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Abstract: Background: In China, half of Type 2 Diabetes Mellitus (T2DM) cases remain 

undiagnosed, worsening patient health and increasing complication risks and socioeconomic 

burdens. This study aims to develop a T2DM prediction model by integrating machine learning 

(ML) methods with Social Determinants of Health (SDoH) data from Fujian Province, China. 

Methods: This study utilized a cross-sectional design and multi-stage cluster random sampling 

to assess SDoH and T2DM prevalence in 26,298 participants from April 2019 to April 2020 in 

Fujian, China. To predict T2DM, the study leveraged 5 machine learning algorithms—Logistic 

Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient 

Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), with the Synthesized 

Minority Oversampling Technique (SMOTE) algorithm balancing samples. hyperparameters 

were tuned through RandomizedSearchCV and GridSearchCV to obtain optimal parameters. 

Model evaluation metrics included accuracy, recall, precision, Area under Curve (AUC) and 

F1 Score. SHapley Additive exPlanations (SHAP) analysis elucidated the impact of specific 

SDoH variables on T2DM risk prediction. Results: Among the 26,298 participants in the study 

population, the mean (SD) age was 53.77 years (14.41) and 13.99% were T2DM (N = 3680). 

All ML models had AUC values above 0.70, with LightGBM performing best (AUC 0.723, 

Accuracy 0.659, Recall 0.709, Precision 0.641). SHAP analysis showed that older age and 

higher Body Mass Index (BMI) significantly increases diabetes risk, along with hypertension, 

poor self-rated health, and dyslipidemia. Conclusion: The predictive model, combined with 

SDoH data, provides a non-invasive, efficient, and low-cost tool for T2DM prediction, 

targeting China’s large undiagnosed diabetic population. Key factors influencing the model 

include older age, higher BMI, hypertension, dyslipidemia, and urban residency, which are 

critical T2DM risk factors. This model supports early detection and targeted interventions, 

helping to reduce healthcare burdens in resource-limited settings. 

Keywords: Type 2 Diabetes prediction; risk factors; predictive medicine; Noncommunicable 

Disease; public health 

1. Introduction 

Diabetes Mellitus (DM) is a metabolic disorder characterized by defects in insulin 

secretion or impaired insulin action. Type 2 Diabetes Mellitus (T2DM) is the most 

prevalent, accounting for approximately 90% of cases [1]. With rapid population 

growth in recent years [2], along with issues like urbanization and aging, the number 
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of people with DM in China has significantly increased, rising from 98.4 million to 

140.9 million between 2013 and 2021 [3,4]. Furthermore, due to the complex 

pathogenesis of DM, insufficient health education, and inadequate healthcare 

resources in rural areas, the undiagnosed rate in China is high, with 60% in urban areas 

and 80% in rural areas [5,6]. This worsens public health risks and economic burdens, 

as delayed or undiagnosed T2DM leads to complications like cardiovascular disease, 

kidney failure, and neuropathy, which require costly treatments and threaten life 

expectancy, while also severely impacting quality of life through chronic pain, 

disability, and reduced mobility [7]. Therefore, providing a rapid, low-cost, and 

effective screening method for the substantial potential T2DM patient population in 

China is of paramount importance. 

ML-based T2DM prediction models have demonstrated cost-effectiveness, but 

many existing ML models rely on biomedical data, such as blood glucose, HbA1c, and 

triglyceride levels, all of which need to be measured in a medical laboratory [8]. This 

limitation significantly narrows the applicability of machine learning prediction 

models, especially in certain underdeveloped medical regions in China. 

In contrast, utilizing Social Determinants of Health (SDoH) as data inputs in 

predictive models represents a groundbreaking approach to diagnosing and 

forecasting T2DM. SDoH encompasses a wide array of conditions affecting 

individuals’ lives, including socioeconomic status, education levels, living and 

working conditions, access to healthcare, and community environments [9–12]. 

Research shows that in China, populations with lower education levels and 

socioeconomic development [13–15], along with unhealthy lifestyle behaviors such 

as poor diet, lack of physical activity (PA), and insufficient sleep, experience higher 

rates of diabetes incidence [16,17]. Studies in northern rural China have developed 

T2DM risk prediction models using SDoH factors such as age, weight, obesity, 

family history, dietary habits, and hypertension [18]. Another study incorporated 

factors like age, gender, education, income, marital status, and diet to predict T2DM 

risk [19], highlighting the influence of these factors on diabetes incidence. These 

findings support integrating SDoH, which are relatively low-cost and accessible 

predictive data, into machine learning models to enhance T2DM prediction accuracy. 

This study aims to develop a machine learning-based model for screening T2DM, 

leveraging SDoH over invasive medical tests for quick, accurate, and cost-effective 

detection. By assessing feature importance, the model evaluates how these 

determinants influence diabetes risk, informing targeted interventions. As shown in 

Figure 1, this approach provides a more efficient alternative to conventional 

screenings by prioritizing prompt, non-invasive detection. In particular, in rural China, 

where medical resources are scarce, this model can effectively identify undiagnosed 

T2DM patients and individuals at high risk of developing T2DM. This enables early 

blood sugar management, targeted prevention strategies, and timely treatment, which 

are crucial for reducing disease burden and improving public health outcomes. 
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Figure 1. Flowchart of T2DM risk predictive model strategy. 

2. Materials and method 

2.1. Data source 

This study was based on the Chinese Adults Noncommunicable Disease and 

Nutrition Surveillance (Fujian segment), a cross-sectional study investigating SDoH 

and T2DM among adults in Fujian Province, China. The baseline dataset used in this 

study was collected from April 2019 to April 2020 (Table S4. Raw data). All 

participants were fully informed of the study’s purpose, procedures, potential risks, 

and benefits prior to their participation. Each participant provided their consent by 

signing a written informed consent form, thereby confirming their understanding and 

agreement to participate under the outlined conditions. 

In the first phase, a total of 16 administrative regions, comprising 5 districts and 

11 counties, were selected from the 86 administrative divisions of Fujian Province 

through a probability proportionate to size (PPS) sampling method. This approach 

utilized population data from the Fujian Province Population Annual Report (2020) to 

ensure proportional representation of areas with larger populations. This method 

ensured that districts and counties with larger populations had a higher chance of being 

selected, thus reflecting the demographic diversity of the province. Districts, streets, 

and communities represent the three levels of the urban population structure, while 

counties, townships, and villages form the three levels of the rural population structure. 

In the second stage, within each selected district or county, 6 townships (or 

streets) were randomly selected using the same method. In the third stage, within each 

selected township (or street), 3 village committees (or communities) were chosen 

using simple random sampling, with each having at least 100 households. In the fourth 

and final stage, within each selected household, 1 individual was surveyed, with the 

sample size calculated using the Kish Leslie formula [20]. The survey targeted 

permanent residents of Fujian Province who had lived in the survey areas for 6 months 

or more, were aged 18 years or older, and excluded pregnant women and individuals 

with cognitive or language impairments. 

A national standard questionnaire, the Social Factors Special Survey Form 

(SFSSF-2019, shown in File S6), developed by the Chinese Center for Disease Control 

and Prevention, was utilized. This questionnaire combined face-to-face interviews 
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with medical examinations. Uniformly calibrated instruments were employed for 

physical and laboratory exams to measure blood pressure, blood lipids, height, and 

weight, as referenced in studies such as [21–24]. Such as, blood pressure was 

measured using the Omron HBP-1300 electronic blood pressure monitor on the right 

upper arm [25]. Measurements were taken three times in a resting state, with intervals 

of more than five minutes between each measurement. Blood glucose levels were 

determined using fasting plasma glucose (FPG) [26] and a 2-hour post-75 g oral 

glucose tolerance test (OGTT) [27] venous blood samples (participants with a history 

of diabetes did not undergo the glucose challenge). 

2.2. Study population 

Participants were excluded if they met any of the following criteria: 1) Missing 

information on age, Body Mass Index (BMI), daily sleep duration, sedentary time and 

the diagnosis of T2DM; 2) more than 10% of SDoH variables were missing [28,29]. 

Ultimately, 26,298 participants were analyzed, among whom 3680 were diagnosed 

with T2DM during the study, including both pre-existing cases and newly identified 

ones, yielding a proportion of 13.99% (3680/26,298). 

2.3. Dependent variable 

The diagnosis of T2DM was defined by the criterion issued by the American 

Diabetes Association (ADA) [30], which was defined as FPG ≥ 7.0 mmol/L and/or 

2Hrs OGTT ≥ 11.1 mmol/L. An equivalent diagnosis of T2DM, previously established 

by a top-tier (Tier 3) hospital in China, is similarly acknowledged as a valid 

determination of the condition. 

2.4. SDoH variables 

To develop a T2DM prediction model driven by SDoH data, this study combined 

findings from a literature review [31-34] with data collected in Fujian Province using 

the SFSSF-2019, File S3 Methods supplement has provided more details on the 

decision-making process for variable inclusion. After excluding variables with over 

10% missing data, 19 SDoH variables associated with T2DM prevalence were 

selected, prioritizing their ease of collection, particularly in regions with limited 

medical resources. These variables were categorized into three groups: Demographic 

variables, lifestyle variables, and physiological health variables, as shown in Figure 

2. 
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Figure 2. The SDoH variables selected. 

The categorization of annual income levels was based on the distribution of per 

capita disposable income for 2023 as reported by the National Bureau of Statistics of 

China, with classifications into three tiers: Lower income (under 20,442 yuan, 

approximately under $2788), Middle income (20,442–50,220 yuan, approximately 

$2788–$6850), and Higher income (over 50,220 yuan, approximately over $6850). 

Central obesity was defined according to the “Guidelines for the Prevention and 

Control of Overweight and Obesity in Chinese Adults”, with a waist circumference ≥ 

90 cm for men or ≥ 85 cm for women indicating central obesity [35]. The data on sleep 

quality (categorized as Bad, Average, or Good) and sedentary time (measured in hours 

per day) were obtained through face-to-face interviews using SFSSF-2019 with 

participants. The definition of chronic disease incidence included the presence of 

coronary heart disease, malignant tumors, chronic digestive system diseases, neck and 

lumbar diseases, chronic obstructive pulmonary disease (COPD), osteoarthritis, 

cerebrovascular disease, and chronic urinary system diseases, among eight types of 

chronic conditions. Physical activity (PA) levels were classified into low, moderate, 

and high based on the scoring rules of the International Physical Activity 

Questionnaire (IPAQ) Short Form [36]. The remaining SDoH variables are shown in 

Table 1 below. 
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Table 1. SDoH variables assignment. 

Variable name Variable assignment 

Dependent variable 

T2DM No T2DM = 0, T2DM = 1 

Demographic variable 

Age Continuous variables 

BMI Continuous variables 

Residence Rural area = 0, Urban area = 1 

Gender Female = 0, Male = 1 

Education Below primary school = 0, Primary school = 1, Junior high school = 2, Junior college and above = 3 

Annual income 
Lower income = 0 (under 20,442 yuan); Middle income = 1 (20,442 ≤ income ≤ 50,220); Higher income = 2 (over 

50,220 yuan) 

Marital status Solitary = 0, Cohabitation = 1 

Medical insurance None = 0, Yes = 1 

Lifestyle variable 

Daily sleep duration Continuous variables 

Sleep quality Bad = 0, Average = 1, Good = 2 

Sedentary time Continuous variables 

PA Low PA = 0, Moderate PA = 1, High PA = 2 

Drinking status < 1/month, 1–4/month, Every week 

Smoking status Never = 0, Former = 1, Current = 2 

Physiological health variable 

Chronic disease None = 0, Yes = 1 

Hypertension None = 0, Yes = 1 

Self-rated health Bad = 0, Average = 1, Good = 2 

Dyslipidemia None = 0, Yes = 1 

Central obesity None = 0, Yes = 1 

2.5. Machine learning algorithms 

This study rigorously followed the TRIPOD process to construct prediction 

models [37]. We selected 5 machine learning algorithms—LR [38], SVM [39], RF [40], 

XGBoost [41] and LightGBM [42]—to build the prediction of T2DM through the 

analysis of SDoH variables. Detailed descriptions of these algorithms are provided in 

Table S1. 

First, we preprocessed the data by detecting and removing outliers using the 

Isolation Forest algorithm [43]. Subsequently, missing data were imputed using the 

“IterativeImputer” function from scikit-learn, following the approach of previous 

studies [44–46], Detailed information on the number of outliers excluded and the 

amount of missing data imputed can be found in the File S3 Methods supplement. The 

original dataset was split into training and test sets in a 7:3 ratio. To avoid data leakage 

and biased results, we performed data imputation on the training set only. To address 

the class imbalance, where T2DM cases were underrepresented (3680/26,298), we 

employed Synthesized Minority Oversampling Technique (SMOTE) to oversample 

the minority class in the training set. This balanced the dataset without affecting the 



Molecular & Cellular Biomechanics 2025, 22(3), 1461.  

7 

test set, preserving model generalizability. SMOTE improved model robustness and 

accuracy, particularly for predicting T2DM in imbalanced datasets, enhancing the 

reliability of our risk prediction [47]. In the training set, machine learning models were 

trained, and hyperparameters were tuned through RandomizedSearchCV and 

GridSearchCV to obtain optimal parameters [48,49]. 

Model performance is evaluated using a comprehensive set of metrics, including 

accuracy, recall, precision, F1 Score, Receiver operating characteristic Area under the 

Receiver Operating Characteristic Curve curves (AUC-ROC) measured on the test 

dataset [50]. Model interpretation and feature importance scores were calculated and 

represented via SHAP values from the optimal prediction model [51,52]. By assessing 

the incremental contribution of each feature’s value against a baseline, SHAP values 

offer a rigorous quantification of feature impact on specific predictions. The 

application of Shapley values in predictive modeling enables a granular quantification 

of each predictor variable’s influence, enhancing the understanding of feature 

importance. These ML modeling methodologies are depicted in Figure 3 below. 

 

Figure 3. The flow chart of the ML modeling process. 

2.6. Statistical methods 

Data preprocessing and the construction of ML models were completed in Python 

3.9 using Sklearn, NumPy, Matplotlib, and Pandas (in File S7). Descriptive statistics 

in this study utilized SPSS 26.0, presenting continuous variables as mean (SD) or mean 

(range) and categorical variables as percentages. Continuous variables were subjected 

to t-tests, while categorical variables underwent chi-square tests, with a P < 0.05 

deemed to indicate statistical significance. 

2.7. Ethics 

This research is a branch of Chinese Adults Noncommunicable Disease and 

Nutrition Surveillance project, conducted within the Fujian province of China. The 

project is led by the National Center for Chronic and Noncommunicable Disease 

Control and Prevention, Chinese Center for Disease Control and Prevention and has 
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received approval from its ethics committee (#201819, File S5). Further, we assure 

that all sociodemographic data utilized for disease prediction were anonymized and 

de-identified prior to analysis. This precautionary measure was taken to ensure that 

individual participants could not be identified, thereby safeguarding patient 

confidentiality. This process underscores our commitment to protecting the privacy 

and confidentiality of all participants involved in our study, aligning with the ethical 

standards set forth by the overseeing ethical committee. 

3. Results 

3.1. Baseline characteristics of dataset 

Among the 26,298 participants, a significant proportion of T2DM respondents (n 

= 3,680) had not pursued education beyond primary school (69.5%). For T2DM 

participants, the mean BMI was 24.75 (SD 3.56), significantly exceeding the mean 

BMI of 23.43 (SD 3.28) in non-T2DM individuals, and the average age was 60.79 (SD 

11.85), markedly higher than the 52.63 (SD 14.46) of non-T2DM participants. 

Furthermore, a significant fraction of T2DM individuals, representing 65.2%, belong 

to the low-income tier. Furthermore, gender and marital status, having P-values above 

0.05, are excluded as predictors in the ML model due to insufficient statistical 

significance. These findings are elaborated in Table 2 below. 

Table 2. SDoH variables descriptive. 

 Participants, No. (%) 

  No T2DM T2DM Total  

Variable Classification (N = 22,618) (N = 3680) (N = 26,298) P value 

Age, mean (SD) - 52.63 (14.46) 60.79 (11.85) 53.77 (14.41) < 0.001 

BMI, mean (SD) - 23.43 (3.28) 24.75 (3.56) 23.61 (3.36) < 0.001 

Residence 
Rural 16,084 (71.1) 2354 (64.0) 18,438 (70.1) 

< 0.001 
Urban 6534 (28.9) 1326 (36.0) 7860 (29.9) 

Gender 
Female 12,527 (55.40) 1991 (54.10) 14,518 (55.20) 

0.152 
Maled 10,091 (44.60) 1689 (45.90) 11,780 (44.80) 

Education 

Below primary school  9273 (41.00) 1924 (52.30) 11,197 (42.60) 

< 0.001 
Primary school 3820 (16.90) 634 (17.20) 4454 (16.90) 

Junior high school 4919 (21.70) 689 (1d8.70) 5608 (21.30) 

Junior college and above 4606 (20.40) 433 (11.80) 5039 (19.20) 

Annual income 

Lower income 13,864 (61.30) 2399 (65.20) 16,263 (61.80) 

< 0.001 Middle income 3908 (17.30) 582 (15.80) 4490 (17.10) 

Higher income 4846 (21.40) 699 (19.00) 5545 (21.10) 

Marital status 
Solitary 3052 (13.50) 610 (16.60) 3662 (13.90) 

< 0.001 
Cohabitation 19,566 (86.50) 3070 (83.40) 22,636 (86.10) 

Medical insurance 
None 104 (0.50) 11 (0.30) 115 (0.40) 

0.216 
Yes 22,514 (99.50) 3669 (99.70) 26,183 (99.60) 

Daily sleep duration, mean (SD) - 7.21 (1.49) 7.14 (1.67) 7.20 (1.52) 0.009 
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Table 2. (Continued). 

 Participants, No. (%) 

  No T2DM T2DM Total  

Variable Classification (N = 22,618) (N = 3680) (N = 26,298) P value 

Sleep quality 

Bad 3098 (13.70) 617 (16.80) 3715 (14.10) 

< 0.001 Average 7590 (33.60) 1305 (35.50) 8895 (33.80) 

Good 11,930 (52.70) 1758 (47.80) 13,688 (52.00) 

Sedentary time, mean (SD) - 4.49 (2.91) 4.64 (3.02) 4.51 (2.93) 0.003 

PA 

Low PA 15,352 (67.90) 2407 (65.40) 17,759 (67.50) 

0.007 Moderate PA 4868 (21.50) 833 (22.60) 5701 (21.70) 

High PA 2398 (10.60) 440 (12.00) 2838 (10.80) 

Drinking status 

< 1/month 15,988 (70.70) 2723 (74.00) 18,711 (71.10) 

< 0.001 1–4/month 4055 (17.90) 520 (14.10) 4575 (17.40) 

Every week 2575 (11.40) 437 (11.90) 3012 (11.50) 

Smoking status 

Never 16,001 (70.70) 2572 (69.90) 18,573 (70.60) 

< 0.001 Former 1435 (6.30) 323 (8.80) 1758 (6.70) 

Current 5182 (22.90) 785 (21.30) 5967 (22.70) 

Chronic disease 
None  12,606 (55.70) 1715 (46.60) 14,321 (54.50) 

< 0.001 
Yes 10,012 (44.30) 1965 (53.40) 11,977 (45.50) 

Self-rated health 

Bad 1770 (7.80) 565 (15.40) 2335 (8.90) 

< 0.001 Average 10,183 (45.00) 1985 (53.90) 12,168 (46.30) 

Good 10,665 (47.20) 1130 (30.70) 11,795 (44.90) 

Hypertension 
None 16,776 (74.20) 1990 (54.10) 18,766 (71.40) 

< 0.001 
Yes 5842 (25.80) 1690 (45.90) 7532 (28.60) 

Dyslipidemia 
None 14,078 (62.20) 1727 (46.90) 15,805 (60.10) 

< 0.001 
Yes 8540 (37.80) 1953 (53.10) 10,493 (39.90) 

Central obesity 
None 16,567 (73.20) 1987 (54.00) 18,554 (70.60) 

< 0.001 
Yes 6051 (26.80) 1693 (46.00) 7744 (29.40) 

3.2. Features selection 

Random Forest-Recursive Feature Elimination (RF-RFE) is a feature selection 

technique that iteratively removes the least important features based on their 

importance scores, identifying a subset that enhances prediction accuracy. In this 

study, RF-RFE (Random Forest-Recursive Feature Elimination) was used to identify 

the most predictive variables, with the optimal number of variables determined by 

maximizing the AUC. A higher AUC indicates better model prediction accuracy. As 

shown in Figure 4, the model achieves the highest AUC when it includes 18 variables. 

The optimal set of variables selected by the RF-RFE algorithm includes age, 

hypertension, BMI, central obesity, sedentary time, self-rated health, daily sleep 

duration, education, dyslipidemia, sleep quality, drinking status, annual income, PA, 

residence, smoking status, chronic disease, gender, and marital status, while medical 

insurance was excluded. 



Molecular & Cellular Biomechanics 2025, 22(3), 1461.  

10 

 
Figure 4. Relationship between the number of features and AUC score for T2DM prediction. 

This plot shows the relationship between the number of features and the AUC 

score for T2DM prediction, with optimal performance achieved at 18 features (red 

dashed line). AUC refers to the Area Under the Curve, indicating the model’s ability 

to discriminate between classes. 

3.3. Model hyperparameter tuning 

The hyperparameters of each algorithm are optimized using grid search, where 

the Best AUC represents the highest evaluated AUC value obtained during the 

hyperparameter tuning process through 5-fold cross-validation. The Model 

Hyperparameter Tuning process involves initial tuning by defining a model pipeline 

with preprocessing steps and the classifier, followed by setting a broad range of 

hyperparameters. Using RandomizedSearchCV, we perform an initial hyperparameter 

search, fit the model on the training data, and identify the best parameters. For fine-

tuning, we narrow the hyperparameter range based on the initial results and employ 

GridSearchCV to conduct exhaustive search. The model is then refitted with the 

refined parameters, and the final best parameters and corresponding scores are 

reported. This two-step approach efficiently explores and optimizes the 

hyperparameter space. The hyperparameters at this point are considered the optimal 

hyperparameters for the model. The optimal hyperparameters for each model, along 

with their Best Score and default values, are shown in Table S2. 

3.4. Model evaluation 

This study validated the performance of five models on the dataset, with all 

models achieving AUC-ROC values above 0.70, shown in Table 3. The LightGBM 

model demonstrated the best performance across all metrics. It achieved accuracy of 

0.659, recall of 0.709, and precision of 0.641. Additionally, LightGBM had the highest 
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AUC-ROC value of 0.723, indicating its superior ability to distinguish between 

positive and negative samples. The AUC-ROC curve for the 5 model is shown in 

Figure 5. 

Table 3. The performance of ML models. 

Metrics LR SVM RF XGBoost LightGBM 

Accuracy 0.658 0.658 0.656 0.658 0.659 

Recall 0.669 0.706 0.693 0.691 0.709 

Precision 0.650 0.640 0.641 0.643 0.641 

AUC-ROC 0.718 0.722 0.717 0.722 0.723 

 

Figure 5. The AUC-ROC curves of ML models. 

The AUC-ROC curve compares the performance of various machine learning 

models in predicting T2DM risk, with LightGBM achieving the highest AUC of 0.723, 

demonstrating strong discriminatory ability across models. 

3.5. SHAP value of ML model 

The SHAP values reflect the contribution of each feature to the model’s 

prediction of T2DM risk. According to Figure 6, the most significant predictors of 

T2DM risk include age, BMI, hypertension, dyslipidemia, and residence (urban/rural). 

Specifically, older age, higher BMI, the presence of hypertension and dyslipidemia, 

and living in urban areas are all associated with an increased likelihood of developing 

T2DM. Additionally, poor self-rated health, central obesity, and longer sedentary time 

are strongly positively correlated with T2DM risk. 
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Figure 6. SHAP-based feature importance for predicting T2DM risk using LightGBM model. 

Panel A shows feature importance from SHAP values of an XGBoost model 

predicting T2DM risk, with features ranked by importance along the y-axis. The x-

axis represents the mean absolute SHAP values, indicating each feature’s average 

impact on the model. Higher values indicate a greater positive contribution to T2DM 

risk, while lower values suggest a negative impact. Panel B illustrates how individual 

feature values impact the model’s prediction of T2DM risk. The colors represent 

feature values, with blue indicating low values and red indicating high values. Positive 

SHAP values show a positive contribution to T2DM risk, while negative SHAP values 

indicate a negative impact. 

4. Discussion 

4.1. Novelty and importance of the T2DM prediction model using SDoH 

In this study, T2DM prediction models using SDoH data offer a non-invasive, 

efficient, and low-cost method for identifying potential T2DM patients. This machine 

learning-based advancement not only reduces the burden on undiagnosed cases but 

also promises significant improvements in public health through personalized, 

proactive healthcare approaches [53–57]. These models incorporate socioeconomic, 

environmental, and behavioral factors, providing a comprehensive understanding of 

an individual’s T2DM risk. Using non-clinical SDoH data, they are more cost-

effective than traditional methods reliant on clinical or biological markers, as SDoH 

data can be obtained through simple online questionnaires or interviews, minimizing 

the need for healthcare personnel and medical resources during screening. Traditional 
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diabetes screening methods, including the FPG, the 2-hour OGTT, or the HbA1c test, 

are invasive, inconvenient, and expensive. Studies have shown that the cost of 

diagnosing each case of diabetes is $758 in the United States [58] (no screening 

strategy) and €831 in Germany [59]. Applying the Chinese Diabetes Risk Score 

(CDRS) to screen for pre-diabetes in China also costs $299.67 per case [60]. So, for a 

populous country like China, with a large number of potential T2DM patients, 

achieving large-scale T2DM screening represents a significant financial burden. This 

affordability and ease of access to SDoH data make these prediction models 

particularly valuable in under-resourced areas where healthcare infrastructure may be 

lacking or where there are significant barriers to healthcare access. By identifying at-

risk individuals based on a broader set of determinants, healthcare providers can target 

interventions more effectively and allocate resources more efficiently, helping to 

mitigate the impacts of healthcare inequalities and ensuring that preventative measures 

reach those most in need. 

4.2. Comparison with existing Chinese T2DM prediction models 

In the realm of T2DM risk prediction, our model represents a paradigm shift from 

traditional biomarker-centric approaches to a holistic evaluation encompassing SDoH. 

Contrasting with existing models, our algorithm amalgamates an extensive dataset 

integrating both clinical and non-clinical parameters, addressing a critical gap for a 

multifaceted risk assessment suitable for the Chinese population. 

Early studies on predictive models for T2DM in the Chinese population, such as 

those by Zhang et al. [61] and Liu et al. [62], primarily relied on medical examination 

data including FPG, total cholesterol (TC), triglyceride (TG), high-density lipoprotein 

(HDL-C), low-density lipoprotein (LDL-C), alanine aminotransferase (ALT), 

aspartate transaminase (AST), total bilirubin (TBIL), which have limited accessibility. 

Prevailing non-invasive T2DM prediction models, Zhang et al. [54] made substantial 

strides with a model for rural populations in Henan Province, underscoring the 

predictive value of readily obtainable clinical data. Wang et al. [63] contribute 

significantly to this body of research through the Kailuan prospective study, which 

employs risk scores to forecast the incidence of T2DM. Xiong et al. [64] conducted a 

retrospective study in Nanjing and applied machine learning to urban clinical data with 

a notable degree of success, drawing parallels in performance to our own model. 

Lastly, Zhang et al. [65] also utilized machine learning in their Henan Rural Cohort 

Study to identify new risk factors for T2DM, demonstrating the expanding capability 

of these algorithms in rural settings. 

Our research builds upon the groundwork established by these pivotal studies, 

eliminating predictive indicators that are challenging to obtain in areas with scarce 

medical resources. By incorporating a broader range of SDoH into our predictive 

model, we have maintained commendable predictive accuracy, with an AUC value of 

0.723, ranking it in the middle tier of previous studies (AUC: 0.65–0.89) [65–67]. This 

approach underscores the significance of socio-economic and lifestyle variables in 

assessing T2DM risk, thereby offering a nuanced and comprehensive tool for early 

detection and intervention strategies within the Chinese context. 
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4.3. Implications of SDoH T2DM prediction for public health 

T2DM prediction models incorporating SDoH reshape public health planning 

and policymaking by highlighting the critical influence of environmental, economic, 

and social factors on health outcomes. Our model, focused on the Fujian Province 

dataset, exemplifies this approach by aligning closely with the region’s unique socio-

economic conditions and health characteristics. This localized specificity enhances the 

precision of T2DM screening and prevention in Fujian, underscoring the importance 

of tailoring models to reflect the comprehensive health landscapes of specific 

communities. 

Utilizing SDoH data for T2DM prediction catalyzes cross-disciplinary 

collaboration, uniting healthcare, public health, community organizations, and policy 

sectors. This collaboration is essential for addressing broad health challenges and 

advocating for policies that simultaneously enhance social, environmental, and health 

conditions. Our work serves as a case study in the effective use of non-clinical data to 

predict health outcomes, demonstrating the potential for similar region-specific 

models to contribute to a cohesive, preventative healthcare system. 

These models are pivotal for health monitoring and policy adjustment, allowing 

for the timely identification of trends and the evaluation of intervention efficacy. By 

implementing T2DM prediction models using SDoH data, such as our targeted 

approach in Fujian, we mark a significant stride in public health. This strategy aims to 

improve health outcomes, reduce disparities, and foster a data-led, preventative 

healthcare environment that is equitable and universally effective. 

4.4. Limitations 

The study of T2DM using SDoH encounters limitations that include dataset 

representativeness, subjective survey responses, and an imbalance of sample sizes. 

Firstly, the dataset’s focus on Fujian province, one of China’s fastest-growing 

economic regions and ranked seventh in Gross Domestic Product (GDP) nationwide, 

may not fully capture the health conditions and socio-economic variations observed 

across other regions. Fujian exhibits pronounced internal disparities, with highly 

developed coastal cities such as Fuzhou and Xiamen coexisting alongside 

economically underdeveloped mountainous areas. This unique intra-provincial 

imbalance, which is less prevalent in other provinces, may limit the broader 

applicability and accuracy of the model. Secondly, the reliance on self-reported data 

for key variables such as sleep quality and sedentary time introduces a level of 

subjectivity. This subjectivity could lead to bias, as individual perceptions and 

reporting accuracy vary, potentially skewing the data and affecting the model’s 

outputs. 

5. Conclusion 

This study developed a non-invasive, low-cost predictive model for T2DM using 

SDoH and five machine learning algorithms, with LightGBM showing the best 

performance (AUC = 0.723). This model offers a reliable tool for T2DM screening, 

particularly in regions with limited medical resources. The most influential features 

for model prediction include older age, higher BMI, the presence of hypertension and 
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dyslipidemia, and living in urban areas, which reflect key risk factors for T2DM. 

Future research should expand the geographic scope of data collection beyond Fujian 

Province to improve model generalizability. Additionally, reducing reliance on self-

reported data for variables such as sleep quality and self-rated health will enhance 

input accuracy. Future studies should also explore alternative machine learning models 

and incorporate environmental and genetic data to provide a more comprehensive view 

of T2DM risk. 
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