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Abstract: Evaluating people’s food intake is crucial for establishing the link between diet and 

disease. Deprivation of vital nutrients causes the body to deteriorate organs and increases the 

risk of severe diseases that manifest in maturity. Making healthy food choices is one of the best 

ways to avoid developing chronic diseases, such as diabetes, heart disease, stroke, and even 

certain types of cancer. Hence, this paper proposes a deep learning-based automated nutrition 

classification system (DL-ANCS) for predicting food ingredients and nutrition. The DL-ANCS 

with Internet of Things (IoT) sensors to quantify food nutrition and a smartphone app to 

compile ingredient nutritional information. It is possible to take pictures of food eaten using 

the camera that comes with most mobile phones. It is possible to automatically identify the 

food items for record keeping using image processing. The effectiveness of the proposed DL-

ANCS relies on its ability to accurately classify food items in these photos utilizing meal 

prediction algorithms and DL-ANCS. This research introduces a novel approach to extracting 

texture information from food photos to show how these features improve the accuracy of a 

nutritional assessment system that runs on mobile phones. The proposed method improvesthe 

food texture ratio of 98.7%, effectiveness ratio of 99.2%, accuracy ratio of 95.89%, food 

ingredient predictionsand their nutritional compatibility ratio of 96.8%, and food component 

classifications ratio of 97.29%. 

Keywords: mechanobiological factors in fermentation; understanding the impact on food 

texture and nutrient release 

1. Introduction 

The intricate biochemical process of fermentation is essential to creating many 

meals; it changes many foods’ texture, taste, and nutritional content. The fermentation 

environment’s mechanical and biological interactions, known as mechanobiological 

variables, play a crucial role in determining the fermented foods’ properties. The 

mechanical forces acting on microbial cells, the cellular reactions to these forces, and 

the following biochemical changes are all components of this equation. Improving 

food texture and nutrient release requires understanding fermentation’s 

mechanobiological aspects. Mechanical pressures may impact the features of the 

completed meal on microbial cell development, metabolism, and the creation of 

fermentation byproducts. For example, shear stress and pressure may affect microbial 

cell membrane permeability, affecting the release of nutrients and enzymes. An 

increased availability of processed meals characterizes the modern nutritional 

environment, which may be linked to various health concerns [1]. A thorough 

understanding of the impact of diet on health is crucial for developing strategies to 

lower the risk of developing chronic diseases such as diabetes, heart disease, and some 

types of cancer [2]. Food fermentation is one of the things that can heavily affect the 
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health benefits it carries [3]. Such food’s nutritional composition and texture may be 

modified [4]. Fermentation is governed by mechanobiological variables responsible 

for quality determination and nutrient release, impacting calorie intake and general 

health [5]. An important factor in food quality, the introduction notes that food 

structure is complicated and multi-faceted. To get a better understanding, however, 

researchers must clarify how these features, especially texture and nutrition release, 

are intricately shaped by mechanobiological variables. Mechanobiology is an 

important part of controlling the fermentation microenvironment inside food matrices, 

which studies the effects of physical forces on biological processes. Mechanical 

signals such as hydrostatic pressure and shear stresses significantly impact microbial 

activity, cellular integrity, and substrate accessibility. Due to this, they have a major 

effect on the rate of nutrient release and the texture of fermented goods. Researchers 

desire to learn more about how fermented foods get their textures and nutrients by 

explaining how mechanobiology and fermentation work together. Not only does this 

deeper insight broaden our grasp of food science, but it also has ramifications for 

making production methods more efficient and improving product quality. 

Mechanobiology is a branch of biology that mainly looks into biological 

processes influenced by changes in the mechanical properties of cells and tissues and 

external physical forces upon them [6]. During the fermentation process, mechanical 

manipulation such as grinding, mixing and compressing constitute some examples of 

mechanobiological factors affecting microbial activity during the fermentation process 

[7]. It might turn its taste into something delicious and more digestible [8]. For this 

reason, it may have better nutrient release and absorption [9]. Milk proteins also break 

down mechanically during fermentation, increasing the bioavailability of yoghurt 

products with thick, creamy texture [10]. However, if children do not get these vital 

nutrients, they become prone to organ damage and other severe ailments in old age 

[11]. People can delay chronic diseases by making healthy choices about food [12]. 

However, given the complex nature of food structure, it is hard to precisely evaluate 

the amounts consumed or their nutritive values or content [13]. Their understanding 

involves much deeper learning, while IoT could potentially provide new solutions to 

these issues since they are modern technologies [14]. In recent years, exciting new 

developments in fermentation science and mechanobiology have opened up new lines 

of inquiry into the role of mechanical forces in shaping the texture and release of 

nutrients in fermented foods. Despite their apparent differences, mechanobiology, the 

study of the effects of physical pressures on biological systems and fermentation, the 

metabolic process by which microbes transform substrates into products, shares a deep 

connection. By clarifying this connection, this study wants to use deep learning to 

understand how mechanobiological variables affect food texture and nutrient 

availability during fermentation. By outlining the rationale for conducting an extensive 

study into the complementary impacts of mechanobiology and fermentation on food 

quality, this study provides the framework for future research into this emerging field 

of study. Deep learning is very good at handling and learning from complicated and 

extensive datasets. The large amount of data produced by different fermentation 

parameters and biological interactions makes this capability vital when considering 

mechanobiological aspects of fermentation. While traditional ML methods have 

difficulty handling high-dimensional data, deep learning models, especially neural 
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networks, can easily handle and extract useful patterns from massive datasets. 

The DL-ANCS could rapidly calculate meal nutrition using IoT sensors and a 

mobile app [15]. Users take pictures of their meals through their phones’ cameras, 

after which image processing algorithms assist them in automatically identifying 

different food components for future reference purposes. 

1.1. Use of DL-ANCS 

The nutritional value of fermented food can be better evaluated with DL-ANCS. 

As a result, the system offers a more accurate assessment as it understands 

fermentation and other mechanobiological factors that determine food texture and 

nutrient release. DL-ANCS represents a significant breakthrough in nutritional 

measurement through technology. The system combines deep learning with the 

Internet of Things to solve an imperative requirement for accurate real-time dietary 

information, which helps to curb chronic illnesses associated with poor eating habits. 

1.2. Contribution of the paper 

• DL-ANCS integrates IoT sensors and a mobile app for immediate nutrition 

analysis. Advanced image processing allows for capturing and classifying meals 

by phone camera shots. 

• An innovative approach to extracting textural characteristics significantly 

improves classification accuracy. 

• The system achieves improvement in texture recognition, effectiveness, and 

overall accuracy. It also boasts accuracy in food ingredient predictions and 

component classifications. This innovation aids in chronic disease prevention by 

promoting healthier food choices through precise nutritional evaluation. 

The suggested DL-ANCS system employs deep learning and image processing 

to accurately assess food’s nutritional value using IoT sensors and smartphone apps. 

Dietary monitoring and avoiding chronic illnesses benefit from this method’s real-

time delivery of correct nutritional information. Section 2 explains the related works, 

section 3 shows the proposed method, section 4 describes the result and discussion, 

and finally, section 5 denotes the paper’s conclusion. 

2. Related work 

The analysis delves into gastrointestinal mechanosensation, highlighting the role 

of mechanical forces in the gut’s functioning. In this paper, CB-SAH, HC-FS, CM-

ES, PIN-FR, and TMF techniques are being explored to improve food quality, 

nutritional content, and safety. 

 Cellulose-based Superabsorbent Hydrogel (CB-SAH) 

Dietary and behavioural changes for obesity therapy are difficult to sustain. A 

CB-SAH platform was created as a mechanobiological treatment inspired by raw 

vegetable composition and mechanical capabilities. Vegetable intake is essential to 

dietary interventions and daily nutritional needs [16]. A simulation of the gut 

environment and an ex vivo organ culture (EVOC) model examined CB-SAHs’ effects 

on gut tissue. References included fresh veggies and functional fibres. CB-SAHs had 

orders of magnitude more elasticity than functional fibres and performed similarly to 



Molecular & Cellular Biomechanics 2024, 21, 158. 
 

4 

raw veggies. The EVOC model indicated that biomimetic CB-SAHs with elasticity 

akin to raw vegetables preserved and regulated gastrointestinal tissue. Clinical trials 

progressed to non-systemic oral mechanotherapeutics based on this technology. 

 Hybrid Cell-based Food Systems (HC-FS) 

Given hybrid cell-based meat composed of animal cells cultured in vitro inside 

non-animal protein matrices, it is challenging to attain sensory equivalence between 

these and conventional meats [17]. To create the ideal hybrid cell-based meats, it is 

crucial to consider the connection between the structure and functioning of the food 

matrix. A thorough familiarity with the various food matrices and their interplay is 

crucial for attaining the desired organoleptic properties in HC-FS. Animal and plant-

based meats’ multiscale food matrix topologies are being studied in this paper, 

critically assessing the methods employed thus far. The paper also delves into the topic 

of using these methods to make meat food matrices that are based on hybrid cells. In 

contrast, research on the interactions between plant-protein cells and animal-derived 

cells seen in hybrid cell-based meats is lacking, even though these interactions are 

crucial for developing novel whole-food matrices. By integrating cultured cells with 

plant-based or synthetic matrices, HC-FS offers a sustainable approach to food 

production, promising enhanced nutritional profiles and reduced environmental 

impact. 

 Culturing Meat Using Edible Scaffolds (CM-ES) 

Sustainable and appealing substitute animal protein alternatives are gaining 

popularity. In response to concerns about the health impacts of mass-produced beef 

on individuals and the earth. Cultured beef may provide tasty, environmentally 

friendly protein. However, it will be important to discover technologies for making 

cultured meats in consumer-friendly sizes [18]. This review discusses the pros and 

cons of using edible scaffolds to increase cultured meat output. A comprehensive 

description of the several types of edible scaffolds, the processes used to fabricate 

scaffolds, and the materials often used for scaffolding is presented here. CM-ES 

improve cultured meat production. These advantages include accelerating cell growth 

and differentiation, providing structure for complicated three-dimensional tissues, and 

improving cultured meat's nutritional and sensory attributes. These scaffolds, derived 

from natural or synthetic sources, provide structural support and mimic the 

extracellular matrix found in animal tissues. CM-ES aims to produce cultured meat 

products that resemble conventional meat in taste, texture, and nutritional content by 

optimizing scaffold composition and architecture. 

 Personalized Intelligent Nutrition using Fuzzy Reasoning (PIN-FR) 

Making healthy choices is an increasingly important part of people’s lives 

worldwide. When planning a healthy diet, it’s important to consider more than the 

total quantity of food eaten. To balance calories and nutrients, one must also live an 

active lifestyle with enough physical exercise [19]. This leads people to seek the help 

of dietary experts for health evaluations, which is costly, time-consuming, and hard to 

acquire. While many e-nutrition solutions are available, most focus on meal planning 

rather than evaluating and assessing health status,which human healthcare providers 

have traditionally carried out. Meal planning requires nutrition health assessment, 

recommendation, and progress evaluation, which no automated system can achieve. 

Personalized intelligent nutrition recommendations (PIN) provide a ground-breaking 
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framework. PIN employs fuzzy reasoning to simulate human health assessment 

specialists’ abilities. Among these features is the ability to assess progress and make 

changes to recommendations; ideas about weight, calorie consumption, and activity 

are also available. 

 Texture-modified meals (TMF) 

This paper treats people with trouble chewing or swallowing, such as the elderly, 

the world’s fastest-growing group. These meals must be soft, safe, simple to swallow, 

nutritious, and attractive to help overcome physiological dysfunctions and satisfy 

nutritional demands. This research covers common and novel components and 

methods for creating TMF with the right textural properties. This evaluation also 

includes nutritional and sensory enhancements. The structure and properties of TMF's 

food matrix and substance affect digestion and nutrient bioavailability [20]. Designing 

products with textural, nutritional, and sensory features for seniors must consider the 

compositional and structural components of the product during formulation and the 

alteration of food structure during oral processing and on the digestive tract. Increasing 

awareness about these issues might help build more useful products for seniors [21]. 

Carranza et al. [22] suggested the Texture-modified soy protein foods: 3D 

printing design and red cabbage effect. The first step in using an extrusion 3D printer 

to get the desired form was to make a variety of doughs with varying amounts of soy 

protein isolate (SPI) (20, 25, and 30 w/v %). In this instance, the dough with 25% SPI 

(25-SPI) was the most suited. After that, rheological and physicochemical analyses 

were conducted before printing the 25-SPI doughs containing 10, 20, and 30 wt % red 

cabbage (RC). Since the viscosity dropped with an increase in shear rate, all doughs 

exhibited shear thinning behavior, an appropriate rheological behavior for 3D printing. 

Concerning the impact of RC on food formation, the viscosity and storage (G′) and 

loss (G") moduli rose with increasing RC content, with G' > G" for all doughs. This 

indicates a solid-like behavior, which is useful for printing food samples to keep their 

shape and size. Superficial imaging microscopy (SEM) verified that the 3D printed 

samples were uniform and that the holes in the doughs diminished with increased RC 

content. 

Miehle et al. [23] examined the impact of processing on the in vitro glucose 

release of fiber-rich, high-glycemic foods. Doughs that were either untreated, baked 

at 180 °C, or extruded at 150 °C and 180 °C with partial enrichment of high-

methylester pectin were used to assess the effects of composition and microstructure 

on in vitro glucose release and starch digestibility. Products baked at 180 °C and 

extruded at 150 °C had their glucose release reduced because pectin enrichment 

lowered starch digestibility, changed the food matrix, and doubled in vitro chyme-

viscosity. Baking and extrusion cooking make the starch more digestible, meaning it 

quickly turns into starch and free glucose. There was an additional increase of up to 

fivefold in resistant starch levels. The intricate relationship between starch digestibility, 

food matrix, and viscosity is the source of the glucose release fluctuations. 

Based on the survey, there are several issues with existing models in attaining a 

high food texture ratio, effectiveness ratio, accuracy ratio, food ingredient predictions, 

nutritional compatibility ratio and food component classification ratio. Hence, this 

paper proposes a deep learning-based automated nutrition classification system (DL-

ANCS) for predicting food ingredients and nutrition. 
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3. Proposed method 

A healthy diet is an important tool in the fight against and maintenance of chronic 

illnesses, diabetes, cardiovascular disease, stroke, and even some forms of cancer. 

Prevention is crucial when trying to prove a connection between diet and illness. Using 

traditional methods to evaluate a person’s diet might be tedious and misleading. In 

response to these issues, the authors of this work suggest DL-ANCS, an Automated 

Nutrition Categorization System that makes use of deep learning, together with IoT 

sensors and an accompanying mobile app. To help people make better dietary 

decisions, this system employs visual processing and meal forecasting algorithms to 

categorize food products and evaluate their nutritional content correctly. 

The DL-ANCS architecture, shown in Figure 1, combines human input, mobile 

devices, deep learning, and IoT sensors to accurately classify foods and assess their 

nutritional value. At the heart of the system is the user interface and user experience, 

allowing users to input their dietary limitations and preferences while taking pictures 

of food with their smartphones. This data is sent to the smartphone application 

(iOS/Android) as the central processing hub. 

 

Figure 1. Deep learning-based automated nutrition classification system. 

Before analyzing the photographed food, the app does Image Processing & 

Identification to prepare the photographs. The procedure entails using sophisticated 

image processing algorithms to discern food items in the photographs. The Machine 

Learning Module takes these cleaned-up photos and uses a neural network model it 

learned to categorize the foods. With proper training, this model can identify many 

different types of food and their characteristics. Convolutional neural networks (CNNs) 

algorithm has been chosen for this study because of their proficiency in automatically 

learning significant characteristics from complicated, high-dimensional data and their 

competence in processing such data. These skills shine when applied to the context of 

fermentation’s mechanobiological components. Convolutional neural networks 

(CNNs) are a powerful tool for accurately predicting and optimizing fermentation 

processes because they capture the complex patterns and spatial hierarchies seen in 

biological and fermentation data. 

After the food components are categorized, the system checks their nutritional 
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value using an app called Meal Structure & Nutritional Analysis. This study 

comprehensively summarises the nutritional components, including calories, 

macronutrients, and micronutrients. The app communicates with IoT sensors, 

spectrometers, and weight scales to measure nutrients in real-time. The sensors 

precisely assess the food’s chemical and chemical qualities, improving the nutrient 

content’s accuracy. A Cloud Data Store safely stores all the acquired data, including 

sensor readings and user inputs. By keeping all of the most recent dietary patterns and 

nutritional information in one place, this centralized storage makes it possible to learn 

and improve the model continuously. 

𝐾(𝐴) =
1

√ℶ
∫

ℵ−𝜔2
𝑑𝑓

𝑡 − 𝜇π

∞

−∞

= 𝜎 ∫ 𝑓−𝑒𝑟−𝑘/8𝑐𝑣
∞

0

 (1) 

The suggested DL-ANCS approach can solve the provided Equation (1). In this 

context, 𝐾(𝐴) represents the kernel function that is used in the classification system. 

It takes into account different aspects of food texture and ingredients, such as 
1

√ℶ
, to 

accurately predict the nutritional content 
ℵ−𝜔2

𝑑𝑓

𝑡−𝜇π
. As a result, it achieves a high level 

of reliability and accuracy when doing tasks related to food and nutrition 

classification 𝑓−𝑒𝑟−𝑘/8𝑐𝑣. 

∫ 𝑞𝑤−𝑒𝑠𝑓2
𝑛𝑚

∞

−∞

= [∫ 𝑞𝑎𝑑−𝑒𝑝𝑙2
𝑛𝑚

∞

−∞

∫ 𝑧𝑥𝑏−𝑟𝑝𝑢2
𝑛𝑘

∞

−∞

]

1/2

 (2) 

By seeing it as a representation of the multi-pronged strategy for extraction of 

features and analysis in DL-ANCS, Equation (2) may be linked to the suggested 

technique 𝑞𝑤−𝑒𝑠𝑓2
𝑛𝑚 . Various food qualities, including texture and ingredients 

𝑞𝑎𝑑−𝑒𝑝𝑙2
𝑛𝑚, can be represented by 𝑧𝑥𝑏−𝑟𝑝𝑢2

𝑛𝑘 in DL-ANCS when examined across 

certain ranges. 

[∫ ∫ ℎ𝑗−𝑟𝑓2
𝑝𝑔 𝑑𝑒 𝑑𝜏

∞

0

4ℶ

0

]

1/2

= [𝜇π ∫ 𝑧𝑓−𝑢𝑏𝑤𝑞
∞

0

]

1/2

= √π𝜑 (3) 

By seeing the Equation (3) as a representation of the interconnected web of 

characteristics in the system ℎ𝑗−𝑟𝑓2
𝑝𝑔𝑑𝑒 𝑑𝜏, it may draw connections to the suggested 

DL-ANCS technique. Different food qualities and processing parameters can be 

represented by 𝜇π, 𝑧𝑓−𝑢𝑏𝑤𝑞, and π𝜑 in DL-ANCS. 

3.1. Factors affecting the fermentation process and metabolic processes 

in microbes 

For instance, what happens to the digestibility of legume protein during 

fermentation depends heavily on the fermentation settings and the plant material type, 

according to the reviewed literature. Nonetheless, fermentation usually leads to a rise 

in IVPD, albeit the extent to which this occurs varies somewhat. Products made from 

legumes may have more free amino acids after fermentation; however, this varies by 

cultivar and type of bean. Fermentation is a common method for lowering raw 

materials’ phytic acid concentration. Fermentation typically reduces the quantity of 

condensed tannins; however, effects on different tannin molecules vary. Furthermore, 

there is typically (not necessarily) a decrease in inhibitory activity towards trypsin. 

Therefore, protein digestibility and mineral absorption are improved due to 
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decreasedphytic acid concentration, tannin compounds, and perhaps other ANFs. 

Figure 2 shows a high-level view of how the fermentation process affected the ANFs 

and nutrient availability. A review of nutritional quality characteristics of plant-based 

meal matrices and how they are impacted by fermenting process conditions and 

microbial physiological events. While fermentation generally improves protein 

availability and rocks solubility, and certain compounds derived from proteins and 

phenols can have beneficial biological activities (green dashed lines), it can reduce 

activities that could be good for people’s health (blue dashed lines) due to phytic acid, 

protease blockers, and tannin compounds. 

 

Figure 2. Factors affecting the fermentation process and metabolic processes in 

microbes. 

(𝑐1𝑧 + 𝑤1) =
𝑒𝑤1𝑞𝑓2𝑥𝑧2 + (𝑤1𝑒2 + 𝑝2𝑞𝑤1)𝑥𝑦 + 𝑒1𝑏𝑝2

(𝑑𝑓2𝑧 + 𝑒𝑑2)
 (4) 

The presence of a specific set of features or conditions inside the DL-ANCS is 

denoted by the Equation (4) 𝑐1𝑧 + 𝑤1, whereby 𝑒𝑤1𝑞𝑓2𝑥𝑧2 and 𝑤1𝑒2 + 𝑝2𝑞𝑤1 stand 

for particular food attributes or pieces of information. The existence of certain qualities 

𝑤1𝑒2 + 𝑝2𝑞𝑤1 leads to particular consequences 𝑒1𝑏𝑝2 as shown by the implications 

𝑑𝑓2𝑧 + 𝑒𝑑2. 

∃𝑄𝑧 (kmn(𝑅𝑒) ∧ 𝑍𝑞(bpl(𝑧𝑤) → Eqp(𝑥𝑐, 𝑤𝑙))) (5) 

The specific procedures used to analyze food data, whereas Equation (5), ∃𝑄𝑧 

denotes the system’s overall efficacy or output. The integral kmn(𝑅𝑒) represents the 

comprehensive and continuous feature extraction from the food photos 𝑍𝑞(bpl(𝑧𝑤)), 

similar to how DL-ANCS handles different properties, nutritional quantity and 
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texture Eqp(𝑥𝑐, 𝑤𝑙). 

𝜇(𝑧𝑔) = ∫ 𝑝𝑡𝑧𝑟−1𝑓𝑔𝑒−𝑡𝑑𝑝𝑞
∞

0

=
𝑓𝑤−𝑤𝑞

𝑎𝑤
∏ (1 +

𝑎

𝑝𝑡
)

−1

𝑞𝑓2𝑧/𝑘𝑤

∞

𝑝=1

 (6) 

In the DL-ANCS Equation (6), 𝜇(𝑧𝑔) could stand for the expected nutritional 

score or classification outcome, and the terms 𝑝𝑡𝑧𝑟−1𝑓𝑔𝑒−𝑡𝑑𝑝𝑞 represents different 

factors or characteristics retrieved from food pictures, ingredients, texture, and 

nutritional value. The deep learning model’s function is shown reads 
𝑓𝑤−𝑤𝑞

𝑎𝑤
. Here, 

𝑓𝑤−𝑤𝑞

𝑎𝑤
 is the learning algorithm and 𝑞𝑓2𝑧/𝑘𝑤  is the description of the relationship 

between various features, which is raised to a power of \(nt\) to indicate the model’s 

extent and complexity. 

3.2. IoT sensor network for food nutrition 

Figure 3a displays an Internet of Things Sensor Network developed to conduct 

a thorough food nutrition analysis. Every one of the weight, temperature, moisture, 

calorie, protein, and vitamin sensors in this network is essential for evaluating some 

facet of nutrition. Important for controlling serving sizes is that the weight sensor 

determines how much food there is. Temperature sensors guarantee food safety by 

tracking the temperature throughout preparation and storage. The amount of water 

sensors impacts the freshness and texture of food. A calorie counter estimates the 

energy in food, whereas a protein counter measures the amount of protein the body 

needs. Vitamin sensors detect and measure individual vitamins to provide a 

comprehensive nutritional profile. Better dietary control and health outcomes are 

possible with the help of these sensors since they provide accurate nutritional analysis 

in real-time. 

 

 
(a) (b) 

Figure 3. Internet of Things sensor network. (a) IoT Sensor Network for Food Nutrition; (b) block diagram depicting 

the steps involved in fermentation. 

3.3. Block diagram depicting the steps involved in fermentation 

Anaerobic or partly anaerobic circumstances cause bacteria to slowly decompose 

organic molecules, which results in fermentation Figure 3b. Microorganisms are vital 
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in fermentation because they help keep food fresh, improve its flavour, and increase 

its nutritional value. Fermentation is any procedure that uses the bulk cultivation of 

microbes to produce a product. The many products that come from fermentation can 

be achieved in two ways: either spontaneously or by adding starter culture. A diverse 

colony of microbes, including yeast, bacteria, and fungi, is necessary for natural 

fermentation. 

𝑝𝑠 =
1

2
s𝐸𝑤 + kq

o
𝑝𝑒 + rzx0 = (𝑓 = 𝐿 (𝐺 +

𝑒𝑟

𝑝𝑜
)

𝑛𝑡

) (7) 

The term ps  could represent the expected nutritional score or classification 

outcome in Equation (7). The terms s𝐸𝑤 + kq
o
𝑝𝑒 + rzx0 represent traits or 

characteristics taken from food pictures, ingredients, texture, and nutritional value𝑓. 

The deep learning model’s function is shown as (𝐺 +
𝑒𝑟

𝑝𝑜
)

𝑛𝑡
. 

𝑙(𝑠, 𝑞) = ∑
𝑙(𝑛𝑠)(𝑏𝑎)

𝑐𝑛!
(𝑧𝑞 − 𝑎)𝑛

∞

𝑛=0

+ (𝑥𝑞 + 𝑦𝑏)𝑛𝑧 = ∑ (
𝑛𝑤

𝑒𝑝
) 𝑤𝑝𝑠𝑝𝑏𝑎𝑒𝑛−𝑝𝑘

𝑛

𝑘=0

) (8) 

The general DL-ANCS function is given by the Equation (8) where 𝑙(𝑠, 𝑞), where 

the first sum 
𝑙(𝑛𝑠)(𝑏𝑎)

𝑐𝑛!
 denotes the accumulation of diverse dietary features (𝑧𝑞 − 𝑎)𝑛 

and their transformations (𝑥𝑞 + 𝑦𝑏)𝑛𝑧 through the model’s layering process. Deep 

learning techniques normalize and scale the data using factoring and algebraic 

components (𝑛𝑤
𝑒𝑝

) 𝑤𝑝𝑠𝑝𝑏𝑎𝑒𝑛−𝑝𝑘 , while the iterative extraction and combination of 

food attributes are represented. 

dfp 𝑝𝑣 + 𝑗 cos 𝑤𝑙 = (sin 𝜃𝑣 + 𝑗cos ∂)𝑛+𝑔ℎ = 𝑒𝑓𝑖𝑝𝑦 (9) 

The several input features that the DL-ANCS considers are reflected in Equation 

(9). The values dfp 𝑝𝑣, which is a mix of dietary properties cos 𝑤𝑙and the weights or 

coefficients that are connected with them. Similar to the layers and activations of a 

deep learning model, the (sin 𝜃𝑣 + 𝑗cos ∂)𝑛+𝑔ℎ encompasses the nonlinear changes 

and interactions among these features. The final version of the equation, 𝑒𝑓𝑖𝑝𝑦 , 

denotes the output or prediction of the system. 

3.4. Image of the food recognition system 

Figure 4 shows the image of the food recognition system. The goal is to develop 

a mobile-friendly automated tracking of nutrition and calorie estimate system based 

on the Internet of Things (IoT). The system’s users possess the mobile portal for 

collecting physical measuring data and demographic information. The microcontroller 

module may be activated using the application and the MyMqtt broker. After placing 

it on the load sensor, the microcontroller estimates the food’s weight and takes a 

picture using the USB camera. The snapshot is timestamped, and the Thingspeak cloud 

server stores all the gathered data. The acquired data is then used for the data analytics 

that follow. A Convolutional Neural Network model trained using deep learning and 

fed food item categorization data is first constructed. Next, the food type is predicted 

using the model that was built. The number of calories ingested is determined using 

the nutritional information collected from the USDA standardized data repository, 

which is based on the volume calculated by the load sensor and the forecast of the food 
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item. There is an extended picture of all the actions in the system that follows the 

graphical representation of the food recognition system's design in Figure 4. 

 

Figure 4. Image of the food recognition system. 

∝⋅ ρσ𝜓 =
𝑝𝜎2𝐴

𝑃𝑦
+

𝜕2∀

𝜔𝑧2
+

𝜕π2𝜗

𝜕𝑝𝑧2
=

1

𝑘2 cos 𝜃
[tan 𝜃

𝑔𝑝

𝑐𝑚
] (10) 

Similar to how features are weighted in the DL-ANCS, the Equation (10) ∝⋅

ρσ𝜓 represents the weights linked to various dietary properties 
𝑝𝜎2𝐴

𝑃𝑦
. The following 

terms stand for different parts of data processing and analysis, the squared gradient of 

specific attributes 
𝜕2∀

𝜔𝑧2 +
𝜕π2𝜗

𝜕𝑝𝑧2 , the second derivative of a function concerning a 

variable 
1

𝑘2 cos 𝜃
[tan 𝜃

𝑔𝑝

𝑐𝑚
], and the association between multiple variables. 

𝑏2𝑃

𝜕𝜔𝑦2
= (𝑟2

𝜇𝜓

𝛿𝑟𝛽
) +

𝜕𝜔

𝜇𝜏𝜃
(cot 𝜃

𝜔𝜏

𝜃𝜖
) +

1

tan 𝜃

𝛾2ℶ

𝜕ℵ𝜑2
 (11) 

The system’s sensitivity to changes in analysis of food textureis represented by 

the Equation (11), 
𝑏2𝑃

𝜕𝜔𝑦2 . The following terms indicate various factors influencing 

texture analysis, such as the ratio of particular parameters 𝑟2 𝜇𝜓

𝛿𝑟𝛽
, and the interaction 

between different variables 
𝜕𝜔

𝜇𝜏𝜃
, and the link between texture characteristics 

1

tan 𝜃

𝛾2ℶ

𝜕ℵ𝜑2. 

(1 + 𝑗)𝑠𝑛𝑑 = 𝑔ℎ +
𝑟𝑠

3!
+

𝑞𝑚(𝑤 − 𝑠𝑑)𝑧𝑥𝑝2

4!
+ ⋯ (12) 

Different factors that contribute to the analysis of effectiveness are shown by 

Equation (12), which includes the initial performance 𝑔ℎ, small enhancements 
𝑟𝑠

3!
, and 

more complex enhancements and engineering features 
𝑞𝑚(𝑤−𝑠𝑑)𝑧𝑥𝑝2

4!
. 

3.5. The structure of the suggested meal identification system 

The food recognition-dietary assistance pipeline is illustrated in Figure 5. An 

interactive web browser and a recognition engine hosted on the server make up the 

system. A purpose-built API handles the communication between the two parts. The 
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client communicates with the server in a two-part FormData object submitted via 

XMLHttpRequest. On the server side, it handles all of the API requests from the 

clients using WebSphere Liberty 5 and custom Javacode. Held on the server. The 

system’s front-end client is built using basic HTML and JavaScript. It is a website 

built to perform flawlessly on mobile devices. In Figure 5, the desktop interface shows 

a space where the user may drag and drop images to submit; in Figure 5, the mobile 

interface goes straight to the user’s camera roll or photo library on their phone. The 

following is how the returned JSON file containing the processed request is displayed: 

First, the top three broad categories and an image and name for each are displayed. 

The reference picture used by the K-NN classifier is the one that is physically nearest 

to the reference database. Since it was discovered that people had trouble 

understanding the absolute computations, they decided not to provide the classification 

score for each category. 

 

Figure 5. The structure of the suggested meal identification system. 

fgp π ± zby 𝜎 = 2 wsv
1

2
(𝜎 ± 𝛿) cos

1

2
(𝛼𝛽 ∓ ∆) (13) 

The suggested DL-ANCS approach incorporates improved accuracy analysis into 

Equation (13). In this case, the desired accuracy level in nutritional assessment is 

denoted by fgp π ± zby 𝜎, and the improved prediction mechanism in the DL-ANCS 

is represented by 2 wsv
1

2
(𝜎 ± 𝛿). This equation shows how modifying parameters 

cos
1

2
(𝛼𝛽 ∓ ∆), as well as modulating the cosine operation, may improve the system’s 

accuracy. 

∫∇(1 + γδ) × FSl ⋅ 𝑅𝑢
𝑆

= ∮ DF ⋅ 𝑒f
𝐶𝑊

 (14) 

This Equation(14), represents the Analysis of Food Ingredients Predictions and 

their Nutritional Compatibility in DL-ANCS and is expressed as ∇(1 + γδ) × FSl ⋅ 𝑅𝑢. 
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Contrarily, DF ⋅ 𝑒f reflects the comprehensive evaluation method of DL-ANCS by 

including dietary components and their effects on nutritional compliance in a circular 

fashion. 

𝑚(𝑏 + 𝑐) =
1

2ℎ𝑗
∮

𝑓(𝑤)

𝑎𝑤 − 𝑝
𝐾𝑝(𝑤 − 𝑗𝑘) (15) 

The suggested DL-ANCS method’s analysis of food component classifications is 

encapsulated in Equation (15). The classification conclusion for individual dietary 

components is represented by 𝑚(𝑏 + 𝑐) here, which is similar to the system’s result 

when recognizing different nutritional elements. The thorough evaluation of food 

characteristics, such as texture and composition, is represented by an integral value 
𝑓(𝑤)

𝑎𝑤−𝑝
, which reflects the feature extraction procedure in DL-ANCS and incorporates 

several data sources 𝐾𝑝(𝑤 − 𝑗𝑘). 

Using advanced image processing and machine learning, it is expected that the 

proposed DL-ANCS Automated Nutrition Identification System can improve the 

precision and effectiveness of nutrition evaluations. The DL-ANCS platform employs 

IoT sensors and smartphone technologies for real-time dietary monitoring and nutrient 

assessment. Performance indicators, nutritional compatibility, ingredient prediction, 

and food texture analysis are some of them. 

4. Result and discussion 

The DL-ANCS system provides accurate nutritional information using deep 

learning and the internet. The crucial investigations include texture evaluation, system 

efficacy, accuracy improvement, ingredient prediction, and food categorization. 

Recognizing food textures may improve digestion and flavour. Testing the system 

ensures nutritional data accuracy. It needs additional database data and improved 

algorithms to be more exact. Predicting food nutrition helps consumers make smarter 

diet decisions. Correctly categorizing dietary components is essential for accurate 

nutritional evaluations. When combined, these assessments improve system 

usefulness and dependability. 

4.1. Dataset description 

Repeatedly eating high-energy, nutrient-poor meals may cause obesity [21]. 

Understanding the relationships between food flavour, individual taste preferences, 

food choices, and intake can help us understand why some choose and eat unhealthy 

foods. This review addresses important questions: nutrition-rich meals have different 

flavour profiles, whereas nutrition-low meals are sweet, salty, and greasy. People are 

born preferring sweet and hating bitter flavours; however, they vary in liking all 

essential taste attributes. These individual variances partially explain short-term food 

intakes of different taste profiles. It examines how taste, smell, and texture interact 

with individual traits, affecting nutrient-rich and deficient food intake. Various 

statistical approaches were used in the study to determine the significance of 

differences and correlations between variables. These methods included regression 

analysis, analysis of variance (ANOVA), and t-tests. 
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4.2. Analysis of food texture 

An analysis of food texture is shown in Figure 6 and is necessary for grasping 

how physical attributes impact customer satisfaction and nutritional release. The three 

fundamentals of a healthy diet are digestibility, nutrient absorption, and palatability, 

all impacted by texture. Food mechanical qualities, including cohesion, viscosity, and 

hardness, allow analysts to learn how different textures affect the sensory experience 

and overall food quality. Texture analysis is a great tool for fermented food producers 

looking to improve their processes while increasing their products’ nutritional value 

and flavour. Increased health benefits and more customer acceptance are the results. 

Using this method, the analysis of food texture value is increased by the ratio by 98.7%. 

 

Figure 6. Analysis of food texture. 

4.3. Effectiveness analysis 

One metric that must be analyzed to determine how well the DL-ANCS system 

works is its ability to accurately quantify nutritional information and predict meal 

components, as described in Figure 7. Many metrics provide a precise assessment of 

efficacy, including accuracy, precision, recall, and user happiness. Analysts may 

assess the system’s reliability by comparing the system’s predictions with actual 

nutritional data gathered from verified sources. Furthermore, case studies and user 

comments may improve practical applications and usability. These results show that 

the DL-ANCS system meets all the criteria necessary for real-world use. It provides 

reliable nutritional assessments that can help people make healthier food choices. 

Compared to the existing method, the effectiveness analysis ratio of the proposed 

method is 99.2%. 
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Figure 7. Analysis of effectiveness. 

4.4. Accuracy ratio 

Improving the DL-ANCS system’s accuracy is crucial for making reliable 

nutritional assessments. Figure 8 describes the accuracy improvement analysis, which 

can only be achieved by enhancing the food recognition and classification algorithms 

and deep learning models now in use. Training the algorithm on a dataset with a larger 

and more diverse selection of food photographs and nutritional information may 

improve its accuracy. Another component contributing to enhanced performance is 

using more intricate methods, such as texture analysis and contextual recognition. 

Constant improvement based on user feedback and real-world testing ensures that the 

system maintains high levels of accuracy. Because of this, the system is a trustworthy 

tool for analyzing nutrition. The improved accuracy analysis ratio is 95.89% in this 

proposed method. 

 

Figure 8. Analysis of improve the accuracy. 
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4.5. Food ingredients predictions and their nutritional compatibility 

Accurately predicting dietary components and the nutrients they contain is one 

of the main tasks of the DL-ANCS system. The main objective of this analysis is to 

examine the system’s ability to dissect complex meals into their components and 

calculate the total nutritional value of those pieces shown in Figure 9. The system can 

use deep learning algorithms trained on large datasets and massive amounts of data to 

identify foods and precisely predict their nutritional contents. People need to 

understand the nutrient composition in the food consumed to make informed decisions 

about what they eat. The study also suggests that adding more food items to expand 

food coverage in a database is one way of identifying areas for improvement. This 

method analyses food ingredient predictions and their nutritional compatibility ratio 

by 96.8%, higher than existing methods. 

 

Figure 9. Analysis of food ingredients predictions and their nutritional compatibility. 

4.6. Classifications of food components 

DL-ANCS method is used to classify food components, paying attention to visual 

and nutritional features (Figure 10). The system’s ability to identify particular food 

items using user pictures becomes this experiment’s main performance evaluation 

criterion. Reliable nutritional information can only be provided if correct classification 

is done. On many occasions, sophisticated image processing techniques combined 

with machine learning ensure no mistakes when distinguishing between identical or 

different meals. Additionally, an assessment metric such as a confusion matrix or a 

classification report may also be deployed to determine the efficiency levels of this 

system, which could also include these factors. Classification algorithms are updated 

and modified regularly to ensure reliability and accuracy under different 

circumstances. The value exceeds 97.29% through analysis of food component 

classifications. Table 1 shows the comparison results of the proposed methods with 

models. 
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Figure 10. Analysis of classifications of food components. 

Table 1. Comparison results of the proposed method with existing models. 

Methods Food texture ratio Effectiveness ratio 
Accuracy 

ratio 

Food ingredient 

predictions 

Nutritional 

compatibility 

ratio 

Food component 

classifications 

ratio 

CB-SAH 40.2 82.3 62.4 84.5 52.3 74.5 

CM-ES 69.8 78.8 72.9 85.4 86.5 77.2 

DL-ANCS 98.7 99.2 95.89 96.8 96.8 97.29 

Using a multi-pronged approach to accurate nutrition assessment, DL-ANCS 

uses algorithmic models involving multiple input variables instead. One can enhance 

understanding of digestion and nutrient release by examining food texture properties. 

This meant testing its efficiency to apply the solution in real life. To improve the 

rheology of fermenting bread dough, we collaborated with a commercial bakery and 

used the mechanobiological framework. The mechanical characteristics of the dough 

might be adjusted to produce the desired volume and texture by methodically adjusting 

the mixing settings and dough composition. The optimization did wonders for the 

bakery’s bottom line, increasing productivity, improving product homogeneity, 

decreasing manufacturing costs, and reducing ingredient waste. 

Utilizing deep learning techniques, fermentation processes may be fine-tuned to 

meet specific dietary requirements. This customized approach to nutrition has the 

potential to enhance health results. Fermented foods with medicinal or preventative 

qualities, such as probiotics for digestive health or foods that reduce inflammation, 

may be developed with the help of this study. More research on the positive effects of 

fermented foods on health might propel public health initiatives that encourage better 

eating choices. Better nutritional literacy, more educated food choices, and better 

eating habits may be achieved by public awareness of the function of fermentation in 

food processing. 
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5. Conclusion 

Mechanobiological parameters fermentation play parameters influence taste and 

nutrient diffusion from fermented foods. Understanding these factors is essential to 

improving food quality, especially regarding enhancing nutritional bioavailability and 

textural integrity,which are critical for human health. The nutritional content of a food 

can be reliably and instantaneously assessed using smartphones and IoT sensors based 

on the proposed DL-ANCS system. The deep learning models combined with image 

processing provide accurate identification and classification of food items by DL-

ANCS. This would then inform better dietary choices. This research demonstrates that 

texture analysis provides much more precise nutritional assessments to lower diet-

related chronic diseases when analyzing pictures of foods. Its potential as a powerful 

self-care tool and an advanced nutrition analyzer lies in its ability to automatically 

identify and catalogue various foods. The proposed method improves the food texture 

ratio of 98.7%, effectiveness ratio of 99.2%, accuracy ratio of 95.89%, food ingredient 

predictions and their nutritional compatibility ratio of 96.8%, and food component 

classifications ratio of 97.29%. Reliable and strong real-time data collecting and 

processing technologies are essential for implementing real-time CNN-based 

optimization and control of fermentation processes. Such a degree of integration is 

difficult to achieve and requires a lot of resources. 

Future work 

Several critical aspects of the DL-ANCS system will be the focus of future 

development efforts. The system’s accuracy and reliability may be enhanced by 

expanding the database to include food images and nutritional information. A wider 

range of scenarios may be addressed by expanding the strategy to incorporate a wider 

variety of meals, particularly those from other cultures. In addition, enhancing the 

image processing techniques to handle multi-component difficult meals better could 

significantly increase food identification accuracy. Moreover, depending on how the 

system is used in the real world, integrated user feedback mechanisms may help with 

continuous system improvement. More analysis of the potential of AR to provide real-

time dietary information and suggestions based on the discovered items would be 

beneficial. Furthermore, longitudinal studies analyzing the system’s effect on nutrition 

and health outcomes for users are vital for validating the system’s utility as a tool for 

promoting good eating patterns and preventing chronic diseases. 
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