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Abstract: This paper reviews the application of biomechanics and deep learning models in 

water quality monitoring, highlighting their potential to enhance the accuracy and efficiency 

of environmental pollution detection and prediction. Traditional water quality monitoring 

methods are difficult to deal with nonlinear and dynamic pollution data. This article reviews 

the fusion application of biomechanical models and deep learning (such as convolutional neural 

network (CNN), long short-term memory (LSTM)), and proves that it significantly improves 

monitoring accuracy (an average of 20% in cases) by simulating pollutant diffusion 

mechanisms (biomechanics) and mining complex data patterns (deep learning). In the future, 

it is necessary to establish an interdisciplinary collaboration framework to promote the 

deployment of lightweight models in real-time systems. 
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1. Introduction 

Water resources are essential for human survival and socio-economic 

development, yet they are increasingly threatened by pollution from various sources, 

including industrial discharges, agricultural runoff, and urban activities. Accurate and 

timely monitoring of water quality is crucial for effective environmental management 

and public health protection. Traditional water quality monitoring methods, which rely 

heavily on manual sampling and laboratory analysis, are often time-consuming and 

unable to provide real-time data. Moreover, these methods struggle to capture the 

complex dynamics of pollutant distribution and transformation in water bodies. 

In recent years, the rapid development of deep learning and biomechanics has 

opened new avenues for water quality monitoring [1–5]. Deep learning, a subset of 

artificial intelligence, mimics the human brain’s neural networks to analyze and learn 

from vast amounts of data, enabling the identification of complex patterns and 

relationships. Techniques such as convolutional neural network (CNNs), recurrent neural 

network (RNNs), and long short-term memory (LSTMs) have shown promise in 

handling the non-linear and temporal characteristics of water quality data [6–8]. 

Meanwhile, biomechanics algorithms, which simulate the movement and mechanical 

properties of living organisms, offer unique insights into the diffusion and transport 

processes of pollutants in water. By integrating these two fields, researchers can 

develop more robust and accurate models for predicting water quality and identifying 

pollution sources [9]. 
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This paper aims to provide a comprehensive review of the application of 

biomechanics and deep learning models in water quality monitoring. It discusses the 

advantages of these integrated approaches over traditional methods, highlights key 

research findings, and explores the challenges and future directions in this field. The 

review emphasizes the importance of multidisciplinary integration, model 

optimization, and data fusion in advancing water quality prediction and monitoring 

technologies. Ultimately, the application of these innovative methods holds significant 

potential for improving environmental decision-making and supporting sustainable 

water resource management. This paper reviews the application of biomechanics 

algorithms and deep learning models in water quality prediction, discusses key 

technologies such as multidisciplinary integration, model optimization, and data 

fusion, and looks forward to future research directions. 

2. Application of deep learning in water quality monitoring 

Deep learning is a type of machine learning that mimics the neural networks of 

the human brain, analyzing and learning from large amounts of data to identify and 

classify complex patterns. The application of deep learning in water quality 

monitoring can be divided into two aspects: First, using deep learning methods to 

analyze data from monitoring systems for pollution sources and regional water quality, 

in order to provide more accurate water quality data for governments and 

environmental protection agencies. Second, using deep learning methods to analyze 

environmental data and establish predictive models for environmental monitoring, in 

order to provide decision-makers with information about water quality [10,11]. 

In previous studies, deep learning has included: recurrent neural network (RNN), 

convolutional neural network (CNN), autoencoder, long short-term memory (LSTM), 

deep belief network (DBN), gated recurrent unit (GRU), generative adversarial 

network (GAN), and transformer. The characteristics of each method are as follows: 

CNN is very suitable for spatial analysis tasks such as image data processing, while 

RNN, LSTM, GRU, and transformer are more suitable for sequential tasks such as 

time series prediction. DBN can be used for feature extraction, for example, to identify 

commonalities between water bodies or water quality patterns. Transformer and GAN 

can generate realistic complex data, such as images and parameter maps, and can also 

automatically detect anomalies, such as pollution events in water supply networks. 

From 2021 to 2023, it was found that the emergence of water quality databases such 

as GEMStat, the Global Rivers Chemistry (GLORICH) database, the Surface Water 

Chemistry (SWatCh) database, the Global Rivers Water Quality Archive (GRQA), and 

the application of water quality chemical analysis have accelerated the application of 

deep learning in water quality [12–15]. 

2.1. Application of deep learning in water quality monitoring 

Deep learning has an advantage over traditional methods in capturing complex 

patterns in data. In water quality monitoring, the data from monitoring equipment 

usually contains complex, non-linear data structures. Using deep learning methods can 

better solve the modeling problems of these data. For example, Wang et al. [16] used 

a deep convolutional neural network (DCNN) to analyze the chemical composition of 
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water quality and pollution sources. To train the DCNN, researchers first used factor 

analysis on the data set to obtain different models of water quality components. Then, 

researchers used the structural similarity index to compare the results obtained from 

the DCNN with the actual water pollution data. The accuracy of the DCNN model is 

very high, indicating that the DCNN can efficiently process this complex monitoring 

data. 

Using deep learning methods to establish environmental monitoring predictive 

models can predict future pollution situations. For example, Song et al. used a deep 

recurrent neural network (DRNN) to predict the concentrations of PM2.5 and PM10 

in the Beijing-Tianjin-Hebei region. This study used the monitoring data from the 

previous day as part of the predictive model. It was found that the prediction accuracy 

of the DRNN model is much higher than other common methods. In addition, 

researchers also found that neural network models have the characteristic of 

adaptability in a short time, so they can be used to predict future pollution situations. 

Kong et al. proposed CNN-LSTM-Attention (CLATT), an attention-based effluent 

wastewater quality prediction model, which uses a convolutional neural network 

(CNN) as an encoder and a long short-term memory network (LSTM) as a decoder 

(Figure 1). 

 

Figure 1. Overview of the proposed method called CLATT. 

It receives a sequence of wastewater quality indicators taken from real-world 

wastewater treatment plants. The encoder is formed of a CNN module with a residual 

block. A standard LSTM module is regarded as a decoder. The attention mechanism 

module is used to integrate information and make predictions. 

Significant progress has been made in the application of deep learning models in 

water quality prediction. Compared with traditional statistical methods, deep learning 

models are better able to handle the time-series and non-linear characteristics of water 

quality data, thereby improving prediction accuracy. For example, Zhang et al. showed 

that a hybrid model based on convolutional neural network (CNN) and long short-term 

memory network (LSTM) performed well in water quality prediction. In addition, 

some studies have proposed deep learning models combined with attention 

mechanisms, which further improve the accuracy and reliability of predictions. Table 

1 compares the CNN and LSTM models from four dimensions: method, data, scenario, 

and effect. 
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Table 1. Comparison of applications of deep learning models in water quality monitoring. 

Model Type Data Source Application Scenario Accuracy Improvement Limitations 

CNN 
Chemical composition 

spectral data 

Pollution source 

identification 
92% 

Rely on high-resolution 

input 

LSTM Time series sensor data PM2.5 prediction 15% better than ARIMA 
High computational 

complexity 

In deep learning, convolutional neural networks are a class of artificial neural 

networks, which belong to the feedforward neural networks [13,14]. Moreover, CNNs 

stand out as prominent algorithms within the domain of deep learning [15], recognized 

for their shift-invariant or spatially invariant nature. A convolutional neural network 

usually consists of the following layers: the convolutional layer (Convolution 

Operation), the pooling layer (Subsampling Operation), and the fully connected layer 

(SoftMax Operation), as shown in Figure 2a. The convolutional neural network model 

was proposed by Yann Lecun of New York University in 1998 (LeNet-5), and 

fundamentally operates as a multi-layer perceptual machine. The success of 

convolutional neural networks can be attributed to their utilization of local 

connectivity and weight sharing. This approach not only decreases the number of 

weights, simplifying network optimization, but also reduces the model’s complexity 

and the likelihood of overfitting. Recurrent neural networks are a class of recurrent 

neural networks designed to process sequence data. In an RNN, information cycles 

through the network in a sequential manner, with each node (referred to as a recurrent 

unit) connected in a chain. This architecture is grounded in the notion that “human 

cognition relies on past experiences and memories”. The basic layers of an RNN 

include input, hidden, and output layers, as shown in Figure 2b. Due to their recursive 

structure, recurrent neural networks are adept at addressing sequence modeling 

challenges and find utility across diverse domains, including text generation, machine 

translation, and image captioning [16,17]. 

 

Figure 2. Structural diagrams of a CNN and an RNN: (a) CNN; (b) RNN. 
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3. Application of biomechanics algorithms in water quality 

prediction 

Biomechanics algorithms, by simulating the movement and mechanical 

properties of living organisms, offer a new perspective for water quality prediction. 

These algorithms can simulate the diffusion process of pollutants in water bodies, 

thereby improving the accuracy of predictions. For example, Güldal et al. [18] used a 

biomechanics model to simulate the diffusion process of pollutants in water bodies. 

Through a data-driven approach, important features in the data are automatically 

extracted, and then validated and corrected using mechanical models. Like deep 

learning, biomechanics models simulate the human perception of data, thus being able 

to handle large amounts of complex data. With the support of molecular mechanics 

models, the simulation and prediction of water quality can become more convenient 

and accurate, which is very important for pollution prevention and control work [19–

20]. 

3.1. Using biomechanics to analyze water quality 

Using biomechanics models to analyze pollution sources is an effective method 

to better solve complex problems. For example, Wang et al. [21] used a method based 

on neural network models to identify and classify particulate pollutant sources from 

mobile and stationary sources. Researchers first used a generalized linear model (GLM) 

to conduct a preliminary analysis of the data. Then, they established a neural network-

based classifier to extract more features and information from the data, in order to 

better identify mobile and stationary sources [22–25]. The study shows that 

biomechanics models are one of the effective methods for analyzing water quality 

pollution sources. 

Molecular biology-based water quality monitoring methods mainly include PCR 

technology, FISH technology, and NGS technology. Li et al. [5,6] used these 

technologies to quickly detect pathogens, bacteria, and viruses in water samples, as 

well as potential microbial pathogens in water bodies. 

PCR technology: Can quickly detect pathogens, bacteria, and viruses in water 

samples. 

FISH technology: Can perform molecular hybridization detection for different 

target DNAs, achieving online detection of specific populations. 

NGS technology: Can comprehensively detect various microorganisms in water 

samples, achieving a comprehensive analysis of the microbial community in water 

bodies. 

3.2. Using biomechanics models to establish water quality monitoring 

predictive models 

Biological monitoring methods have advantages such as sensitivity, stability, 

diversity, and long-term effectiveness, and can directly and effectively reflect the 

ecological risks faced by the water environment. Biological monitoring methods 

include monitoring of microorganisms, phytoplankton，zooplankton, periphyton, 

higher aquatic plants, and fish [26,27]. In addition to deep learning methods, 
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biomechanics models can also be used to establish predictive models for water quality 

monitoring. For example, Yuan et al. used a method based on biomechanics models 

to predict the concentration of gaseous pollutants. Researchers collected a large 

amount of water quality and soil data in Wuhan, Guangzhou, and Changsha, and used 

biomechanics models to predict future water pollution concentrations. The results 

show that biomechanics models can accurately predict future water quality conditions. 

4. Multimodal data analysis combined with deep learning 

Multidisciplinary integration is the key to improving the accuracy of water 

quality prediction. Combining methods from biomechanics, physics, and chemistry 

can develop more comprehensive water quality prediction models. For example, a 

review of the research on urban water supply network water quality monitoring 

systems from a multidisciplinary perspective shows that the cross-integration of 

environmental science, computer science, materials science, and hydraulic 

engineering helps to promote technological innovation and progress in water supply 

network water quality monitoring systems. Multimodal data analysis tools used to 

predict the structure, dynamics, and function of biomolecules can be combined with 

physics-based methods, which can not only find solutions but also understand the 

relevant mechanisms [28,29]. In May 2021, a review article on biomolecular modeling 

was published in the Nature sub-journal Nat Comput Sci. The authors proposed that 

the combination of physics-based and knowledge-based methods may be the most 

effective. 

4.1. Biomechanics algorithms can be combined with deep learning 

models 

Biomechanics algorithms can be combined with deep learning models, using the 

powerful data analysis capabilities of deep learning to handle complex water quality 

data. This combination not only improves the accuracy of predictions but also 

effectively handles multimodal data in water quality monitoring. For example, a study 

on deep learning-based water quality prediction shows that hybrid models perform 

better than traditional models in handling complex water quality data [30]. At the same 

time, Chen et al. cleaned and denoised the water quality data of Huangyang Reservoir 

using wavelet transform, and established time series datasets for DO, pH, and TB 

concentrations using deep learning models and biomechanics models. Denoising the 

water quality data of Huangyang Reservoir using wavelet transform effectively 

reduced the noise in the data. The denoised dataset was then normalized, and the 

normalized dataset was divided into training, testing, and validation sets in a 7:2:1 

ratio. Combining real-time monitoring data, historical data analysis, and water quality 

model predictions can help managers better understand the trends in reservoir water 

quality changes and take control measures in a timely manner [31,32]. 

4.2. Model optimization and future development directions 

Currently, there are still some challenges in the application of water quality 

monitoring. First is the data quality issue. Since environmental monitoring data 

sampling and collection may be disturbed by various factors, there may be certain 
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uncertainties and biases in the data quality. Therefore, how to process and correct the 

noise and errors in the data is an important direction in data analysis research. At the 

same time, the characteristics of biomechanics and deep learning models, combined 

with each other, play to the advantages of each data monitoring method. 

Model optimization and data fusion are important means to improve the 

efficiency of water quality prediction. In recent years, the structure and parameters of 

deep learning models have been continuously optimized to improve the efficiency and 

robustness of the models. At the same time, by integrating multi-source data, such as 

satellite remote sensing data and ground monitoring data, the accuracy and reliability 

of water quality prediction can be improved. Although biomechanics algorithms and 

deep learning models have achieved significant results in water quality prediction, 

there are still some limitations. Future research directions include: 

Multidisciplinary integration: Combining methods from biomechanics, physics, 

and chemistry to develop more comprehensive water quality prediction models. The 

combination of biomechanics algorithms and machine learning technologies will 

become an important direction for future development. Machine learning technologies 

can process large amounts of water quality data and automatically extract important 

features from the data, thereby improving the accuracy and efficiency of predictions 

[33,34]. 

Model optimization: Further optimize the structure and parameters of deep 

learning models to improve their efficiency and robustness. Future research will 

increasingly adopt multiscale modeling methods, combining quantum 

mechanics/molecular mechanics (QM/MM) methods to achieve multiscale 

simulations from the microscopic to the macroscopic level, thereby more 

comprehensively understanding the mechanisms of water quality changes. 

Data fusion: Use multi-source data, such as satellite remote sensing data and 

ground monitoring data, to improve the accuracy and reliability of water quality 

prediction. Combining real-time monitoring data, biomechanics algorithms can be 

used for real-time water quality prediction and early warning systems, to timely detect 

water quality abnormalities and take corresponding measures. 

5. Discussion 

In the face of escalating environmental challenges, the integration of 

biomechanics and deep learning models in water quality monitoring has emerged as a 

transformative approach, offering unprecedented capabilities for the detection, 

prediction, and management of water pollution. This paper has reviewed the 

application of these advanced techniques, highlighting their potential to revolutionize 

traditional water quality monitoring practices and enhance environmental decision-

making processes. 

6. Significance of biomechanics and deep learning integration 

The combination of biomechanics and deep learning models has proven to be 

highly effective in addressing the complexities of water quality monitoring. 

Biomechanics algorithms, by simulating the movement and mechanical properties of 

pollutants in water bodies, provide a detailed understanding of how contaminants 
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spread and interact within aquatic environments. This mechanistic insight 

complements the data-driven capabilities of deep learning models, which excel at 

identifying intricate patterns and relationships within large datasets. Together, these 

approaches offer a more comprehensive and accurate framework for predicting water 

quality and identifying pollution sources. 

Deep learning models, such as convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and long short-term memory (LSTM) networks, have 

demonstrated remarkable performance in handling the non-linear and temporal 

characteristics of water quality data. These models can process vast amounts of data 

quickly and efficiently, providing real-time predictions and alerts. The integration of 

attention mechanisms further enhances their accuracy and reliability, allowing for 

more precise identification of critical factors influencing water quality. 

7. Multidisciplinary integration and model optimization 

The success of these integrated approaches underscores the importance of 

multidisciplinary integration. Combining knowledge from fields such as biomechanics, 

physics, chemistry, and computer science allows for the development of more 

sophisticated and robust models. This cross-disciplinary approach not only improves 

the accuracy of water quality predictions but also provides deeper insights into the 

underlying mechanisms of pollution dynamics. 

Model optimization and data fusion are also critical factors in enhancing the 

efficiency and reliability of these models. Continuous advancements in deep learning 

architectures, such as the development of hybrid models and the incorporation of 

transfer learning, have significantly improved model performance. Additionally, the 

integration of multi-source data, including satellite imagery, ground monitoring data, 

and historical records, enriches the dataset and enhances the models’ predictive 

capabilities. 

8. Future research directions 

Despite the significant progress made in recent years, several challenges remain. 

One of the primary challenges is ensuring data quality and availability. Environmental 

monitoring data can be noisy and incomplete, which can affect the accuracy of 

predictions. Future research should focus on developing robust data preprocessing 

techniques to handle these issues effectively. 

Another area of focus should be the further optimization of deep learning models. 

While current models have shown promising results, there is still room for 

improvement in terms of computational efficiency and interpretability. The 

development of more efficient algorithms and the integration of explainable AI 

techniques will be crucial in making these models more accessible and usable for 

stakeholders. 

The application of these technologies in real-time monitoring systems is another 

important direction for future research. Real-time data collection and analysis can 

provide immediate insights into water quality conditions, enabling timely 

interventions and preventing potential environmental disasters. The development of 
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portable and affordable sensors, combined with advanced data analytics, will be 

essential in achieving this goal. 

Finally, the integration of these technologies with other environmental 

management tools, such as decision support systems and policy frameworks, will be 

vital in translating research findings into actionable strategies. Collaboration between 

researchers, policymakers, and industry stakeholders will be necessary to ensure that 

these advanced techniques are effectively implemented and contribute to sustainable 

water resource management. 

Future research should focus on combining lightweight models with edge 

computing to reduce the hardware cost of real-time monitoring systems. In addition, 

establishing a standardized water quality database and opening it up for sharing can 

promote the generalization of models across regions. It is recommended that the 

government and enterprises cooperate in a pilot project to embed deep learning models 

into existing monitoring equipment and verify their stability in actual scenarios. 

9. Conclusion 

In conclusion, the application of biomechanics and deep learning models in water 

quality monitoring represents a significant advancement in environmental science and 

engineering. These integrated approaches offer powerful tools for improving the 

accuracy and efficiency of water quality predictions, identifying pollution sources, and 

supporting environmental decision-making. While challenges remain, ongoing 

research and technological advancements hold great promise for the future of water 

quality monitoring. By continuing to explore and refine these innovative methods, we 

can better protect our water resources and ensure a sustainable future for all. It is 

recommended to incorporate hybrid models into national water quality monitoring 

standards and encourage multi-source data sharing through legislation to solve the 

problem of data silos. 
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