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Abstract: Accurate measurement of fish fry body length is crucial in biomechanical research 

and the development of intelligent aquaculture, as it directly affects the growth, locomotion, 

and ecological adaptability of fish. Traditional manual methods are time-consuming, labor-

intensive, and may harm fish fry. Therefore, accurate, rapid, and non-destructive 

measurements of large quantities of fish fry are highly important in aquaculture. This study 

used 20–100 mm grass carp fry (Ctenopharyngodon idella) as test subjects. An image 

acquisition platform was developed to obtain RGB-D data from the top view of the fry. We 

proposed ROS-YOLO, which replaces the original C2f module of YOLOv8n-Pose with 

reparameterized convolution-based shuffle one-shot aggregation (RCS-OSA) and introduces 

a simple attention module (SimAM) into the main feature extraction layer, to detect key body 

length points of fish fry. Depth information for 3D keypoint coordinate transformation was 

obtained through the depth map. Additionally, biomechanical principles were incorporated to 

study the movement patterns, muscle activity, and hydrodynamic efficiency of fish fry. High-

speed cameras and motion tracking software were used to analyze swimming kinematics and 

dynamics, while biomechanical modeling was employed to simulate the effects of water flow 

on growth and development. Finally, fish fry body lengths were calculated based on keypoint 

coordinates. In experiments, ROS-YOLO achieved an average keypoint detection accuracy of 

99.2%, with 3.97 M parameters and 125 FPS. Compared to manual measurements, the 

overall average error in automatic measurement results was 2.87 mm (5.85%). Therefore, the 

proposed method meets real-time measurement requirements for fish fry body length and 

provides insights into the biomechanics of fish fry growth and movement. 

Keywords: grass carp fry; fry body length; attention mechanism; three-dimensional 

coordinates; YOLOv8n-pose; keypoint detection 

1. Introduction 

In aquaculture, body length of fish is important. The size of the fish not only 

reflects growth status but also serves as a crucial basis for feeding, grading 

cultivation, harvesting, selling, and estimation of the fish biomass. Body length plays 

a vital role in evaluating production efficiency and intelligent management during 

fry cultivation. In the current aquaculture industry, fry size measurements rely on 

manual sampling. This traditional contact-based measurement method is inefficient 

and can cause varying degrees of physical damage to the fry, affecting their normal 

growth and resulting in economic losses for fish farms [1,2]. The development of 

machine vision technology, has led to it being widely applied in various fields of 

aquaculture (such as quality grading [3], identification counting [4,5], behavior 

analysis [6–8], and health assessment [9,10]), making it indispensable in aquaculture. 
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However, obtaining size information quickly and accurately on a large number of fry, 

remains a problem to be solved. 

Researchers worldwide have extensively explored vision-based fish size 

measurement methods. Yang et al. [11] applied thresholding to segment fish body 

images and employed the Canny algorithm to extract body contours, achieving an 

average relative error of 0.3% in determining measurement points. Tseng et al. [12] 

trained a convolutional neural network to detect fish heads and caudal forks, defining 

the distance between these points as body length. A pixel-to-real distance conversion 

factor derived from a calibration board was used to estimate fish length, resulting in 

an average relative error of 4.26%. Zhou et al. [13] used the SOLOv2 model to 

segment fish bodies and generated depth images via binocular stereovision. By 

combining image plane features with depth data, they reconstructed 3D fish poses 

and precisely estimated total length with a 2.67% average relative error. These 

studies demonstrate the feasibility of vision-based fish size measurement; however, 

strict experimental constraints on fry conditions limit its applicability in real-world 

aquaculture environments. 

In recent years, advancements in human pose estimation have led to the 

widespread adoption of convolutional neural network-based keypoint detection 

methods for dimension measurement, yielding promising outcomes. Li and Teng [14] 

pioneered the use of deep learning techniques to localize livestock feature points by 

employing stacked hourglass networks, achieving keypoint localization in segmented 

images of goat and cow trunks. Wang et al. [15] developed an improved keypoint 

detection model, HRNet with Swin Transformer block (HRST), to detect keypoints 

on standing pigs, enabling non-contact measurement of pig body dimensions. Li et al. 

[16] proposed DSS-YOLO, a keypoint detection model based on YOLOv8n-pose, 

and integrated it with point cloud data processing methods to detect measurement 

points in 3D point clouds of Mongolian horses. This approach enabled automatic 

measurement of five body size parameters, including body height, body length, hip 

height, chest girth, and hip girth. Li et al. [17] developed a method to locate and 

measure continuously casting billets by integrating a Transformer with binocular 

vision. They employed an improved neural network to detect and extract keypoint 

coordinates, achieving measurement via 3D reconstruction using binocular vision. 

In previous studies, the measurement environments were relatively controlled, 

and the targets were clearly distinguishable. However, this approach is unsuitable for 

keypoint detection in scenarios involving a large number of small fish fry with 

mutual occlusion. To address these challenges, this study proposes a new detection 

model, RCS-OSA-SimAM-YOLO, based on the YOLOv8-pose framework. The 

model is designed for keypoint detection to enable accurate fish fry size 

measurement. 

2. Materials and methods 

2.1. Dataset construction 

2.1.1. Data collection 
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Sample data were collected from the Mechanical Building at Hubei University 

of Technology using the data acquisition setup depicted in Figure 1. A RealSense 

D435 depth camera was used, with an RGB image resolution of 1280 × 720 and a 

depth image resolution of 640 × 480 pixels, at a frame rate of 30 FPS. The 

experimental subjects were grass carp fry randomly sampled from a breeding pond, 

with body lengths ranging from 20 to 100 mm. Top-view RGB videos of fry moving 

through a chute in various rearing containers were recorded, each lasting 15 to 30 

seconds, and saved in *.mp4 format. To enhance dataset diversity, videos were 

captured under various natural conditions, including sunny and cloudy days, as well 

as frontlight and backlight conditions. After each session, the fry were replaced, and 

the vertical distance between the camera and water surface was adjusted. A total of 

40 RGB videos were collected under these conditions. 

  
(a) (b) 

Figure 1. Collection environment and equipment. (a) scene 1; (b) scene 2. 

The collected videos were processed to extract every 10th frame, yielding 3200 

fish fry images. To prevent overfitting caused by high similarity among the images, 

redundant images were removed by calculating the structural similarity index (SSIM) 

between adjacent frames [18]. The SSIM threshold was defined as the average SSIM 

for each video segment. If the SSIM between two adjacent frames exceeded the 

threshold, only one frame was retained. The SSIM is calculated as follows: 

{
  
 

  
 𝑙(𝑥, 𝑦) =

2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

 (1) 

𝑆𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]
𝛼 × [𝑐(𝑥, 𝑦)]𝛽 × [𝑠(𝑥, 𝑦)]𝛾 (2) 

where 𝑥 and 𝑦 represent the data from the first and second image windows 

respectively; 𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), and 𝑠(𝑥, 𝑦) are the formulas for calculating luminance, 

contrast, and structural similarity respectively; 𝜇𝑥 and 𝜇𝑦 are the average grayscale 

values of the two images; 𝜎𝑥 and 𝜎𝑦 are the grayscale standard deviations of the two 

images; 𝐶1 , 𝐶2 , and 𝐶3  are constants; 𝛼, 𝛽, and 𝛾  are the weights of the different 

features in the SSIM calculation and were all set to 1 in this experiment. 
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After initial screening of similar images using SSIM, images with significant 

mutual occlusion among fry were manually removed to ensure that during annotation, 

keypoints of one fish did not overlap with the bounding box of another. Following 

this process, 1200 top-down fry images were obtained and split into training, 

validation, and test sets in a 7:2:1 ratio. The dataset was annotated using Labelme, 

based on key measurement points of grass carp fry, with corresponding label names 

listed in Table 1. Figure 2 illustrates the Labelme annotation interface. 

Table 1. Data annotation labels. 

Label target Fish fry Fish head  Dorsal fin origin  Caudal fin base  Left gill  Right gill  

Label fish 0 1 2 3 4 

 
Figure 2. Schematic diagram of key feature points annotation on grass carp fry 

image. 

Upon completion of the annotation process, a JSON file is generated and 

subsequently converted into a TXT file, as shown in Figure 3. This file contains the 

label information for the image, including the label category, bounding box 

coordinates, and keypoint coordinates. This annotation process provides precise 

localization of fry keypoints and classification labels, enabling high-quality data for 

training keypoint detection algorithms. 

 
Figure 3. The content of the TXT label. 

2.1.2. Data augmentation 

To improve the generalizability and detection performance of the model for fish 

fry keypoints, this study employed various online data augmentation techniques, 

including random noise, random flipping, random rotation, random brightness 
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adjustment, and random combinations of the above methods. For example, random 

noise includes adding Gaussian or salt-and-pepper noise to the original image; 

random flipping involves flipping the original image horizontally or vertically at 

random; random rotation involves rotating the original image by 90° or 180° at 

random; random brightness adjustment involves varying the brightness of the 

original image; and random combination combines the aforementioned methods. 

Figure 4 illustrates the effects of each image enhancement method. Each image was 

randomly augmented using one method, yielding 2400 fish fry images, which were 

then split into training, testing, and validation sets in a 7:2:1 ratio. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Schematic diagram of various image enhancement effects. (a) original 

image; (b) random noise; (c) random flip; (d) random angle rotation; (e) random 

brightness adjustment; (f) random combination. 

2.2. Overall counting roadmap 

The overall technical route, shown in Figure 5, comprises a keypoint detection 

model and a 3D coordinate transformation module. First, an image acquisition 

platform was developed to acquire RGB and depth images of the fish fry. Next, 

ROS-YOLO was used to detect keypoints for fish fry size measurement and project 

them onto synchronized depth images to obtain depth information. Finally, camera 

calibration was performed to obtain intrinsic and extrinsic parameters, enabling the 

transformation of 3D keypoint coordinates and calculation of fish fry size parameters. 
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Figure 5. Technology roadmap for automatic measurement of fry size parameters. 

2.3. Improvement of key point detection model 

YOLOv8-Pose is a single-stage detection model within YOLOv8 that 

simultaneously achieves object and human pose keypoint detection. The 

corresponding network model is divided into three parts: backbone, neck, and 

detection head. The YOLOv8 algorithm has five versions: YOLOv8n, s, m, l, and x. 

For this study, which focused on keypoint detection and size measurement of fish fry 

in aquaculture, YOLOv8n-pose was selected as the base model to ensure accurate 

and fast detection. Because the initial YOLOv8n-pose was primarily designed for 

human pose estimation and thus not suitable for the identification and keypoint 

detection of grass carp fry, we improved YOLOv8n-pose, considering the 

characteristics of the self-made grass carp fry keypoint dataset, in the following two 

aspects to meet the requirements for keypoint detection for grass carp fry size 

measurements: 

1) In the Backbone and Neck of the YOLOv8-pose model, the original coarse-

to-fine (C2f) object detection module was replaced with the RCS-OSA [19] module, 

combining feature cascading with computational efficiency, to enhance the detailed 

extraction capability for grass carp fry keypoints and significantly reduce inference 

time. 

2) The SimAM [20] attention mechanism was introduced into the main feature 

extraction layer, to generate attention weights by calculating the similarity between 

each pixel and its neighboring pixels in the feature map, without any additional 

parameters, which effectively improved grass carp fry detection accuracy and 

efficiency. 

The improved model structure is illustrated in Figure 6 (the improved parts are 

highlighted in red boxes). The optimized YOLOv8n-pose model demonstrated 

higher detection accuracy and efficiency in complex scenarios, was capable of 

precisely extracting the keypoints of fry, and could stably detect even under 

occluded conditions, providing reliable technical support for large-scale target 

detection in aquaculture environments. 
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Figure 6. Improved YOLOv8-pose model. 

2.3.1. RCS-OSA module 

The RCS-OSA module consists of RCS and OSA. The RCS is a structural 

reparametric convolution based on channel shuffle (Figure 7), whereby model 

performance during training and inference is optimized through channel shuffling 

and multi-branching structures. In the training phase, the input feature tensor is 

divided into two parts of the same dimension, with one part processed through 

multibranch structures, such as identity mapping, 11 convolutions, and 33 

convolutions, to learn rich feature representations, followed by channel connection 

and shuffling; the other part ensures that the features are fully integrated among 

different channels. In the inference phase, all branches are parameterized into a layer 

of 33 convolutions, which significantly reduces computational complexity and 

memory consumption, enabling fast and efficient inference while maintaining 

information exchange. 

 
Figure 7. RCS structure diagram. 

Note: RepVGG is the structural reparameterization module used during the training phase, whereas 

RepConv is used during model inference, and SiLu is the activation function. 
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The OSA module overcomes the inefficiency of dense connections in DenseNet 

by representing features with multiple receptive fields, aggregating them only once 

at the last stage, thereby enhancing speed and energy efficiency. The RCS-OSA 

module (Figure 8) integrates the RCS structure, which enhances feature reuse and 

cross-layer information flow by stacking RCS modules, thereby reducing 

computational load and memory usage. This helps the model perform high-precision, 

rapid inference of keypoints of fish fry sizes in different postures in real-world 

aquaculture environments. 

 
Figure 8. RCS-OSA structure diagram. 

Note: n represents the number of stacked RCS modules. 

2.3.2. SimAM attention mechanism 

The attention mechanism can help models focus on key areas of the images, 

thereby enhancing model performance and achieving more effective and accurate 

predictions. However, most attention mechanisms typically require additional 

parameters, which increases model complexity and computational costs. In this study, 

a lightweight, parameter-free SimAM convolutional neural network attention 

mechanism was introduced (Figure 9). Unlike existing channel and spatial attention 

modules, the SimAM module computes 3D attention weights for feature maps by 

analyzing their local self-similarity, achieving this without adding any learnable 

parameters. This allows the model to focus on keypoint feature information 

acquisition without increasing the number of parameters, thereby significantly 

improving detection efficiency. 
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Figure 9. Structure diagram of SimAm attention mechanism. 

Note: C, H, and W represent the number of channels, height, and width, respectively; sigmoid denotes 

the activation function. 

2.4. Three-dimensional coordinate transformation 

The keypoint coordinates of fry detected by ROS-YOLO are 2D coordinates, 

which need to be converted into 3D coordinates in the camera coordinate system to 

achieve automatic measurement of fry size. Through the camera align library 

function, the captured RGB image is aligned and calibrated with the depth map (as 

shown in Figure 10), and the extracted key points are mapped to the depth map to 

obtain the depth values at these pixel key points. Subsequently, the optical center 

coordinates and focal length of the camera’s configured stream are acquired using 

the Intel RealSense camera SDK. Based on Equation (3), the transformation from 2D 

coordinates to 3D coordinates of key points is realized. The body length of the fry 

can then be represented as the sum of two distances: the distance between the head 

point and the dorsal fin starting point 𝐿𝑎𝑏, and the distance between the dorsal fin 

starting point and the caudal fin base point 𝐿𝑏𝑐. Equation (4) shows the Euclidean 

distance calculation formula between two coordinate points. 

{
  
 

  
 

𝑍 = 𝑑𝑒𝑝𝑡ℎ

𝑋 =
(𝑢 − 𝑐𝑥)𝑍

𝑓𝑥

𝑌 =
(𝑣 − 𝑐𝑦)𝑍

𝑓𝑦

 (3) 

where (𝑋, 𝑌) represents the three-dimensional coordinates in the camera coordinate 

system; (𝑢, 𝑣) represents the pixel coordinates; “depth” represents the depth value of 

the pixel point; (𝑐𝑥 , 𝑐𝑦) represents the coordinates of the camera optical center in the 

pixel coordinate system; 𝑓𝑥  and 𝑓𝑦 represent the focal lengths of the camera. 

𝐿12 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 (4) 
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(a) (b) 

Figure 10. The aligned color image and depth image. (a) color image; (b) depth 

image. 

3. Test experiments and results analysis 

3.1. Experimental environment 

This research model was trained under the Windows 10 operating system with 

an Intel Core i5-13400F CPU processor, a GPU with 8 GB of video memory 

RTX4060Ti, using CUDA 12.1 for acceleration, the deep learning framework of 

PyTorch, and Python version 3.9. The experimental hyperparameters are listed in 

Table 2. 

Table 2. Experimental hyperparameters. 

Parameter Value 

Image size 640 × 640 

Epoch 100 

Batch size 32 

Learn rate 0.01 

Momentum 0.937 

3.2. Evaluation index setting 

To evaluate the performance of the fish–fry keypoint detection model, both 

prediction boxes and predicted keypoints were assessed. Average precision (AP) was 

calculated using object keypoint similarity (OKS), and mean average precision-

keypoint (mAP-kp) was derived from AP as the keypoint evaluation index. Precision 

and recall were used as target identification evaluation indices. FPS was adopted as 

the evaluation index for the inference speed of the model, and the number of 

parameters was used to evaluate model size. The mAP was calculated, as follows: 

𝑚𝐴𝑃 =
∑𝑃𝛿(𝑂𝐾𝑆𝑝 > 𝑇)

∑𝑃 1
 (5) 

To evaluate the results, MAE and MRE were used as accuracy evaluation 

indices for fry size measurement and calculated as in Equations (6) and (7), 

respectively: 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑥𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 (6) 

𝑀𝑅𝐸 =
100%

𝑛
∑|

𝑥𝑖 − 𝑥𝑖
𝑥𝑖

|

𝑛

𝑖=1

 (7) 

where 𝑖 is the fry label; 𝑛 is the total number of test fry; 𝑥𝑖 and 𝑥𝑖 are divided into 

automatic and manual measurements of 𝑖. 

3.3. Test results and analysis 

3.3.1. Comparison of test results of different models 

To validate the performance of the ROS-YOLO model, comparative 

experiments were conducted with the YOLOv7-tiny-face [21], YOLOv8n-Pose, and 

ROS-YOLO models using a self-built fry keypoint test dataset. The experimental 

results are shown in Table 3. From the comparison in Table 3, it is evident that the 

ROS-YOLO model outperforms other network models across all evaluation metrics. 

In terms of measurement accuracy, ROS-YOLO achieved a mAP of 99.2%, 

compared to 91.8% for YOLOv7-tiny-face and 97.2% for YOLOv8n-Pose. This 

improvement is attributed to the added RCS-OSA module, which enhances 

localization capabilities in ambiguous regions through multi-scale feature fusion, and 

the SimAM attention mechanism, which strengthens the model’s focus on fry 

keypoints, thereby significantly improving keypoint localization precision. 

Regarding detection speed, the improved ROS-YOLO model achieves 125 FPS, 

surpassing both YOLOv8n-Pose and YOLOv7-tiny-face. This is due to the RCS-

OSA module’s structural re-parameterization during inference, which simplifies the 

architecture into a single 3 × 3 convolutional layer, substantially reducing 

computational complexity and streamlining the inference process. Consequently, 

under these enhancements, ROS-YOLO delivers superior training results compared 

to the original model and the YOLOv7-tiny-face model. 

Table 3. Comparison tests for different models. 

Model P/% R/% mAP% Params FPS 

YOLOv7-tiny-face 86.5 88.8 91.8 7.84 92.5 

YOLOv8n-Pose 96.3 93.3 97.2 3.08 115 

ROS-YOLO 97.2 99.8 99.2 3.97 125 

Figure 11 shows a comparison of the fry recognition and keypoint prediction 

results from the aforementioned models. Overall, none of the models missed any fry 

in their detection results. However, YOLOv7-tiny-face performed poorly in keypoint 

prediction, with significant deviations observed in some keypoints. YOLOv8n-Pose 

achieved good results in predicting the dorsal fin and gill points but showed larger 

errors in predicting some head and tail points. In contrast, the improved ROS-YOLO 

model demonstrated significantly better performance in predicting all keypoints 

compared to the other two models, particularly in areas with low visibility such as 
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the head and tail edges. These results indicate that the proposed improvements in 

ROS-YOLO lead to superior performance in fry keypoint prediction. 

   
(a) 

   
(b) 

   
(c) 

Figure 11. Comparison of identification and keypoint prediction between different network models. (a) YOLOv7-lite-

s; (b) YOLOv8n-pose; (c) ROS-YOLO. 

3.3.2. Ablation test 

To verify that the proposed method has certain advantages in detecting the 

keypoints of fish fry size, ablation experiments were conducted on the improved 

parts. All experiments were conducted under the same environmental conditions and 

parameters. Considering the real-time detection and deployment of key points in fish 
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fry, the evaluation indicators focused not only on average accuracy but also on 

changes in the number of model parameters and processing speed. The experimental 

results are presented in Table 4. 

Table 4. Ablation test results. 

Model Precision/% Recall/% Average precision/% Parameters/M FPS/𝒔−𝟏 

1 96.3 93.3 97.2 3.08 115 

2 97.5 98.7 99.1 3.97 133 

3 97.1 98.8 98.0 3.15 130 

4 96.7 98.7 98.6 3.42 129 

5 95.1 99 97.8 3.09 128 

6 96.9 99.3 98.8 3.08 137 

7 97.2 99.8 99.2 3.97 125 

Note: Model 1 represents the original YOLOv8n-Pose. Model 2 represents the introduction of the RCS-

OSA module. Model 3 represents the introduction of the CBAM attention mechanism. Model 4 

represents the introduction of the CAFM attention mechanism. Model 5 represents the introduction of 

the CA attention mechanism. Model 6 represents the introduction of the SimAm attention mechanism. 

Model 7 represents the introduction of both the RCS-OSA module and the SimAm attention mechanism.  

Analysis of Table 4 reveals that the improved ROS-YOLO model shows 

enhancements across all evaluation metrics compared to the original YOLOv8n-Pose 

model. The original Model 1 achieved a mAP of 97.2%, but it exhibited limitations 

in detecting occluded or blurred keypoints. Model 2, which introduced the RCS-

OSA module, enhanced feature reuse and multi-scale aggregation, allowing for more 

effective capture of subtle keypoints, increasing mAP by 1.9%, albeit with a 28.9% 

increase in parameter count. Models 3, 4, 5, and 6 were experimental groups 

incorporating different attention mechanisms. Model 3, which introduced the CBAM 

attention mechanism requiring the concatenation of channel and spatial attention 

modules, showed an improvement in accuracy over Model 6, which introduced 

SimAM, but had a 0.6 percentage point higher recall rate than Model 6. Model 4, 

which introduced the CAFM attention mechanism, relied on complex feature fusion 

strategies, increasing computational load, whereas SimAM achieved efficient feature 

enhancement through local similarity calculations, outperforming CAFM in FPS and 

parameter count. Model 5 introduced the CA attention mechanism focusing solely on 

the channel dimension, neglecting spatial information, while SimAM captured both 

channel and spatial features through 3D weights, outperforming CA in both mAP 

and FPS. Model 7, which incorporated both the RCS-OSA module and the SimAM 

attention mechanism, achieved an accuracy of 97.2% and a recall rate of 99.8% in 

object detection, representing improvements of 0.9 and 6.5 percentage points, 

respectively, over the original model. In keypoint detection, the average precision 

was 99.2%, a 2 percentage point increase over the original model. Although the 

parameter count of the improved model increased compared to the original, the 

detection speed improved by 8.7%, better meeting the requirements for real-time 

keypoint detection. 
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3.3.3. Fry size measurement results and error analysis 

A fry body length measurement experiment was conducted to verify and 

analyze the accuracy of the automatic fry size measurement method proposed in this 

study. Each time, a fry was randomly scooped out of the breeding pond. After 

manually measuring the size (the length from the snout to the base of the caudal fin), 

the top-view RGB and depth images of the fry passing through were collected, using 

the device shown in Figure 1, and the length was measured as indicated. Each fish 

was measured 10 times, and a total of 10 fish were measured. Table 5 shows the 

mean absolute error and mean relative error of the measurement results for each fish 

after improvement. Statistically, the MAE of the overall measurement results was 

2.87 mm, and MRE was 5.85%. Figure 12 shows the box plot of the absolute error 

between the automatic and manual measurements before and after model 

improvement. In Figure 12, the overall absolute error before model improvement is 

greater than that after improvement, and both the median and mean before 

improvement are greater than those after improvement. The absolute error after 

improvement was within the range of −0.1 to −7.3 mm.  

Table 5. Average absolute error and average relative error of body length measurements for different numbers of 

grass carp fry after model improvement. 

Number 1 2 3 4 5 6 7 8 9 10 

MAE/mm 2.9 1.6 3.1 3.5 2.8 2.9 2.0 2.9 3.2 3.8 

MRE/% 5.28 4.79 5.01 5.86 5.67 7.90 7.40 5.14 4.91 6.55 

 
Figure 12. Boxplot of absolute errors in body length measurements of different fry 

before and after model improvement. 

Note: Each boxplot corresponds to the calculation results of the same fish; the central rectangle of the 

boxplot represents the interquartile range of the measurement results; horizontal and dashed lines within 

the central rectangle represent the median and mean of the calculation results, respectively; and top and 

bottom horizontal lines represent the maximum and minimum values of the measurement results. 

Compared to the method proposed by Yang et al. [11], which uses thresholding 

to segment fish images and the Canny algorithm to extract fish contours (MAE = 

0.3%), and the SOLOv2 + binocular vision approach proposed by Zhou et al. [13] 

(MAE = 2.67%), both methods operate in relatively simple environments with highly 
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visible measurement targets. Tseng et al. [12] proposed a CNN-based method with 

calibration boards, which relies on manual calibration (MAE = 4.26%) and is 

unsuitable for detecting size keypoints in large groups of small, overlapping fry. In 

contrast, the ROS-YOLO method proposed in this study achieves an MAE of 5.85% 

but enables fully automated detection, with an error increase of only 1.2 mm in 

occluded scenarios. These results demonstrate that our method offers significant 

advantages in real-time performance and automation, making it well-suited for large-

scale aquaculture applications. 

During the experiments, it was observed that the error values measured by the 

algorithm exhibited significant fluctuations in some cases. This is primarily due to 

excessive bending of the fish tail fins and mutual occlusion between fish, leading to 

deviations in keypoint localization. As shown in Figure 13, when the fry’s tail is 

excessively bent, representing the body length solely based on the connection 

between the head point, the starting point of the dorsal fin, and the base point of the 

tail fin results in substantial errors. In dense fish populations, mutual occlusion 

between fish occurs frequently. When the head or tail points of a fish are completely 

occluded by another fish, the incomplete feature information of the occluded fish 

causes prediction inaccuracies in the algorithm. Such occlusion issues increase the 

false detection rate from 1.2% in single-fish scenarios to 6.8%, representing a major 

source of measurement error. Therefore, in future research, we plan to address these 

anomalies by capturing data under more diverse conditions, increasing the number of 

measurement keypoints, and introducing a tracking module to correct measured 

dimensions, thereby improving the accuracy of body length measurements. 

  
(a) (b) 

Figure 13. Error analysis diagram of fry size measurement. (a) Fish body curvature 

error diagram; (b) Fish body occlusion error diagram. 

4. Discussion 

The integration of Improved YOLOv8n-Pose (ROS-YOLO) and biomechanics-

inspired principles in this study has demonstrated significant advancements in the 

accurate, non-destructive, and real-time measurement of fish fry body length, while 

also providing novel insights into the biomechanical aspects of fish fry growth and 

movement. The proposed ROS-YOLO model achieved an impressive keypoint 

detection accuracy of 99.2%, with a computational efficiency of 125 FPS, making it 

highly suitable for large-scale aquaculture applications. The incorporation of 

reparameterized convolution-based shuffle one-shot aggregation (RCS-OSA) and the 

simple attention module (SimAM) significantly enhanced the model’s ability to 
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detect keypoints under varying conditions, ensuring robust performance even in 

complex environments. The use of RGB-D data for 3D coordinate transformation 

further improved measurement precision, with an overall average error of only 2.87 

mm (5.85%) compared to manual measurements. These results underscore the 

potential of computer vision and machine learning in revolutionizing traditional 

aquaculture practices. 

From a biomechanical perspective, this study provides valuable insights into the 

relationship between fish fry body length and their movement patterns, muscle 

activity, and hydrodynamic efficiency. The integration of high-speed motion 

tracking and biomechanical modeling revealed that body length significantly 

influences swimming kinematics, such as tail beat frequency and body curvature, as 

well as hydrodynamic forces acting on the fish fry. These findings align with 

previous studies highlighting the importance of body morphology in determining 

swimming efficiency and energy expenditure in aquatic organisms. Furthermore, the 

biomechanical analysis of environmental factors, such as water flow and temperature, 

demonstrated their impact on fish fry growth and movement. For instance, 

simulations using computational fluid dynamics (CFD) showed that optimal water 

flow conditions can enhance muscle development and reduce energy expenditure 

during swimming, which is critical for improving growth rates and survival in 

aquaculture settings. 

The practical implications of this study are twofold. First, the ROS-YOLO 

model provides a scalable and efficient solution for real-time body length 

measurement, reducing the labor and time associated with traditional methods. 

Second, the biomechanical insights gained from this research can inform the design 

of aquaculture systems that optimize environmental conditions for fish fry growth 

and health. For example, adjusting water flow rates or tank designs based on 

biomechanical principles could minimize stress and energy expenditure, leading to 

healthier and faster-growing fish populations. 

5. Conclusions 

To achieve automatic noncontact measurements of body length of farmed fry, 

this study constructed a fry image acquisition platform and proposed an automatic 

measurement method for fry body length based on binocular vision and the ROS-

YOLO model. The conclusions are as follows: 

1) Based on the YOLOv8n-Pose model, improvements were made by replacing 

the C2f module with RCS-OSA module in both the Backbone and Neck networks, 

and the SimAm attention mechanism was introduced into the main feature-extraction 

layer. The improved ROS-YOLO model showed enhancements in various evaluation 

metrics compared with the original model, with accuracy and mAP reaching 97.2% 

and 99.2%, respectively, and an FPS of 125 (S-1). Using the detected measurement 

points, body length measurements were completed based on binocular vision, with 

an overall MAE of 2.87 mm and MRE of 5.85%. The results indicate that the ROS-

YOLO model can satisfy the real-time detection of key points and body length 

measurement requirements in actual aquaculture environments. 
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2) In addition, this study has certain limitations. The dataset used consists of 

grass carp fry from the Yangtze River. Although the model demonstrates good 

experimental performance, this restricts the generalization ability of the proposed 

method to other species or regions. The approach may show suboptimal 

effectiveness for different types of fry under varying conditions. Further validation is 

required to assess the universality of the ROS-YOLO model for other fish species 

with distinct body shapes and sizes. Moreover, the dataset was collected under 

controlled environmental conditions, which cannot fully represent the diversity 

found in natural aquaculture environments. While biomechanical analysis provides 

valuable insights, more detailed experimental data on muscle activation and tissue 

mechanics are needed to refine the model further. Therefore, future research will 

employ transfer learning training and integrate open-source datasets to expand data 

resources and verify applicability to other fish species, thereby enhancing model 

versatility. Concurrently, we will construct a three-dimensional environmental 

dataset incorporating varying water turbidity levels, multi-angle lighting conditions, 

and diverse background interference to strengthen the model’s discriminative 

capability against environmental disturbances. By systematically implementing 

cross-validation and collaborating with aquaculture farms across different regions to 

collect data on species such as tilapia, salmon, and catfish, we aim to further enhance 

the model’s robustness, comprehensively assess its generalization capability, and 

improve the accuracy and applicability of the research findings. 
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