructure, local stress concentration 

phenomena occur. After the modification of the biomechanical model, the nonlinear 

characteristics of the stress-strain relationship were taken into account, which can 



Molecular & Cellular Biomechanics 2025, 22(4), 1414.  

21 

better predict the behavior of materials under nonlinear stress states, especially under 

compressive and torsional loads. By continuously revising the model, it can more 

accurately describe the mechanical response of materials under different recycling 

conditions, providing a theoretical basis for optimizing material recycling processes. 

In order to study the mechanical degradation characteristics of lithium cathode 

materials cathode materials in multiple recycling cycles, we designed an experimental 

plan for multiple recycling cycles. After each recycling cycle, we conduct mechanical 

property tests on the materials, including tensile and compressive tests. By measuring 

the stress-strain curve of the material after each recycling cycle, analyze the trend of 

changes in its mechanical properties, especially the rate and pattern of mechanical 

degradation, as shown in Figure 8. 

 
Figure 8. Mechanical degradation behavior of lithium cathode materials cathode materials during multiple recycling 

cycles. 

The experimental results show that as the number of recycling cycles increases, 

the mechanical properties of lithium cathode materials cathode materials gradually 

decrease, manifested as a decrease in the slope of the stress-strain curve and a decrease 

in the elastic modulus. This indicates that the material has undergone mechanical 

degradation during multiple recycling processes, mainly manifested as the destruction 

of the internal structure of the material and the formation of micro cracks. After 

biomechanical analysis, we found that the degradation characteristics of the material 

have certain nonlinear properties. The modified model can better capture this 

nonlinear degradation behavior, especially after multiple recycling cycles, the stress-

strain relationship of the material no longer shows linear changes. The model with 

multiple revisions can provide more accurate mechanical predictions and provide 

important theoretical support for the recycling design of lithium-ion cathode materials. 

In order to investigate the effect of humidity on the mechanical properties of 

lithium positive electrode materials, a bio heuristic strategy was introduced through a 
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biomechanical correction model to improve the prediction accuracy of material 

behavior under different environmental conditions. The experiment was conducted in 

relative humidity environments of 20%, 50%, and 80% to test the stress-strain 

relationship and changes in elastic modulus and hardness of the material. The 

biomechanical correction model considers the moisture adsorption and expansion 

effects of materials caused by humidity, and combines biological heuristic algorithms 

to simulate the influence of humidity on the mechanical properties of materials. This 

model mimics how biological materials in nature respond to changes in moisture, and 

improves the accuracy and reliability of predictions through structural adjustments and 

micro mechanism optimization of materials, as shown in Figure 9. 

 
Figure 9. Mechanical performance testing and biomechanical correction model application of lithium cathode 

materials cathode materials under different humidity conditions. 

The experimental results indicate that an increase in humidity leads to a 

significant decrease in the mechanical properties of lithium positive electrode 

materials. Under low humidity, the material exhibits high rigidity and low plastic 

deformation; At 80% humidity, the elastic modulus decreased by about 30%, and 

significant micro cracks and plastic deformation occurred. Through biomechanical 

correction model analysis, the influence of humidity on materials is not only reflected 

in water adsorption and expansion, but also reveals the interaction between water and 

the internal structure of materials by simulating the reaction mechanism of plant cell 

walls. The model successfully predicted the degradation process of materials under 

high humidity, providing theoretical support for lithium battery design in different 

environments. 

In order to investigate the effect of loading rate on the mechanical properties of 

lithium positive electrode materials, this experiment designed multiple loading rates 

(1 mm/min to 10 mm/min) for tensile testing, and combined with a biological heuristic 
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optimization model to analyze the experimental data. This model is based on the 

adaptive mechanism of biological tissues under dynamic loading, and simulates the 

stress-strain response of materials at different loading rates. By adjusting the model 

parameters, we can reflect the influence of loading rate on material rigidity, yield 

strength, and fracture mode, further optimizing material design and performance 

prediction, as shown in Figure 10. 

 
Figure 10. Stress strain response and bio inspired optimization model of lithium-ion cathode materials at different 

loading rates. 

The experiment shows that with the increase of loading rate, the yield strength 

and ultimate stress of the material are significantly improved. At low speeds, the 

material exhibits a relatively smooth stress-strain curve and strong ductility, while at 

high loading rates, the material shows greater rigidity and brittleness. The bio inspired 

optimization model successfully revealed the influence of rate on material fracture 

mode by simulating the mechanical response of muscle fibers and bone materials. 

Under high-speed loading, the model predicts an increase in material brittleness and 

accurately reflects the improvement of mechanical properties by dynamic effects, 

providing a scientific basis for the application of lithium-ion cathode materials under 

rapid loading conditions. 

In order to investigate the mechanical degradation behavior of lithium cathode 

materials cathode materials in different acidic environments, a biomechanical 

correction model was used to simulate the corrosion and degradation effects of acidic 

solutions on the materials using a bio inspired strategy. By immersing samples in 0.1 

M, 0.5 M, and 1.0 M HCl solutions for different durations (24 h, 48 h, 72 h), combined 

with the self-healing mechanism of biomaterials, the degradation effect of acidic 

environment on the mechanical properties of materials was evaluated. The 

biomechanical correction model adjusts the material deformation and strength changes 

during the corrosion process by simulating self-healing materials in nature, making 

the model predictions more accurate, as shown in Figure 11. 
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Figure 11. Degradation of mechanical properties of lithium-ion cathode materials in different acidic environments and 

application of biomechanical correction models. 

The results showed that the acidic environment had a significant degradation 

effect on the mechanical properties of lithium positive electrode materials, especially 

in high concentration acid solutions, where the elastic modulus and strength of the 

materials showed a significant decrease. The biomechanical correction model revealed 

the corrosion effect in acidic solutions, simulated the corrosion resistance mechanism 

of plant cell walls, and predicted the degradation process of materials in acidic 

environments. This model not only accurately simulates the mechanical changes under 

different acid concentrations and soaking times, but also provides scientific reference 

for the service life of lithium battery materials in acidic environments. 

In order to investigate the effect of temperature changes on the thermal 

mechanical response of lithium battery cathode materials, this experiment used 

temperature cycling tests to simulate the performance changes of the battery at 

different operating temperatures. The experiment set three temperature conditions of 

−20 ℃, 25 ℃, and 60 ℃, combined with a biomechanical optimization model, and 

used a bio inspired strategy to simulate the changes in mechanical properties of 

materials during thermal expansion and contraction processes. By introducing thermal 

adaptation mechanisms from nature, such as the self-regulation ability of plants and 

animals in temperature changes, the model can accurately predict the mechanical 

behavior of materials under temperature cycling, as shown in Figure 12. 
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Figure 12. Thermomechanical response and biomechanical optimization model of lithium positive electrode material 

under different temperature cycles. 

The experimental results indicate that temperature cycling significantly affects 

the mechanical properties of lithium-ion cathode materials. At low temperatures, the 

material exhibits high rigidity and low ductility, while at high temperatures, the 

strength and rigidity of the material significantly decrease, indicating the onset of 

thermal fatigue effects. Through biomechanical optimization models and the adaptive 

mechanism of biomaterials to temperature changes, the thermal mechanical response 

of materials was successfully predicted, revealing the expansion and contraction 

effects of materials caused by temperature. This model provides theoretical guidance 

for the design and optimization of lithium batteries under extreme temperature 

conditions. 

5. Conclusion 

This article proposes a bio-inspired strategy for recycling lithium-ion positive 

electrode materials, which has been optimized through biomechanical analysis. 

Experimental results and simulations demonstrate that this method achieves high 

recycling efficiency and low cost, highlighting the significant potential of bio-inspired 

approaches in material recycling. Future research should focus on optimizing key 

parameters such as temperature, chemical catalysts, and time to enhance efficiency 

and reduce energy consumption. Additionally, exploring the integration of other bio-

inspired strategies, such as self-healing materials or bio-based solvents, could further 

improve the process. Developing scalable techniques for industrial implementation, 

assessing the long-term environmental impact, and evaluating the economic feasibility 

of these methods will be crucial for advancing the sustainable development of lithium 

battery recycling technologies. 
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