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Abstract: Multimodal medical image synthesis plays a crucial supportive role in research 

within the field of biomechanics, providing high-precision data and analytical methods for 

studies on anatomical structures, tissue characteristics, and mechanical modeling. However, 

due to practical constraints, certain modalities of medical images may be difficult to obtain, 

posing challenges for model training and high-accuracy biomechanical research. Existing 

methods employ convolutional neural network (CNN)-based generative adversarial models to 

synthesize missing modality information across modalities. However, CNNs are limited in 

their ability to model long-range dependencies. Transformers offer a new paradigm to address 

these limitations, yet their high computational and memory demands remain a significant 

drawback. To tackle these challenges, we propose a novel generative adversarial model, termed 

the Convolutional Attention Latent Feature GAN (CALF-GAN), which leverages multi-scale 

convolutional attention for cross-modal medical image synthesis. A dedicated latent attribute 

separation module is employed to disentangle modality-specific features between source and 

target modality images, enhancing the synthesis of medical semantics, such as pixel intensity 

values. Furthermore, to improve the model’s capacity for long-range dependency modeling 

while reducing computational overhead, we design a generation module based on multi-scale 

convolutional attention, capturing long-range dependencies using only convolutional 

operations. Extensive experiments conducted on various medical image datasets demonstrate 

that CALF-GAN achieves remarkable generalizability and outstanding overall performance 

under low memory requirements, making it well-suited for application in high-precision 

biomechanics research.  

Keywords: medical image synthesis; biomechanics; adversarial; generative; magnetic 

resonance imaging (MRI); latent space; attention 

1. Introduction 

With the continuous advancement of artificial intelligence algorithms, medical 

image recognition technology holds significant research value and application 

potential in the field of biomechanics [1]. By integrating modern medical image 

processing techniques with biomechanical analysis, a deeper understanding of the 

mechanical properties of human tissues and organs can be achieved, thereby 

advancing research and applications in biomechanics. Medical image recognition 

technology enables the extraction of precise geometric information of organs, tissues, 

and bones from imaging modalities such as Computed Tomography (CT,) MRI, and 

ultrasound, facilitating the generation of personalized three-dimensional models [2]. 

These models can be utilized to simulate the nonlinear mechanical behavior of 

complex organs, enhancing the accuracy of biomechanical simulations [3]. 
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Furthermore, dynamic medical imaging (e.g., 4D ultrasound, functional MRI) 

combined with image recognition algorithms can capture the mechanical responses of 

tissues during motion or loading processes [4]. 

Multimodal medical imaging plays a pivotal role in biomechanical research, as 

well as in clinical diagnosis and treatment [5], and significantly contributes to the 

development of deep learning models supporting various biomechanical studies and 

medical tasks [6–9]. The integration of different imaging modalities, such as CT, MRI, 

and Positron Emission Tomography (PET), enables the provision of more 

comprehensive biomechanical information. Different medical imaging modalities 

offer distinct advantages. For example, multi-contrast magnetic resonance imaging 

(MRI) can effectively separate fat and water signals by adjusting contrast parameters, 

enabling the acquisition of more detailed soft tissue images. In spinal imaging, the 

contrast between fat and water signals allows clear identification of structural changes 

in intervertebral discs, the spinal cord, and surrounding tissues, which is particularly 

significant for evaluating degenerative spinal conditions. Similarly, in brain imaging, 

variations in fat and water signals enable more precise differentiation of brain tissue, 

tumors, and edema regions, providing critical insights for tumor staging and treatment 

planning. These features are essential for diagnosing and treating different 

pathological regions in modern medicine. However, due to patient-specific challenges, 

certain modality images are often difficult to acquire. For instance, issues such as 

patients being unable to cooperate, high acquisition costs, and privacy protocol 

requirements can prevent the collection of corresponding modality images [10,11]. 

Additionally, factors like patient positioning discomfort, equipment limitations, or 

motion artifacts may result in missing MRI images. Therefore, developing effective 

methods to obtain these missing modality images is of great significance. 

To address this, cross-modal synthesis techniques [12–14] have emerged as a 

promising solution. In recent years, convolutional neural network (CNN)-based cross-

modal synthesis methods [15,16] have significantly improved the quality of 

synthesized images for missing modalities, enabling their use in assisting diagnosis, 

treatment, and data augmentation for scarce samples. Simultaneously, generative 

adversarial networks (GANs) [17–19] have become a cornerstone in the field of cross-

modal synthesis due to their exceptional versatility and realistic generation 

performance. Notably, CycleGAN [20], with its unique bidomain cycle consistency, 

has greatly enhanced the quality and stability of synthesized images, establishing itself 

as one of the most critical backbone networks for cross-modal medical image 

synthesis. However, the intrinsic local receptive field of CNNs imposes limitations on 

their ability to model long-range dependencies. The advent of Transformers [21] offers 

a novel paradigm to overcome these limitations. Many recent studies have explored 

the potential of Transformers [22–24] in the domain of cross-modal medical image 

synthesis, achieving state-of-the-art (SOTA) results. Despite their superior 

performance in modeling long-range dependencies, these methods come at the cost of 

substantial computational overhead. 

To this end, numerous researchers have attempted to streamline attention 

mechanisms [25–27], aiming to achieve a favorable trade-off between long-range 

dependency modeling and computational complexity. These methods effectively 

provide high-quality medical image generation with enriched contextual and structural 
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semantic information. However, medical images often contain specific global 

semantic information, such as pixel intensity distributions across different modalities. 

The global nature of this semantic information makes it challenging for lightweight 

attention mechanisms to fully capture the overall characteristics of the images. 

Recently, attribute decomposition methods based on latent space [28–30] have offered 

a novel approach to addressing this issue. By projecting image information into a latent 

space, these methods enable the extraction and separation of both local and global 

attributes. 

Building upon the aforementioned ideas, we propose a latent feature-guided 

generative adversarial model based on multi-scale convolutional attention. This 

framework consists of a guidance module leveraging latent modality feature 

information and a generation module built on multi-scale convolutional attention. 

Specifically, we introduce an attribute separation mechanism in the latent space to 

disentangle global semantic information across different modalities. This enhances the 

realism of cross-modal generation, particularly in terms of pixel intensity values. 

Additionally, we design a multi-scale convolutional attention module to achieve a 

favorable trade-off between low memory consumption and robust long-range 

dependency modeling. Extensive experiments conducted on various datasets 

demonstrate that the proposed model can generate high-resolution, high-fidelity target 

modality images with minimal computational cost, making it suitable for application 

in high-precision biomechanical research. 

The main contributions of our study are as follows: 

⚫ We present a novel latent modality feature-guided approach for cross-modality 

medical image generation, which enables high-precision biomechanical analysis. 

By incorporating an attribute separation mechanism in the latent space, this 

method enhances the model’s ability to capture global semantic information by 

leveraging the disentangled modality-specific features in the medical imaging 

domain. 

⚫ We introduce a multi-scale attention module based solely on convolutional 

operations, striking a favorable balance between generating high-fidelity target 

modality images and maintaining a lower computational complexity for the 

model. 

⚫ We design a feature encoding module that incorporates a multi-scale 

convolutional attention mechanism to enhance the quality of latent feature 

encoding and better preserve global semantic information. 

2. Related work 

The integration of cross-modality medical image synthesis with biomechanics 

introduces new opportunities for medical research, clinical diagnostics, and 

personalized treatment. By generating medical images across different modalities 

(such as CT, MRI, PET, and ultrasound) and incorporating biomechanical modeling 

and analysis, this approach significantly enhances the efficiency of image utilization 

and the precision of biomechanical studies [31]. 
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2.1. GAN in cross-modal medical image synthesis 

Cross-modal medical image synthesis is a highly promising application, enabling 

the prediction of missing modality information in the absence of target modality data. 

Unlike other generation methods, it leverages the structural and semantic information 

of existing modalities, which is crucial for ensuring the realism of medical images. In 

recent years, Generative Adversarial Networks (GANs) have rapidly emerged as a 

mainstream approach in medical imaging due to their remarkable ability to generate 

realistic images and continuously improving resolution capabilities. They have been 

widely applied in biomechanical research, such as the biomechanical analysis of 

muscle tissues during movement [32,33]. Notably, CycleGAN, with its innovative 

bidomain consistency model, has laid the foundation for cross-modal synthesis and 

has profoundly influenced most existing methods in cross-modal medical image 

generation [34–36]. Specifically, Yurt et al. [37] proposed a semi-supervised deep 

generative model based on GAN to synthesize high-quality MR images from 

undersampled data. Liang et al. [38] utilized CycleGAN to generate Cone-Beam 

Computed Tomography (CBCT) images from CT scans. Emami et al. [39] developed 

a structure-aware generative adversarial network (SA-GAN) to synthesize CT images 

from MRI data. However, GANs, which are predominantly built on CNN backbones, 

remain limited by the intrinsic inability of CNNs to model long-range dependencies 

effectively, leading to suboptimal performance in certain scenarios. 

2.2. Transformer in cross-modal medical image synthesis 

The emergence of Transformers has effectively addressed the limitations of 

modeling long-range dependencies. Specifically, Transformers leverage self-attention 

mechanisms to capture long-range dependencies by determining the relevance of all 

embedded patches. Recently, Vision Transformer (ViT) [40] introduced global self-

attention mechanisms to the image domain, achieving notable success across various 

medical imaging tasks [41,42]. In particular, researchers have explored Transformers 

as a means to overcome GANs’ shortcomings in modeling long-range dependencies 

in cross-modal medical image synthesis. Zhao et al. [24] proposed the Residual 

Transformer Conditional GAN (RTCGAN), which combines the strengths of both 

approaches to generate CT images from MR data. Similarly, Zhang et al. [43] 

introduced a novel MRI synthesis framework, the Pyramid Transformer Network 

(PTNet), to achieve this task. However, Transformers inherently introduce significant 

computational and memory overhead.  

To mitigate these drawbacks, some researchers have begun exploring the 

integration of CNNs with attention mechanisms to achieve a balance between the 

superior local spatial capabilities of CNNs and the long-range dependency modeling 

power of Transformers, all under low computational loads. Li et al. [27] proposed an 

Efficient Spatial Reduction Attention (ESRA) mechanism to enhance feature 

extraction while reducing computational complexity. Xu et al. [26] further advanced 

this idea by designing the CFBlock, which utilizes learnable convolutional attention 

to extract contextual information from pre-trained Transformer blocks. Our approach 

similarly focuses on addressing the computational and memory challenges of 

Transformers by relying exclusively on convolutional operations, providing an 



Molecular & Cellular Biomechanics 2025, 22(3), 1431.  

5 

efficient alternative to maintain high performance in long-range dependency 

modeling. 

CFBlock enhances contextual refinement in CNN-based architectures by using 

dilated convolutions to expand the receptive field and applying channel-wise and 

spatial attention to dynamically refine feature importance. Unlike our multi-scale 

convolutional attention mechanism, which explicitly integrates multi-scale 

information for comprehensive feature representation, CFBlock prioritizes context-

aware refinement through dilation rather than multi-scale convolution. 

Efficient Spatial Reduction Attention (ESRA) improves efficiency by using 

spatial downsampling and global pooling, employing a lightweight attention 

mechanism to reduce computational cost while retaining essential spatial information. 

Unlike the multi-scale convolutional attention mechanism we proposed, which 

enhances feature learning across multiple receptive fields while preserving spatial 

details, ESRA prioritizes low-cost efficiency by reducing spatial resolution. 

2.3. Latent space in cross-modal medical image synthesis 

In recent years, an increasing number of medical imaging studies have recognized 

the significant role of latent space in feature extraction, processing, and reducing 

computational costs. Chartsias et al. [15] proposed a fully convolutional neural 

network that embeds all input modalities into a shared, modality-invariant latent space 

for generation. Fetty et al. [44] explored the manipulation of latent space based on 

StyleGAN, demonstrating its potential for flexible control. Dalmaz et al. [12] utilized 

latent space for feature processing during the generation process, achieving a better 

balance between computational cost and generation performance. However, these 

methods face limitations in explicit attribute disentanglement. The facial synthesis 

domain has provided insightful paradigms for latent space attribute decomposition 

[28–30], which inspired our approach. Building upon these advancements, we propose 

a latent feature-guided generative adversarial model based on multi-scale 

convolutional attention. Specifically, we treat modality as a separable latent feature to 

enhance the global semantic information in cross-modal medical image synthesis. By 

incorporating features from the latent space, more precise biomechanical studies can 

be conducted. 

3. Method 

As shown in Figure 1, the proposed Convolutional Attention Latent Feature-

Guided Generative Adversarial Network (CALF-GAN) for biomechanical research 

consists of two key components: a guidance module based on latent modality feature 

information (Section 3.1) and a multi-scale convolutional attention module (Section 

3.2) incorporated into the generator architecture (Section 3.3). Furthermore, the 

discriminator and model loss functions will be detailed in Section 3.4. 
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Figure 1. The proposed CALF-GAN architecture is built around two core components: (a) a guidance module based 

on latent modality feature information; (b) a generation module utilizing multi-scale convolutional attention. 

3.1. The guidance module based on latent modality feature information 

The proposed Guidance Module based on Latent Modality Feature Information is 

illustrated in Figure 1a. It consists of a Feature Encoder (FE) and a Feature Converter 

(FC). Specifically, the source modality image is encoded into a feature vector by the FE, 

which is then transformed into target modality feature information via the FC. The 

design of the FC is inspired by the Style Transformer in L2M-GAN [30], but we have 

removed redundant multi-attribute components, focusing instead on factorizing only the 

modality-specific information of the source and target images in the latent feature space. 

This modality-specific information is then used to guide the generator in cross-modality 

synthesis. To ensure the separation of modality feature vectors from unrelated feature 

vectors, we also employ an orthogonal loss. 

Orthogonal loss explicitly enforces feature independence by penalizing 

similarity, ensuring diverse and meaningful representations. Compared to other 

disentanglement strategies like adversarial disentanglement and mutual information 

minimization, orthogonal loss is more efficient and easier to integrate into standard 

training frameworks. It enhances generalization and robustness by reducing feature 

redundancy, improving interpretability, and maintaining computational stability 

without requiring additional network components. These advantages make it a 

practical and effective choice for feature separation approach. 

The feature vector f extracted from the source modality image is crucial for the 

quality of subsequent transformations. In particular, preserving the structural semantic 

information of medical images is vital for the overall generation process. Therefore, 

we have designed an FE block that incorporates a multi-scale convolutional attention 

mechanism, as shown in Figure 2. Specifically, we add our proposed Multi-Conv-

Former (MCF) module to the feature extraction layer, after eliminating redundant 



Molecular & Cellular Biomechanics 2025, 22(3), 1431.  

7 

residual blocks. This module employs a multi-scale convolutional attention 

mechanism to extract semantic information from medical images using only 

convolution operations. This approach provides better integration support for 

separating structural semantic information and modality-specific information in the 

FC module. 

 

Figure 2. The feature encoding (FE) module incorporating a multi-scale 

convolutional attention mechanism. 

3.2. Multi-scale convolution attention 

To better simulate the long-range dependency modeling capability of 

Transformers, we have designed the Multi-Conv-Former module, as shown in Figure 

3b. 

 

Figure 3. (a) Architecture diagram of the multi-scale convolutional attention (MSCA) module; (b) architecture 

diagram of the multi-conv-former block. 
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Specifically, we adopt the structural principles of the Transformer but replace the 

self-attention module with the multi-scale convolutional attention mechanism that we 

propose. This allows for more efficient learning of the semantic information of 

medical images with lower memory usage and computational cost. The corresponding 

formula is as follows: 

𝑧 𝑙̃ = BN(MSCA(𝑧l−1) + 𝑧l−1) (1) 

𝑧𝑙 = BN(MLP(𝑧 𝑙̃) + 𝑧 𝑙̃)  (2) 

here, MSCA refers to the Multi-Scale Convolution Attention module, as shown in 

Figure 3a. BN represents batch normalization [45], zl−1 and zl denote the input and 

output, and z l̃ represents the hidden features output by the MSCA. 

The structural semantic information in medical images plays a critical role in the 

quality of generation. Our approach is inspired by Xu et al.’s [26] attempt to extract 

semantic information from the Transformer using convolutional attention. The key 

difference between Multi-Scale Convolutional Attention (MSCA) and convolutional 

attention lies in our objective to replicate the attention mechanism using only 

convolutional operations, thereby completely eliminating the reliance on 

Transformers. This allows us to achieve a better trade-off between low cost and high 

performance. The distinction is also reflected in the structure. As shown in Figure 3a, 

MSCA incorporates multi-scale convolutional attention extraction, which includes 

both stripe convolution and conventional convolution. The former enhances efficiency 

and receptive field range, while the latter exploits the advantages of convolution in 

capturing local spatial semantic information. This design results in a high-performance 

attention module with low computation and memory cost. The specific formula is as 

follows: 

𝑥1,2,3 = Conv (𝑥, 𝑘𝑣1,2,3,padding = (3,0)) (3) 

𝑥1,2,3 = Attention(𝑥1,2,3) (4) 

𝑥1,2,3 = Conv (𝑥1,2,3, 𝑘𝑣1,2,3
𝑇 ,padding = (3,0)) (5) 

𝑥 = ∑ 𝑥𝑖

3

𝑖=1

 (6) 

here, 𝑥 ∈ 𝑅𝑛×𝑐×ℎ×𝑤  and 𝑘𝑣1,2,3  represent convolutional attention operations in the 

vertical, planar, and horizontal directions, respectively. The Attention  includes 

reshaping the 𝑥  dimensions and applying the Softmax  normalization operation. 

Ultimately, 𝑥 is transformed into an attention map with the same dimensions as the 

original. 

The proposed Multi-Scale Convolutional Attention Mechanism employs multi-

scale convolutional kernels to capture hierarchical spatial-contextual features across 

varying receptive fields, coupled with attention weighting to dynamically prioritize 

discriminative regions while suppressing redundant information, achieving adaptive 
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feature emphasis with minimal computational overhead This design enhances multi-

scale feature extraction and adaptability for fine-grained tasks (e.g., medical imaging 

or IoT traffic classification) while maintaining computational efficiency through 

grouped convolutions, structural re-parameterization, and cross-scale interactions. 

The multi-scale convolutional attention mechanism enhances feature extraction 

by integrating multi-scale convolutional kernels with attention weighting, capturing 

diverse spatial details while maintaining computational efficiency. In contrast, 

CFBlock focuses on contextual refinement using dilated convolutions, and Efficient 

Spatial Reduction Attention (ESRA) prioritizes computational efficiency through 

spatial reduction, making them less effective for preserving multi-scale feature 

richness. 

3.3. Latent multi-conv-former generator 

Our generator consists of a three-layer encoder-decoder structure, which includes 

a series of convolutional layers, normalization layers, and activation functions, 

focusing on capturing local spatial information of the image during the cross-modal 

generation process. For the encoder, the input consists of the source modality image x 

and the corresponding feature vector f. In the bottleneck layer, we employ nine MCF 

Blocks for long-range dependency modeling, allowing for better capture of the 

structural semantic information of medical images while maintaining low memory 

load. For the decoder, similar to [30,46], we use Adaptive Instance Normalization 

(AdaIN) to guide the generation of the target modality image using the feature vector. 

A detailed introduction to the generator loss function can be found in Section 3.4. 

3.4. Discriminator and loss functions 

We adopt the discriminator architecture from conditional PatchGAN [47] to 

provide the adversarial loss, thereby improving the performance of the generator and 

enhancing the quality of the generated images. The task of discriminator is to 

distinguish between real and generated images, while the generator aims to produce 

images that are as indistinguishable as possible to the discriminator. The specific 

formula is as follows: 

ℒ𝒟 =
1

2
𝜆adv[ℒ𝐺𝐴𝑁(𝐷(𝑥real),True) + ℒ𝐺𝐴𝑁(𝐷(𝑥fake),False)

 
] (7) 

here, D represents the discriminator, 𝑥real denotes the real image samples, and 𝑥fake 

refers to the generated image samples. The parameter λadv  serves as the weight 

coefficient for the loss, while ℒGAN utilizes binary cross-entropy (BCE) loss. 

The first term of the generator loss is the adversarial loss, which is expressed by 

the following formula: 

ℒ𝒶𝒹𝓋 = ℒ𝐺𝐴𝑁 (𝐷 (𝐺(𝑥𝑟𝑒𝑎𝑙 , 𝑓)) ,True) (8) 

here, 𝐺(𝑥real, 𝑓) represents the image generated by the generator, and f denotes the 

feature vector corresponding to the source modality image. 

The second term represents the pixel-level loss, which uses the L1 loss to measure 

the difference between the synthesized image and the real samples. The specific 
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formula is as follows: 

ℒ𝓅𝒾𝓍 = 𝐸𝑥𝑟𝑒𝑎𝑙,𝑦,𝑥𝑓𝑎𝑘𝑒[||𝐺(𝑥real, 𝑓) − 𝑦||1] (9) 

here, 𝑦 represents the target modality image. 

The third term is the cycle consistency loss, which further captures the mapping 

relationship between the two domains through reverse generation supervision. The 

specific formula is as follows: 

ℒ𝒸𝓎𝒸 = 𝐸𝑥𝑟𝑒𝑎𝑙,𝑦,𝑥𝑓𝑎𝑘𝑒[||𝐺(𝑥𝑓𝑎𝑘𝑒 , 𝑓) − 𝑥𝑟𝑒𝑎𝑙||1] (10) 

here, f̂ represents the feature vector corresponding to the target modality image. 

The fourth term is the feature consistency loss, which similarly ensures better 

domain consistency by reverse generating the feature vectors through the feature 

encoder. The specific formula is as follows: 

ℒ𝒻ℯ𝒶 = 𝐸𝑥𝑟𝑒𝑎𝑙,𝑦,𝑥𝑓𝑎𝑘𝑒 [||𝑓 − 𝐹𝐸 (𝐺(𝑥𝑟𝑒𝑎𝑙 , 𝑓)) ||1] (11) 

The fifth term is the orthogonal loss. To decouple the distinct styles of the two 

modality images as much as possible, an orthogonal form is used to make the vectors 

as independent as possible. The specific formula is as follows: 

ℒℴ𝓇𝓉 = 𝐸𝑥𝑟𝑒𝑎𝑙,𝑦,𝑥𝑓𝑎𝑘𝑒[(𝑓wm ⋅ 𝑓w/o)2 + (𝑓tm ⋅ 𝑓w/o)2] (12) 

Therefore, the total loss function of the generator is expressed as follows: 

ℒ𝒢 = λ𝑎𝑑𝑣 ⋅ ℒ𝒶𝒹𝓋 + λ𝑝𝑖𝑥 ⋅ ℒ𝓅𝒾𝓍 + λ𝑐𝑦𝑐 ⋅ ℒ𝒸𝓎𝒸 + λ𝑓 ⋅ (ℒ𝒻ℯ𝒶 + ℒℴ𝓇𝓉) (13) 

here, λadv, λpix, λcyc, and λf are the weights associated with the corresponding losses. 

4. Experiments and results 

4.1. Datasets 

We use the Spinal Disease dataset and the Multi-Modal Brain Tumor 

Segmentation Challenge 2020 (BraTS2020) dataset [48] to validate the effectiveness 

of the proposed method. 

The Spinal Disease dataset contains imaging data from 300 patients with spinal 

disorders. However, due to the data being sourced from different hospitals and devices, 

there are variations in modality types and descriptions. To ensure consistency and 

enable experimental analysis, we divided the dataset into 200 training samples, 50 

validation samples, and 50 test samples. Subsequently, based on the modality 

sequence descriptions in the Digital Imaging and Communications in Medicine 

(DICOM) files, we manually selected cases that included T1-weighted, T2-weighted, 

and Short-TI Inversion Recovery (STIR) imaging sequences, and processed them 

along the sagittal plane. As a result, the final number of valid 2D images for each 

modality was 615 for the training set, 165 for the validation set, and 146 for the test 

set. 

The BraTS2020 dataset includes T1-weighted, T2-weighted, and T2 Fluid-

Attenuated Inversion Recovery (FLAIR) imaging sequences. As a publicly available 

dataset, the skull has been removed, and all images are uniformly registered to the 
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same anatomical template. From this dataset, we selected data from 55 patients, with 

25 used for the training set, 10 for the validation set, and 20 for the test set. For each 

patient, 100 two-dimensional slices were extracted from the axial plane. 

All image slices in the experiment were uniformly resized to a standard 256 × 

256 pixels, and the original intensity values were normalized to the range [0,1]. 

4.2. Evaluation metrics 

To quantitatively assess the performance of the model, we utilized Peak Signal-

to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Among these, PSNR 

is a commonly used metric for evaluating image reconstruction quality, as it quantifies 

the signal-to-noise ratio between the original and reconstructed images. The formula 

is as follows: 

PSNR = 10 ⋅ log10 (
𝑅2

MSE
) (14) 

here, R denotes the dynamic range of the image (e.g., for an 8-bit image, R = 255), and 

MSE represents the Mean Squared Error, which is calculated as follows: 

MSE =
1

𝑚 ⋅ 𝑛
∑ ∑(𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗))

2
𝑛

𝑗=1

𝑚

𝑖=1

 (15) 

The Structural Similarity Index (SSIM) is used to evaluate the structural 

similarity between images, primarily by comparing luminance, contrast, and structural 

information to assess image quality. Its calculation is given by: 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (16) 

here, 𝜇𝑥 and 𝜇𝑦 represent the mean values of images x and y, respectively, while 𝜎x
2 

and 𝜎y
2 denote their variances. 𝜎𝑥𝑦 is the covariance between the two images, and C1 

and 𝐶2 are constants used to stabilize the computation. 

4.3. Comparison methods 

We compare the proposed method with several classical and state-of-the-art 

approaches, including CycleGAN [20], pix2pix [48], L2M-GAN [30], PTNet [43], 

and ResViT [12]. All these methods are publicly available, and we trained them 

according to the provided settings until convergence. 

4.4. Implementation details 

We set the number of training epochs to 150, which matches the total training 

epochs of ResViT. The learning rate was set to 2e-4, with linear decay applied after 

75 epochs. The hyperparameters of the Adam optimizer were set to β1 = 0.5 andβ2 =

0.999 . The hyperparameter values were λadv = 1 , λpix = 10 , λcyc = 1 , and λf =

100. The experiments were run on a single NVIDIA GeForce RTX 4090. 
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4.5. Synthesis results 

(1) Spinal Disease: We compare the generative performance metrics of our 

method with GAN-based and Transformer-based methods on six tasks: T2 → T1, T1 

→ T2, STIR → T1, T1 → STIR, STIR → T2, and T2 → STIR, as shown in Table 1. 

Except for the T2 →  STIR and T2 →  T1 tasks, CALF-GAN achieves the best 

performance on all other tasks. Given the parameter efficiency of CALF-GAN and its 

superior performance in SSIM, we conclude that the method demonstrates strong 

structural modeling capabilities, particularly on datasets with scarce and low-quality 

samples. This is attributed to the proposed multi-scale convolutional attention module, 

which effectively combines the advantages of contextual relationships and 

convolutional local precision. 

Table 1. Performance for multi-contrast MRI translation tasks in spinal disease. psNR (dB) and SSIM are listed as 

mean ± std across the test set. boldface marks the top-performing model in each task. underline marks the second-

performing model in each task. 

 T2 → T1 T1 → T2 STIR → T1 

 PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ 

CycleGAN 30.50 ± 0.634 0.648 ± 0.122 30.62 ± 0.661 0.618 ± 0.117 30.01 ± 0.741 0.521 ± 0.112 

Pix2pix 30.41 ± 0.652 0.599 ± 0.109 30.50 ± 0.650 0.576 ± 0.127 30.18 ± 0.549 0.544 ± 0.079 

L2M-GAN 30.42 ± 0.581 0.573 ± 0.084 30.33 ± 0.641 0.543 ± 0.102 30.02 ± 0.558 0.474 ± 0.085 

PTNet 30.27 ± 0.557 0.609 ± 0.105 30.37 ± 0.474 0.598 ± 0.103 30.05 ± 0.491 0.541 ± 0.079 

ResViT 30.48 ± 0.598 0.626 ± 0.103 30.65 ± 0.675 0.611 ± 0.126 30.18 ± 0.652 0.550 ± 0.084 

CALF-GAN 30.49 ± 0.638 0.652 ± 0.105 30.68 ± 0.642 0.639 ± 0.118 30.28 ± 0.705 0.589 ± 0.090 

 T1 → STIR STIR → T2 T2 → STIR 

 PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ 

CycleGAN 30.38 ± 0.671 0.511 ± 0.097 30.26 ± 0.741 0.544 ± 0.111 30.65 ± 0.751 0.551 ± 0.103 

Pix2pix 30.20 ± 0.807 0.484 ± 0.091 30.35 ± 0.608 0.535 ± 0.104 30.41 ± 0.791 0.504 ± 0.092 

L2M-GAN 29.65 ± 1.084 0.453 ± 0.102 30.16 ± 0.775 0.481 ± 0.109 30.44 ± 0.836 0.504 ± 0.097 

PTNet 30.31 ± 0.650 0.519 ± 0.083 30.14 ± 0.529 0.540 ± 0.093 30.49 ± 0.672 0.568 ± 0.095 

ResViT 30.59 ± 0.854 0.538 ± 0.094 30.38 ± 0.586 0.559 ± 0.099 30.82 ± 0.705 0.561 ± 0.096 

CALF-GAN 30.80 ± 0.761 0.564 ± 0.088 30.45 ± 0.574 0.566 ± 0.107 30.71 ± 0.803 0.554 ± 0.101 

Representative image results are shown in Figure 4. As indicated in Figure 4a, 

our method better captures the variations in signal intensities, such as those in the 

intervertebral discs, across different modalities. Although the intervertebral discs 

generated by Pix2pix are also relatively bright, the images generated by our method 

are overall closer to the target modality images and exhibit less noise compared to 

Pix2pix. As shown in Figure 4b, when zooming in on the third section of the 

intervertebral disc, CALF-GAN more accurately captures the disc bulging to the left. 

Furthermore, our method avoids the issue observed in CycleGAN and PTNet, where 

the morphology of the third section of the intervertebral disc is closer to the source 

modality image rather than the target modality image. Overall, compared to baseline 

methods, CALF-GAN demonstrates more reliable performance in describing tissue 

structure details and generating overall modality style. 
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Figure 4. Qualitative results of CALF-GAN and the comparison methods on the spinal disease dataset (a) for the 

T1STIR task; (b) for the T2T1 task. 

 

Figure 5. Quantitative results of CALF-GAN and comparison methods on the BraTS2020 dataset. 
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BraTS2020: We compare the generative performance metrics of CALF-GAN 

with GAN-based and Transformer-based methods on four tasks: T2 → T1, T1 → T2, 

FLAIR → T1, and T1 → FLAIR, as shown in Figure 5. CALF-GAN maintains an 

advantage in the T1 → T2 and T1→ FLAIR tasks, while in the remaining tasks, it 

outperforms other GAN methods and performs similarly to Transformer-based 

methods. We attribute this to the inherent advantage of Transformer methods on 

datasets with a sufficiently large number of samples. Overall, CALF-GAN provides a 

more favorable trade-off between computational cost and generative performance. 

We select representative images from tasks where CALF-GAN outperforms the 

competing methods (T1 → FLAIR) and performs similarly to the competing methods 

(T2 → T1), as shown in Figure 6. First, in terms of local spatial structure semantics, 

CALF-GAN demonstrates superior performance, particularly in details of the glioma 

region and brain structural textures. Specifically, for the T1 → FLAIR task, the pixel 

intensity values generated by L2M-GAN lie between those of the source and target 

modalities. Images generated by Pix2pix and PTNet are relatively blurry and 

inaccurate. CycleGAN and ResVit exhibit advantages in the localization of diffuse 

lesion borders and complex-texture lesions, while CALF-GAN performs well in both 

areas. For the T2→T1 task, except for CycleGAN, the images generated by other 

methods are relatively accurate. Compared to competing methods, CALF-GAN also 

demonstrates finer local spatial texture generation ability, although some noise 

artifacts are present. Overall, the experimental results demonstrate that CALF-GAN 

exhibits competitive generative performance even when trained on datasets with a 

sufficient number of samples. 

 

Figure 6. Qualitative results of CALF-GAN and comparison methods on the BraTS2020 dataset (a) T1 → FLAIR 

task; (b) T2 → T1 task. 

4.6. Model complexity 

Model complexity is an important consideration in environments with limited 

computational resources. Table 2 presents a comparison of CALF-GAN and the 
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competing methods in terms of generator parameter count, total model parameters, 

and GPU memory usage. In terms of generator parameter count, CALF-GAN 

significantly outperforms the other methods. Regarding total model parameters, 

CALF-GAN is comparable to CycleGAN and PTNet, yet still superior to the other 

methods. In terms of GPU memory usage, CALF-GAN requires significantly less 

memory than the other competing methods, except for Pix2pix. Considering the 

superior generative performance of CALF-GAN, we conclude that our approach 

achieves a more favorable trade-off between generative quality and computational 

efficiency. 

Table 2. Comparison of Parameters and Memory Load with an input size of (256, 256). 

 CycleGAN Pix2pix L2M-GAN PTNet ResViT CALF-GAN 

Generator Model Complexity (M) 22.74 54.41 33.89 27.69 123.44 14.79 

Total Model Complexity (M) 28.26 57.78 87.40 30.80 126.20 26.31 

Total GPU VRAM Usage (GB) 9.50 2.83 14.68 5.34 3.66 2.81 

4.7. Ablation studies 

We conducted ablation experiments to demonstrate the effectiveness of each 

module in CALF-GAN, as shown in Table 3. First, the baseline is based on the 

proposed Latent Multi-Conv-Former (LMCF) Generator, where all MCF Blocks are 

replaced with standard convolutional blocks. Next, we investigate the role of latent 

feature guidance in the model, where SE refers to the Style Encoder block proposed 

in [30], representing the introduced latent space attribute decomposition mechanism, 

and FE refers to the improved feature encoding block we propose. We then explore 

the added value of the MCF Block to the model’s performance. Finally, the 

improvement in SSIM for our method is relatively significant, which is consistent with 

the performance observed in the experiments. In summary, each of the proposed 

modules contributes to the enhancement of the model’s generative performance. 

Table 3. Quantitative evaluation results by comparing our full model with its ablated versions on the spinal disease 

dataset. 

Models 
T1 → T2 T2 → T1 

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ 

Baseline 30.55 ± 0.604 0.598 ± 0.100 30.41 ± 0.507 0.611 ± 0.086 

Baseline + SE 30.57 ± 0.597 0.600 ± 0.104 30.41 ± 0.630 0.613 ± 0.101 

Baseline + FE 30.64 ± 0.710 0.606 ± 0.108 30.45 ± 0.559 0.623 ± 0.098 

Baseline + MCF Block 30.67 ± 0.640 0.625 ± 0.107 30.48 ± 0.574 0.639 ± 0.103 

Baseline + FE + MCF Block 30.68 ± 0.642 0.639 ± 0.118 30.49 ± 0.638 0.652 ± 0.105 

To further investigate the actual impact of the proposed multi-scale convolutional 

attention mechanism in the model, we utilize Grad-CAM [49] to visualize the attention 

heatmaps, illustrating the enhancement of the model’s focus on specific regions. We 

apply Grad-CAM to generate heatmaps for the same convolutional layer (the final 

convolution block in the bottleneck layer) in both the baseline method and CALF-

GAN. As shown in Figure 7, compared to the baseline, the multi-scale convolutional 



Molecular & Cellular Biomechanics 2025, 22(3), 1431.  

16 

attention in the MCF Block enables our model to better perceive the regions of interest 

(ROI) in the spine. 

 
Figure 7. Attention heatmaps demonstrating the effect of the MCF block. 

5. Discussion 

The absence of specific modality images and the scarcity of high-quality medical 

image samples have become common challenges in clinical diagnosis, biomechanics 

research, and artificial intelligence model training. Although technologies such as 

Transformers have made significant progress in cross-modal generation of high-

quality medical images, these methods still exhibit notable limitations in research 

environments with scarce samples, low-quality data, and limited computational 

resources. To address these challenges, this paper proposes a generative approach that 

achieves a good balance between low computational cost and high generative 

performance. Extensive experiments have demonstrated that the images generated by 

this method possess sufficient realism to meet the practical application requirements 

of biomechanics research. 

Through extensive quantitative experiments, we demonstrate that the proposed 

method achieves competitive results despite having significantly fewer parameters 

than the comparison methods. To ensure the fairness of comparison with L2M-GAN, 

we transfer our method to a unified generator head model, named CALF-GAN-uni, 

which is designed to perform six spine cross-modal synthesis tasks simultaneously. 

Specifically, the unified generator head refers to using a single generator to synthesize 

all six modalities. This approach improves training efficiency and reduces 

computational costs, but it may lead to certain tasks converging earlier, making it 

challenging to achieve optimal performance across all tasks simultaneously. The 

experimental results (as shown in Table 4) indicate that, even when transferred to a 

unified generator model, our method still demonstrates excellent performance. It not 

only surpasses L2M-GAN but also achieves generative performance comparable to 

Transformer-based methods, thus proving the versatility of our approach. However, 

there is still room for improvement in the selection of loss functions and the 

discriminator architecture. Specifically, the choice of loss functions (such as L1 and 

L2 losses) and further optimization of the discriminator architecture or loss functions 

are important directions for future work to enhance CALF-GAN’s performance. 
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Table 4. Performance for CALF-GAN-uni in spinal disease. PSNR (dB) and SSIM are listed as mean ± std across the 

test set. 

 T2 → T1 T1 → T2 STIR → T1 

 PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ 

L2M-GAN 30.42 ± 0.581 0.573 ± 0.084 30.33 ± 0.641 0.543 ± 0.102 30.02 ± 0.558 0.474±0.085 

ResViT 30.48 ± 0.598 0.626 ± 0.103 30.65 ± 0.675 0.611 ± 0.126 30.18 ± 0.652 0.550 ± 0.084 

CALF-GAN-uni 30.56 ± 0.773 0.650 ± 0.118 30.55 ± 0.683 0.623 ± 0.127 30.06 ± 0.722 0.534 ± 0.092 

 T1 → STIR STIR → T2 T2 → STIR 

 PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ 

L2M-GAN 29.65 ± 1.084 0.453 ± 0.102 30.16 ± 0.775 0.481 ± 0.109 30.44 ± 0.836 0.504 ± 0.097 

ResViT 30.59 ± 0.854 0.538 ± 0.094 30.38 ± 0.586 0.559 ± 0.099 30.82 ± 0.705 0.561 ± 0.096 

CALF-GAN-uni 30.53 ± 0.783 0.535 ± 0.085 30.33 ± 0.771 0.553 ± 0.119 30.80 ± 0.757 0.571 ± 0.103 

Additionally, the spinal dataset is derived from a publicly available collection 

that integrates data from multiple hospitals. After manually selecting paired spinal 

images with three modalities, we retained some low-quality, noisy images to evaluate 

the model’s generative capability on lower-quality samples. This decision was also 

made considering the scarcity of spinal samples. Furthermore, to demonstrate the 

generative quality on standard medical image samples, we used the publicly available 

BraTS brain dataset. The experimental results show that our method exhibits superior 

generative performance on low-quality sample datasets while also achieving 

competitive results on normal sample data. Specifically, as shown in Figures 4 and 6, 

CALF-GAN demonstrates strong capabilities in global semantic modeling and 

detailed texture generation, which can be attributed to the effective contribution of the 

proposed modality feature guidance module and multi-scale convolutional attention 

mechanism. 

To further visualize the enhancement provided by the proposed method to the 

model, we use Grad-CAM to display the effect of the multi-scale convolutional 

attention mechanism in the form of attention heatmaps, as shown in Figure 7. 

Compared to the baseline method, our approach not only emphasizes the highlighted 

regions of the fat areas but also effectively captures the structural semantic information 

of the spine, thereby improving the overall quality of the generated images. This 

improvement is also reflected in the superior SSIM performance, as shown in Table 

1. 

However, CALF-GAN still has certain limitations. First, the introduction of the 

latent feature guidance module reduces computational efficiency compared to the 

baseline method. Although we have designed it with lower memory costs, the 

incorporation of the FE and FC modules still introduces some additional 

computational overhead. Second, there remains considerable room for improvement 

in the generation quality of non-critical regions, such as soft tissues. Specifically, as 

shown in Figure 4b, the soft tissues adjacent to the spine exhibit an over-smoothing 

effect. This may be due to the attention mechanism focusing the regions of interest 

(ROI) on the spinal structure and highlighted fat-water signal modalities, which leads 

to a decline in the generation performance for non-critical areas. Therefore, future 

work should focus on further enhancing the generative realism of these regions to 
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improve overall image quality. 

Furthermore, biomechanics research based on medical imaging will provide 

stronger support for personalized medicine. Enhancing the clinical applicability of 

generated images and gaining the recognition of clinicians are crucial directions for 

future research. By analyzing patients’ medical images and conducting biomechanical 

modeling, it is possible to predict individual responses to specific treatment methods, 

enabling the development of the most suitable treatment plans for each patient. When 

generated images are used for high-precision biomechanical research and clinical 

decision support, they must meet more stringent standards, such as maintaining the 

continuity and consistency of pixel intensity in spinal images. Therefore, advancing 

research in this area not only helps to expand the application scope of generated images 

but also increases their clinical value and practical significance. 

6. Conclusion 

In this paper, we propose a latent feature-guided generative adversarial model 

based on multi-scale convolutional attention (CALF-GAN). The model consists of a 

latent space attribute separation module and a generative module based on multi-scale 

convolutional attention. The attribute separation module is designed to extract global 

semantic information from image modalities, while the generative module, which 

simulates the Transformer architecture using only convolution operations, achieves an 

effective balance between local convolutional precision, long-range dependency 

modeling, and low computational cost. Extensive experimental results validate the 

effectiveness of CALF-GAN in overcoming the aforementioned limitations. In 

addition, the high-resolution and high-fidelity medical images generated by this model 

exhibit significant potential for development and application in the field of 

biomechanics research. This study provides precise geometric modeling and dynamic 

analysis capabilities for biomechanics research, aiding in uncovering the complexities 

of human mechanical behavior and advancing the development of precision medicine. 

In the future, advancements in artificial intelligence and big data technologies 

will further integrate medical image recognition with biomechanics, expanding the 

boundaries of medicine, engineering, and biological sciences to enable more cross-

disciplinary innovative applications. We will continue to explore alternative loss 

functions and refinement techniques to enhance the realism of non-critical regions. 
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