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Abstract: This study investigates the application of biomechanics-inspired principles to 

optimize classroom interaction models in business English education, with a focus on the 

interplay between physiological dynamics and learning performance. By integrating 

biomechanical frameworks for analyzing human physiological responses, and cardiovascular 

adaptability, this research establishes a data-driven teaching model to enhance educational 

outcomes. Using experimental research methods, 120 business English majors from a 

university were studied over a 16-week teaching experiment to systematically analyze the 

biomechanical correlates of learning efficiency and classroom engagement. The research found 

that the biomechanics-informed teaching model significantly improved students’ physiological 

adaptability and cognitive performance. The experimental group showed improvements in 

attention levels (α-wave energy values) from 10.2 ± 2.3 μV to 12.6 ± 2.1 μV, stress indices 

decreased from 7.8 ± 1.2 to 5.2 ± 0.9, and heart rate variability (HRV) SDNN values increased 

from 42.3 ± 8.5 ms to 54.6 ± 7.8 ms. In terms of classroom interaction quality, the proportion 

of quality interactions increased from 35.6 ± 4.8% to 68.4 ± 5.2%. Regarding business English 

competency development, the experimental group’s business communication skills improved 

from 71.3 ± 7.8 to 87.6 ± 6.5 points (an improvement rate of 2.9%), while cross-cultural 

business competency increased from 72.1 ± 7.6 to 88.2 ± 6.3 points (an improvement rate of 

22.3%). The results indicate that the biological data-driven teaching model can effectively 

optimize classroom interaction quality and enhance business English teaching effectiveness. 

By treating learning interactions as a biomechanical system governed by energy expenditure, 

stress-strain balance, and adaptive feedback loops, we provide a novel paradigm for 

understanding and improving pedagogical efficacy. The results highlight the potential of 

biomechanics to bridge educational technology and human performance science, offering 

actionable strategies for curriculum design and teacher training. This innovative model 

provides new insights and methods for business English teaching reform while offering 

practical references for educational technology innovation. 

Keywords: biological data analysis; biomechanics; business English teaching; classroom 

interaction; teaching model innovation; learning outcomes 

1. Introduction 

In the context of rapid digital transformation, business English teaching faces 

external demands and challenges for transformation. With the digital transformation 

of the global business environment and profound changes in international 

communication methods, traditional business English teaching models can no longer 

meet the demands of modern business talent cultivation. As Gunning et al. [1] 

demonstrated, functional data analysis can effectively track and evaluate dynamic 

changes in individual performance, providing new insights for innovative practices in 

education. Currently, business English teaching requires more precise learning 

CITATION 

Lv X. Innovation in classroom 

interaction mode of business English 

teaching driven by biomechanics and 

data analysis. Molecular & Cellular 

Biomechanics. 2025; 22(4): 1626.  

https://doi.org/10.62617/mcb1626 

ARTICLE INFO 

Received: 19 February 2025 

Accepted: 27 February 2025 

Available online: 5 March 2025 

COPYRIGHT 

 
Copyright © 2025 by author(s). 

Molecular & Cellular Biomechanics 

is published by Sin-Chn Scientific 

Press Pte. Ltd. This work is licensed 

under the Creative Commons 

Attribution (CC BY) license. 

https://creativecommons.org/licenses/

by/4.0/ 



Molecular & Cellular Biomechanics 2025, 22(4), 1626.  

2 

outcome assessment tools, more personalized teaching strategies, and more effective 

classroom interaction models to adapt to educational development needs in the digital 

era. 

Biological data and learning analytics technology have made significant progress 

in recent years. Fang et al. [2] discovered in their biological data modeling research 

that three-dimensional models established through CT imaging data can achieve 

precise feature analysis, a technology that holds significant application value in 

education. Tang et al. [3] demonstrated the application of data analysis technology in 

feature recognition and assessment in their data three-dimensional reconstruction 

research. Xie and Zhan’s [4] research further validated the significant advantages of 

biomechanical big data analysis in pattern behavior recognition and assessment, 

providing important implications for optimizing educational processes. Zhou et al. [5] 

provided new technical support for data analysis in education through their data 

mining-based model establishment method. 

Innovation in business English classroom interaction models have become an 

urgent necessity. Smith et al.’s [6] research showed that precise data analysis methods 

play a crucial role in system performance evaluation and optimization, which is 

equally applicable to assessing and optimizing classroom interaction effectiveness. 

Ganokroj et al. [7] emphasized the importance of systematic analysis in biomechanical 

assessment research, providing valuable reference for constructing scientific 

classroom interaction evaluation systems. Guan et al.’s [8] static analysis research 

indicated significant differences in system performance under varying conditions, 

suggesting the need for more flexible and adaptive classroom interaction models. 

Currently, business English teaching faces major challenges including large 

individual learner differences, difficulties in quantifying teaching assessments, and 

low classroom interaction efficiency. Traditional teaching models struggle to 

accurately grasp learners’ learning states and needs, and lack effective means to 

evaluate and optimize classroom interaction effects. With the development of 

biological data analysis technology, its application in business English teaching can 

not only provide more precise learning outcome assessment tools but also reliable data 

support for optimizing teaching strategies. As demonstrated by Xie et al.’s [4] research, 

big data analysis technology shows significant advantages in behavioral pattern 

recognition and assessment, providing technical possibilities for innovation in 

business English classroom interaction models. 

Furthermore, educational innovation in the digital era needs to focus on learners’ 

personalized needs and learning experiences. By introducing biological data analysis 

technology, real-time monitoring and analysis of learners’ states can be achieved, 

providing a scientific basis for teaching decisions. Zhou et al.’s [4] research showed 

that data mining-based analysis methods can effectively identify and predict individual 

characteristics, which is significant for achieving precise and personalized teaching. 

Meanwhile, Tang et al.’s research [3] results also showed that multidimensional data 

analysis can provide more comprehensive support for system optimization, offering 

new insights for business English teaching model innovation. 

The necessity of innovative classroom interaction models also reflects the 

requirements of digital transformation for improving educational quality. Fang et al.’s 

[2] research verified that precise data analysis and modeling can significantly improve 
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system performance, a method that holds important value in educational applications. 

Through deep integration of biological data analysis technology with business English 

teaching, precise monitoring and assessment of the teaching process can be achieved, 

promoting continuous optimization and innovation of teaching methods, ultimately 

improving teaching quality and learning outcomes. 

Against this background, innovation in business English classroom interaction 

models is not only an inevitable trend of technological development but also an 

important means to improve educational quality. By integrating biological data 

analysis technology and modern educational concepts to construct scientific and 

efficient classroom interaction models, we can better meet the development needs of 

business English teaching in the digital era and provide strong support for cultivating 

high-quality business English talent. 

The current research constructs a three-dimensional integration theoretical 

framework of “biology-cognition-teaching,” systematically elaborating the cross-

fusion mechanism between biomechanics and educational theory. Cognitive Load 

Theory provides the foundation for understanding cognitive resource allocation during 

the learning process. Biological data (such as alpha and beta wave changes) can 

objectively measure learners’ cognitive load states, with the ideal range of alpha wave 

energy values maintained at 12.6 ± 2.1 μV indicating optimal allocation of cognitive 

resources, avoiding overload or insufficiency. This provides scientific evidence for the 

precise timing of teaching interventions, enabling teachers to adjust teaching pace and 

difficulty based on students’ cognitive load states. Situated Cognition Theory 

emphasizes the importance of learning occurring in specific contexts. This study uses 

biological indicators such as heart rate variability (HRV) and stress index to monitor 

the impact of learning situations on students’ emotional states in real time, providing 

objective evidence for creating optimal learning environments. When the SDNN value 

reaches 54.6 ± 7.8 ms, students are in the optimal emotional state, facilitating situated 

knowledge construction. This biologically informed situational optimization allows 

business English teaching to more accurately simulate authentic business 

environments, enhancing learning transfer effects. 

2. Literature review 

In the context of the digital era, the integration of biomechanical data analysis 

and education has urgently attracted widespread academic attention. 

In theoretical foundation research, Liu and Yu [9] systematically explained 

biomechanical analysis methods for motion technology, providing a basic theoretical 

framework and methodological guidance for behavioral data analysis. Xie and Zhan 

[4] comprehensively reviewed the research progress in gait biomechanics big data 

analysis, emphasizing data-driven behavioral patterns. Liu et al. [10] conducted in-

depth research on the application status of sports biomechanics in competitive events 

in China, providing valuable experiential reference for data analysis applications in 

education. Lv et al.’s [11] research provided basic theoretical support for 

biomechanical data analysis, laying the theoretical foundation for interdisciplinary 

applications. 
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Regarding data collection and analysis technology, David et al. [12] innovatively 

designed a cloud computing-based biomechanical data collection system, providing 

advanced technical solutions for real-time data collection and processing. Maas et al. 

[13] successfully achieved synchronous collection and analysis of neurophysiological 

and biomechanical data in real-time gait analysis systems, demonstrating multi-source 

capabilities. Pataky and Rao [14] proposed innovative detrending methods for cyclic 

biomechanical data analysis, significantly improving data analysis accuracy and 

reliability. Xue and Wang [15] conducted in-depth research on reconstruction 

techniques integrating biomechanical constraints and multimodal data, providing new 

research directions for complex data processing. 

In application research, Zhao et al. [16] explored design path innovation driven 

by sports biomechanics data, fully demonstrating the important value of data analysis 

in practical applications. Chen et al. [17] innovatively constructed new biomechanical 

indices based on Chinese population data, extensively proving the application of data-

driven methods in personalized assessment. Gu et al. [18] conducted in-depth research 

on biomechanical R&D approaches in the context of big data and artificial intelligence, 

providing important insights for innovative development in education. Li et al. [19] 

studied biomechanical effects under different conditions through three-dimensional 

finite element analysis, demonstrating the application value of data analysis in precise 

assessment. 

In data model construction, Nagar et al. innovatively proposed a circular fitting 

linear model suitable for multivariate biomechanical data, significantly improving data 

analysis accuracy and reliability [20]. Zhu et al. [21] successfully constructed 

pedestrian biomechanical models based on measured data, providing important 

methodological reference for behavioral data modeling. Ren et al. [22] innovatively 

conducted feature region division using biomechanical physiological characteristics, 

fully demonstrating the application value of data-driven methods in feature 

recognition and classification. Ren et al.’s [22] research based on biomechanical 

physiological characteristics provided new ideas for data model construction. 

In educational application research, Li et al. [23] conducted in-depth research on 

correction methods based on biomechanical analysis, demonstrating the important role 

of data analysis in personalized guidance and risk prevention. Horak et al. [24] 

successfully assessed protective effects through in-depth biomechanical analysis, 

demonstrating the application value of data analysis in safety assessment and risk 

prevention. Bullock et al. [25] compared biomechanical characteristics of different 

methods through precise finite element analysis, demonstrating the important value of 

data analysis in method evaluation and optimization. Lewis et al. [26] compared the 

biomechanical characteristics of different methods through precise finite element 

analysis, demonstrating the application prospects of data analysis in method 

optimization and innovation. 

In development trend research, Li et al. [27] systematically studied the latest 

progress in training’s impact on biomechanics, emphasizing the key role of data 

analysis in effect evaluation and optimization. Liu et al. [10] conducted research on 

biomechanics applications in competitive sports, pointing out future directions for 

data-driven methods. Combined with the current research status, future development 

trends mainly manifest in the following aspects: First, data collection and analysis 
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technology will continue to innovate, developing toward more precise, real-time, and 

intelligent directions; Second, multi-source data fusion analysis will become an 

important research direction, improving the comprehensiveness and credibility of data 

analysis; Finally, artificial intelligence and machine learning technology will play a 

greater role in data analysis, improving analysis efficiency and accuracy. 

In conclusion, while biomechanical data analysis has made significant progress 

in educational applications, some issues remain to be resolved. Future research needs 

to focus on the following aspects: 1) Further explore specific application strategies of 

data-driven methods in educational practice, improving application effectiveness and 

efficiency; 2) Strengthen interdisciplinary integration research, promoting 

technological innovation and methodological breakthroughs; 3) Improve data analysis 

real-time capability and accuracy, better serving educational innovation; 4) Emphasize 

data security and privacy protection, ensuring sustainable development of data-driven 

methods in education. Through continuous theoretical innovation and technological 

breakthroughs, biomechanical data analysis will undoubtedly provide more support 

for educational development. 

3. Research methods 

3.1. Research design 

This study employs a mixed-methods approach, combining quantitative and 

qualitative analysis through experimental and control group comparisons to explore 

the effectiveness of a biological data-driven business English classroom interaction 

model. 

The experimental design utilizes a 16-week controlled study, with two parallel 

business English course sections from the same grade level as research subjects. One 

section (n = 30) serves as the experimental group implementing the biological data-

driven interactive teaching model, while the other section (n = 30) continues with 

traditional teaching methods [28]. The experimental process is divided into three 

phases: Phase One (Weeks 1–2) consists of pre-testing and data collection, including 

business English proficiency tests, learning attitude surveys, and biological data 

monitoring; Phase Two (Weeks 3–14) implements the teaching intervention, with the 

experimental group using the biological data-driven interactive teaching model while 

the control group uses traditional teaching methods; Phase Three (Weeks 15–16) 

involves post-testing and data analysis to evaluate teaching effectiveness. 

Regarding variable control, the independent variable is the teaching model 

(biological data-driven interactive teaching model versus traditional teaching model), 

while dependent variables include learning outcomes (business English proficiency 

test scores), classroom engagement (engagement indicators based on biological data), 

and learning satisfaction (survey questionnaire results). For scientific rigor, the study 

strictly controls the following factors: (1) Teacher factor: Both sections are taught by 

the same instructor; (2) teaching content: Identical textbooks and syllabi are used; (3) 

course timing: Classes are scheduled at similar times; (4) student background: Pre-

tests ensure comparable baseline levels among students. 

The data collection plan encompasses three dimensions: First, biological data 

collection utilizes portable biosensor equipment to record students’ attention levels 
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(brainwave data), emotional states (heart rate variability), and engagement (eye-

tracking data). Data collection occurs three times per class session: 5 min after 

beginning, at the 25-min mark, and 5 min before ending. Second, learning 

effectiveness is evaluated through standardized business English proficiency tests, 

including assessments of listening, speaking, reading, and writing skills, conducted 

once each during the experiment. Finally, questionnaire surveys collect student 

evaluations and satisfaction data regarding the teaching model, using a five-point 

Likert scale covering dimensions such as teaching method evaluation, learning 

experience perception, and course satisfaction. 

To ensure data reliability and validity, the following measures are implemented: 

(1) Conducting pilot tests before the formal experiment to verify data collection 

equipment stability and reliability; (2) establishing data quality control standards for 

timely identification and processing of anomalous data; (3) employing multi-source 

data cross-validation methods to enhance analysis accuracy; (4) holding regular 

teaching feedback meetings to collect qualitative data for verification of analysis 

results. All data collection and analysis processes strictly adhere to research protocols, 

ensuring student privacy protection and data security. 

3.2. Research subjects 

Using stratified random sampling, undergraduate business English majors from 

the class of 2024 were selected as research subjects. To ensure scientific rigor and 

originality, the sample selection and grouping process strictly followed these standards 

and procedures: 

For sample selection, the total sample size was established at 120 students, 

including 60 experimental group students and 60 control group students. Selection 

criteria included: (1) Current undergraduate students majoring in business English; (2) 

no English learning disabilities or special learning needs; (3) willingness to participate 

in the research and signed informed consent. To ensure sample representativeness, the 

following factors were considered: (1) Balanced gender ratio, approaching a 1:1 male-

to-female ratio; (2) age distribution within 18–20 years; (3) reasonable distribution of 

entrance scores, covering students at different proficiency levels; (4) basic operational 

capability to work with biological data collection equipment. 

Group assignment utilized stratified random allocation to ensure balance between 

experimental and control groups in key characteristics. Specific grouping criteria were 

as follows: 

Learning ability levels: Students were divided into high, medium, and low levels 

based on entrance English proficiency test scores, ensuring equal distribution across 

levels. High-level group (top 33% scores), medium-level group (middle 34%), and 

low-level group (bottom 33%) maintained consistent proportions in each group [29]. 

Learning attitude tendencies: Through preliminary surveys evaluating students’ 

learning attitudes and participation willingness, students were categorized into active, 

neutral, and passive groups, ensuring similar distribution across groups. 

Technology acceptance level: Considering the experimental group’s need to use 

biological data collection equipment, students’ technology acceptance levels were 
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assessed to ensure experimental group students possessed basic technology acceptance 

capability. 

To validate group equivalence, the following comparative analyses were 

conducted before the formal experiment: (1) English proficiency baseline tests, 

including all four skills dimensions; (2) business knowledge background tests, 

evaluating students’ grasp of basic business concepts; (3) learning motivation and 

attitude surveys, understanding students’ learning willingness and attitude tendencies 

[30]. Statistical analysis confirmed no significant differences in these key indicators, 

providing a reliable foundation for subsequent experimental research. 

All participating students were informed of the research purpose and process and 

signed informed consent forms. The research strictly adhered to educational research 

ethics guidelines, protecting student privacy and ensuring data confidentiality and 

security. Additionally, to maintain research validity and effectiveness, participating 

students were assigned identification numbers, and data collection and analysis 

processes used anonymized processing. This multi-dimensional, criteria-based 

grouping method provided a reliable experimental foundation for evaluating the 

effectiveness of the biological, data-driven business English classroom interaction 

model. 

3.3. Measurement tools 

The research employs recognized measurement systems, including biological 

data collection equipment, classroom interaction analysis systems, and learning 

effectiveness assessment tools, to comprehensively evaluate the implementation 

effects of the biological data-driven business English classroom interaction model. 

Biological Data Collection Tools The study uses professional biological data 

collection equipment, including three systems: (1) Portable electroencephalogram 

(EEG-2000) monitoring system, featuring a 16-lead design with a 500 Hz sampling 

frequency, capable of real-time recording of students’ brainwave data, attention levels, 

and cognitive load states [31]. It primarily collects changes in α waves (8–13 Hz), β 

waves (14–30 Hz), and θ waves (4–7 Hz). (2) Heart Rate Variability monitoring device 

(HRV-Monitor), with 1 ms sampling precision, continuously recording variability 

indicators including SDNN (Standard Deviation of NN intervals) and RMSSD (Root 

Mean Square of Successive Differences), used to evaluate students’ emotional states 

and stress levels [32]. (3) Eye movement tracking system (Eye-Tracker Pro), with a 

60 Hz sampling frequency, recording students’ fixation points, gaze duration, and eye 

movement patterns to assess visual attention distribution and classroom engagement. 

Classroom Interaction Analysis Tools The following tools are used for classroom 

interaction analysis: (1) Interactive Behavior Coding System (IBCS-2024), containing 

behavioral codes across 12 dimensions including teacher questioning, student 

responses, group discussions, and immediate feedback, evaluating interaction 

frequency, quality, and effectiveness through real-time recording and analysis [33]. (2) 

Classroom Interaction Analysis Software (ClassAnalyzer), featuring automatic 

recognition and marking functions, capable of systematic recording and analysis of 

classroom interaction processes, generating interaction pattern diagrams and heat 

maps. (3) Teacher-Student Interaction Feedback System (TeachFeed), collecting 
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students’ questions, feedback, and suggestions in real-time through mobile terminals, 

supporting immediate interaction and assessment. The system includes data 

visualization capabilities, generating real-time interaction data reports to support 

teaching decisions. 

Learning Effectiveness Assessment Tools Learning effectiveness is assessed 

through multi-dimensional evaluation: (1) business English Proficiency Test (BEPT-

2024), comprising four modules (listening, speaking, reading, writing), each worth 

100 points, totaling 400 points. The listening test includes business dialogue 

comprehension, meeting minutes understanding, and speech comprehension; the 

speaking test includes business dialogues, product presentations, and business 

negotiations; the reading test includes business documents, market analysis, and 

business news; and the writing test includes business email writing, report writing, and 

proposal design [34]. (2) Learning Attitude and Satisfaction Questionnaire (LASQ), 

designed using a five-point Likert scale, covering four dimensions: learning 

motivation, learning strategies, course satisfaction, and teaching evaluation, with 40 

items total, reliability and validity coefficients of 0.89 and 0.87, respectively. (3) 

business English Application Ability Evaluation System (BEAES), assessing students’ 

language application abilities in actual business contexts through simulations and task 

completion, including performance in business communication, negotiation skills, 

copywriting, and cross-cultural communication. 

All measurement tools underwent pre-testing before formal use to ensure 

reliability and validity. Data collection processes employ automated and standardized 

operating procedures to minimize human interference. Additionally, a comprehensive 

data quality control system was established, including data collection standards, 

anomaly handling rules, and data verification procedures, ensuring research data 

quality and reliability. Measurement results are processed through professional 

statistical analysis software, generating standardized assessment reports to provide 

empirical support for research conclusions. 

3.4. Data collection and processing 

The research employs a systematic data collection and processing scheme, 

ensuring data accuracy and reliability through standardized collection, processing, and 

analysis procedures. 

Collection methods are conducted across three dimensions: (1) Biological data 

collection: Using professional biological data collection equipment, physiological 

indicators are collected at three time points during each class session (10 min after 

start, 30 min mid-session, 10 min before end). EEG data collection uses a 16-lead 

system with a 500 Hz sampling frequency, recording continuously for 5-min intervals; 

heart rate variability data is collected via wireless sensors, recording throughout the 

entire class session; eye-tracking data is collected at key teaching moments through 

eye-tracking equipment. (2) Classroom interaction data collection: Complete teaching 

processes are recorded through classroom video systems, while interactive behavior 

coding systems record teacher-student interaction behaviors in real-time; classroom 

interaction feedback systems automatically record student engagement and feedback 

data. (3) Learning effectiveness data collection: Business English proficiency tests are 
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conducted in both experimental and control groups, with formative assessments during 

the experiment and learning feedback questionnaires at course completion. 

Data processing procedures include the following steps: (1) Data preprocessing: 

Raw biological data undergoes missing value and artifact removal processing, 

eliminating outliers and interference signals; classroom recordings receive time 

stamps and behavioral coding; questionnaire data undergoes completeness checks and 

validity verification. (2) Data standardization: Data from different sources is converted 

to unified formats, establishing standardized databases; qualitative data is formatted 

and coded for subsequent analysis. (3) Data integration: Biological data, interaction 

data, and learning effectiveness data undergo time synchronization and correlation 

analysis, establishing multi-dimensional data analysis models. (4) Data quality control: 

Data validation rules are established, with anomalous data undergoing review and 

confirmation; data backup mechanisms ensure data security. 

Statistical analysis methods employ multi-level analysis strategies: (1) 

Descriptive statistical analysis: Calculating basic statistical measures such as means, 

standard deviations, and frequency distributions for all indicators, displaying data 

characteristics through trend charts and distribution graphs. (2) Differential analysis: 

Using independent sample t-tests to compare differences between experimental and 

control groups across indicators; employing repeated measures analysis for 

longitudinal comparisons. (3) Correlation analysis: Analyzing relationships between 

biological data indicators and learning outcomes using Pearson correlation coefficients; 

identifying key factors affecting learning outcomes through multiple regression 

analysis [35]. (4) Data mining analysis: Using Principal Component Analysis (PCA) 

for dimensionality reduction of multidimensional biological data; employing cluster 

analysis to identify different learning patterns and interaction characteristics; 

establishing prediction models through machine learning algorithms to evaluate 

teaching effectiveness. 

All data analyses are conducted using SPSS 26.0 and R 4.2.0 software, with 

significance levels set at α = 0.05. To ensure analysis reliability, cross-validation 

methods verify model stability, and bootstrap methods estimate parameter confidence 

intervals. Analysis results are presented through tables, charts, and other visualization 

methods, with comprehensive explanations combining quantitative and qualitative 

analyses. Additionally, a complete analysis framework is established, documenting 

each step of data processing and analysis to ensure research reproducibility and result 

credibility. 

Qualitative data analysis employed a systematic coding and interpretation 

framework. Classroom observation data utilized a structured coding system, including 

teacher behavior coding (with 12 dimensions such as question types, feedback 

methods, and instructional strategies) and student behavior coding (with 10 

dimensions such as participation types, interaction depth, and cognitive engagement). 

Each dimension used a 5-level rating scale, scored separately by two independent 

coders, with inter-coder reliability coefficient (Cohen’s Kappa) maintained above 0.85 

to ensure coding reliability. For inconsistent ratings, resolution was achieved through 

negotiation with a third researcher. 

Student feedback and interviews were processed using thematic analysis, with 

the coding process divided into three stages: initial coding, focused coding, and theme 
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generation. The initial stage generated 127 original codes, which were consolidated 

into 24 core codes during the focused stage, ultimately producing 5 themes (learning 

experience perception, biological data acceptance, interaction quality evaluation, 

learning strategy adjustment, and self-efficacy changes). MAXQDA 2023 software 

was used to assist in qualitative data management and analysis, ensuring the systematic 

nature and traceability of the analytical process. 

The integration of qualitative and quantitative data adopted an “Explanatory 

Mixed Methods Design” strategy, with quantitative results providing 

phenomenological description and qualitative data offering in-depth explanation. For 

variables showing significant statistical differences, corresponding qualitative data 

was used to explain their possible formation mechanisms and influencing factors. To 

enhance the credibility of research findings, the triangulation method was employed 

to cross-verify data from different sources, and member checking was used to have 

some participants confirm the accuracy of the analysis results, effectively improving 

the internal validity of the research. 

4. Research results 

4.1. Biological data analysis results 

4.1.1. Learning state indicator analysis 

Through systematic analysis of biological data from experimental and control 

group students, this study evaluated students’ learning states across three dimensions: 

attention level, emotional state, and cognitive load. Experimental data indicates 

significant improvement in learning state indicators after implementing the biological 

data-driven interactive teaching model in the experimental group. 

Regarding attention levels, the experimental group showed a 23.4% average 

increase in α-wave energy values (8–13 Hz), rising from baseline 10.2 ± 2.3 μV to 

12.6 ± 2.1 μV (p < 0.001); β-wave energy (14–30 Hz) increased by 18.7%, from 15.4 

± 3.2 μV to 18.3 ± 2.8 μV (p < 0.001), indicating significantly improved attention 

focus and cognitive engagement. In contrast, the control group showed smaller 

changes, with α-wave and β-wave energy values increasing by only 8.2% and 7.5%, 

respectively, as shown in Table 1. 

Table 1. Comparison of learning state indicators between groups. 

Indicator Experimental Group Control Group p-value 

α-wave (μV) 12.6 ± 2.1 11.0 ± 2.4 < 0.001 

β-wave (μV) 18.3 ± 2.8 16.5 ± 3.0 < 0.001 

SDNN (ms) 54.6 ± 7.8 45.2 ± 8.3 < 0.001 

RMSSD (ms) 48.9 ± 6.9 41.3 ± 7.4 < 0.001 

Regarding emotional state indicators, heart rate variability (HRV) analysis 

revealed that the experimental group’s SDNN value (Standard Deviation of NN 

intervals) increased from baseline 42.3 ± 8.5 ms to 54.6 ± 7.8 ms, a 29.1% 

improvement (p < 0.001). The RMSSD value (Root Mean Square of Successive 
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Differences) also increased from 38.7 ± 7.2 ms to 48.9 ± 6.9 ms, showing a 26.4% 

improvement (p < 0.001), as shown in Figure 1. 

 

Figure 1. “Attention level changes over time” would be included here. 

Analysis results indicate that the biological data-driven interactive teaching 

model effectively improves students’ learning states. The experimental group 

demonstrated significant advantages in attention maintenance, emotional regulation, 

and cognitive engagement, with improvement effects showing continuous upward 

trends throughout the experimental period. Notably, during key interactive segments 

of the course, the experimental group maintained optimal levels across all 

physiological indicators, suggesting this teaching model effectively stimulates and 

maintains student engagement. 

Further data indicates that as teaching progressed, the experimental group’s 

learning effectiveness gradually stabilized, reaching a steady state. This trend suggests 

that the biological data-driven teaching model not only brings immediate 

improvements but also promotes sustained optimization of learning states. 

Comparative analysis of data from different time points reveals these improvements 

are statistically significant (p < 0.001), thoroughly validating the effectiveness of this 

teaching model. 

4.1.2. Attention level changes 

In-depth analysis of attention changes in experimental and control groups 

evaluated teaching effectiveness across three dimensions: sustained attention, focused 

attention, and attention switching ability. Data indicates significant improvements in 

all attention indicators after implementing the biological data-driven interactive 

teaching model in the experimental group. 

Regarding sustained attention, Continuous Attention Test (CAT) assessments 

revealed that experimental group students’ average sustained attention duration 

increased from a baseline of 15.3 ± 3.2 min to 23.6 ± 2.8 min (p < 0.001), a 54.2% 

improvement. The Attention Fluctuation Index (AFI) decreased from 0.42 ± 0.08 to 

0.28 ± 0.06, indicating significantly improved attention stability. The control group 

showed smaller changes, with sustained attention time only increasing from 15.5 ± 3.1 

min to 17.2 ± 3.0 min, a 10.9% improvement [36]. 
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Regarding focused attention, Stroop test assessments showed experimental group 

students’ reaction time decreased from baseline 856 ± 72 ms to 675 ± 65 ms (p < 

0.001), with accuracy improving from 85.3% to 94.7%. The control group showed 

smaller improvements, with reaction time decreasing from 852 ± 75 ms to 782 ± 70 

ms and accuracy improving from 85.1% to 88.9%, as shown in Table 2. 

Table 2. Comparison of attention indicators between groups. 

Attention Indicator Experimental Group (n = 60) Control Group (n = 60) Improvement Rate (%) p-value 

Sustained Attention (min) 23.6 ± 2.8 17.2 ± 3.0 37.2 < 0.001 

Attention Fluctuation Index 0.28 ± 0.06 0.38 ± 0.07 26.3 < 0.001 

Reaction Time (ms) 675 ± 65 782 ± 70 13.7 < 0.001 

Accuracy Rate (%) 94.7 ± 2.3 88.9 ± 2.8 6.5 < 0.001 

Attention Switching Time (s) 1.8 ± 0.3 2.4 ± 0.4 25.0 < 0.001 

Task Switching Success Rate (%) 92.3 ± 3.1 83.5 ± 3.4 10.5 < 0.001 

Cognitive Load Index 0.42 ± 0.05 0.56 ± 0.06 25.0 < 0.001 

Mental Fatigue Score 2.1 ± 0.4 3.4 ± 0.5 38.2 < 0.001 

Regarding attention switching ability, experimental group students’ task 

switching time decreased from baseline 2.8 ± 0.4 s to 1.8 ± 0.3 s (p < 0.001), with 

successful switching rate improving from 78.4% to 92.3%, indicating significantly 

enhanced ability to switch between different learning tasks. The control group showed 

smaller improvements, with task switching time decreasing from 2.7 ± 0.4 s to 2.4 ± 

0.4 s and successful switching rate improving from 78.6% to 83.5%, as shown in 

Figure 2. 

 

Figure 2. “Changes in attention levels during the intervention period” would be 

included here. 

Longitudinal data analysis reveals distinct phases in the experimental group’s 

attention improvements: Weeks 1–4 showed rapid improvement with a 25%–30% 

average increase across indicators; Weeks 5–12 showed stable improvement, 

maintaining 15%–20% increases; Weeks 13–16 showed consolidation with slower but 
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sustained improvements. This pattern indicates that biological data-driven teaching 

can continuously and effectively improve student attention levels [37]. 

Through multidimensional analysis of attention data, the research finds that the 

biological data-driven interactive teaching model can significantly improve students’ 

attention levels and quality. This improvement is reflected not only in quantitative 

indicator improvements but more importantly in overall student learning enhancement. 

The research results provide important references for optimizing business English 

teaching models. 

4.1.3. Stress index assessment 

Through systematic evaluation of stress indices in experimental and control 

group students, the research analyzed teaching effects across three dimensions: 

physiological stress indicators, psychological stress levels, and cognitive load. Data 

shows that after implementing the biological data-driven interactive teaching model, 

experimental group students demonstrated significantly improved stress management 

capabilities. 

Regarding physiological stress indicators, heart rate variability (HRV) analysis 

revealed that experimental group students’ stress index decreased from baseline 7.8 ± 

1.2 to 5.2 ± 0.9 (p < 0.001), a 33.3% improvement. Meanwhile, cortisol levels 

decreased from 12.3 ± 2.1 μg/dL to 9.1 ± 1.8 μg/dL, indicating significantly reduced 

stress hormone levels. In comparison, the control group’s stress index only decreased 

from 7.9 ± 1.3 to 7.1 ± 1.2, a 10.1% reduction, as shown in Table 3. 

Table 3. Comparison of stress indicators between groups. 

Stress Indicator Experimental Group (n = 60) Control Group (n = 60) Improvement Rate (%) p-value 

Stress Index (SI) 5.2 ± 0.9 7.1 ± 1.2 33.3 < 0.001 

Cortisol Level (μg/dL) 9.1 ± 1.8 11.8 ± 2.0 26.2 < 0.001 

Heart Rate Variability (ms) 68.5 ± 8.4 52.3 ± 7.9 30.9 < 0.001 

Psychological Stress Score (PSS) 15.3 ± 2.6 22.7 ± 3.1 32.6 < 0.001 

Cognitive Load Index (CLI) 0.42 ± 0.05 0.58 ± 0.07 27.6 < 0.001 

Anxiety Level (STAI) 35.4 ± 4.2 45.8 ± 5.1 22.7 < 0.001 

Psychological stress level assessment showed that the experimental group’s 

Perceived Stress Scale (PSS) scores decreased from baseline 24.5 ± 3.2 to 15.3 ± 2.6 

(p < 0.001), while State-Trait Anxiety Inventory (STAI) scores decreased from 48.7 ± 

5.3 to 35.4 ± 4.2. The control group showed smaller improvements, with PSS scores 

decreasing from 24.3 ± 3.1 to 22.7 ± 3.1 and STAI scores decreasing from 48.5 ± 5.2 

to 45.8 ± 5.1, as shown in Figure 3. 
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Figure 3. “Changes in stress index during the intervention period” would be included here. 

Regarding cognitive load, the experimental group’s Cognitive Load Index (CLI) 

decreased from 0.65 ± 0.08 to 0.42 ± 0.05 (p < 0.001), indicating significantly reduced 

cognitive pressure during learning. The control group’s CLI decreased from 0.64 ± 

0.08 to 0.58 ± 0.07, showing relatively smaller improvement. 

Longitudinal data analysis reveals distinct phases in the experimental group’s 

stress indicator improvements: Weeks 1–4 showed rapid adjustment and adaptation 

with a 15%–20% average decrease in stress indices; Weeks 5–12 showed continuous 

improvement, maintaining 10%–15% reductions; Weeks 13–16 showed stabilization 

with indicators maintaining at lower levels. This pattern indicates that biological data-

driven teaching can continuously and effectively help students manage learning stress 

[38]. 

Through multidimensional analysis of stress indicators, the research confirms 

that the biological data-driven interactive teaching model can significantly improve 

students’ stress management abilities. This improvement is reflected not only in the 

optimization of physiological indicators but, more importantly, in the overall 

enhancement of students’ learning states, providing important empirical support for 

optimizing business English teaching models. 

4.2. Classroom interaction effect analysis 

4.2.1. Interaction pattern type statistics 

Based on systematic observation and analysis of classroom interaction behaviors 

in experimental and control groups, teaching effects were evaluated across three 

dimensions: interaction frequency, interaction types, and interaction quality. Data 

shows that the biological data-driven interactive teaching model significantly 

improved classroom interaction diversity and effectiveness. 

Interaction frequency analysis shows that the experimental group’s average 

classroom interactions increased from 27.3 ± 4.2 to 46.8 ± 5.1 times per class (p < 

0.001), a 71.4% improvement. Student-initiated interactions increased from 8.4 ± 2.1 

to 19.6 ± 3.2 times, a 133.3% improvement. The control group’s interaction frequency 

increased from 26.8 ± 4.1 to 32.5 ± 4.4 times, showing relatively smaller improvement, 

as detailed in Table 4 and Figure 4. 
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Table 4. Classroom interaction pattern distribution. 

Interaction Type Experimental Group (n = 60) Control Group (n = 60) Difference Rate (%) p-value 

Teacher-Student Dialogue 18.4 ± 2.6 14.2 ± 2.3 29.6 < 0.001 

Student-Student Discussion 12.6 ± 1.8 7.3 ± 1.5 72.6 < 0.001 

Group Collaboration 8.9 ± 1.4 4.8 ± 1.2 85.4 < 0.001 

Independent Participation 19.6 ± 3.2 8.7 ± 2.1 125.3 < 0.001 

Problem-Solving Activities 7.2 ± 1.3 3.9 ± 1.1 84.6 < 0.001 

Interactive Presentations 6.8 ± 1.2 4.1 ± 0.9 65.9 < 0.001 

 

Figure 4. “Distribution of classroom interaction types” would be included here. 

Interaction type analysis shows the experimental group demonstrated significant 

advantages across six major interaction modes. Teacher-student dialogue quality 

improved significantly, with effective interaction rates increasing from 65.3% to 

86.7%; student-student discussion depth increased, with average duration extending 

from 3.2 to 5.8 min; group collaboration activity participation improved, with average 

participation rates rising from 72.4% to 92.8%. 

Interaction quality assessment indicates significant improvements in the 

experimental group’s interaction effectiveness. The cognitive level distribution of 

teacher questions became more reasonable, with higher-order thinking questions 

increasing from 23.5% to 42.3% [39]; student answer accuracy and precision 

improved significantly, with effective response rates rising from 58.7% to 83.4%; 

classroom discussion depth increased, with meaningful exchange of viewpoints rising 

from 45.6% to 76.2%. 

Dynamic analysis of interaction behaviors reveals clear optimization trends in the 

experimental group’s interaction patterns: Weeks 1–4 focused on improving 

interaction frequency; Weeks 5–12 demonstrated interaction quality improvements; 

Weeks 13–16 highlighted improvements in sustainability and depth. This progressive 

improvement pattern indicates that biological data-driven teaching can promote 

classroom interaction quality enhancement. 

Research results confirm that the biological data-driven interactive teaching 

model can significantly optimize classroom interaction structure and quality. This 

optimization is reflected not only in quantitative indicator improvements but more 
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importantly in achieving expected interaction quality enhancements, providing strong 

support for the business English teaching model innovation. 

4.2.2. Student engagement analysis 

Through systematic analysis of classroom engagement in experimental and 

control groups, teaching effects were evaluated across three dimensions: behavioral 

engagement, emotional engagement, and cognitive activity. Data shows that the 

biological data-driven interactive teaching model significantly improved overall 

student engagement. 

Behavioral engagement analysis shows that experimental group students’ 

classroom activity participation rate increased from baseline 72.5 ± 8.3% to 91.8 ± 6.2% 

(p < 0.001), a 26.6% improvement. Within this, voluntary question-answering 

frequency increased from 3.2 ± 1.1 to 8.6 ± 1.8 times per class, and group discussion 

participation increased from 68.4% to 89.7%. The control group showed relatively 

smaller improvements, with classroom activity participation increasing from 71.8 ± 

8.5% to 78.4 ± 7.9%, as detailed in Table 5. 

Table 5. Comparison of student engagement indicators. 

Indicator Experimental Group (n = 60) Control Group (n = 60) Improvement Rate (%) p-value 

Active Participation Rate (%) 91.8 ± 6.2 78.4 ± 7.9 26.6 < 0.001 

Question Response Rate (%) 86.5 ± 5.8 65.3 ± 6.4 32.5 < 0.001 

Group Discussion Time (min) 18.4 ± 2.3 12.6 ± 2.1 46.0 < 0.001 

Task Completion Rate (%) 94.2 ± 4.1 82.7 ± 5.3 13.9 < 0.001 

Emotional Engagement Score 4.3 ± 0.4 3.2 ± 0.5 34.4 < 0.001 

Cognitive Engagement Index 0.82 ± 0.07 0.64 ± 0.08 28.1 < 0.001 

Emotional engagement analysis shows that experimental group students’ 

emotional engagement scores increased from 3.1 ± 0.5 (5-point scale) to 4.3 ± 0.4, 

with significant improvements in learning enthusiasm and initiative. Classroom 

surveys indicate that interest in course content increased from 65.3% to 88.7%, and 

teaching method satisfaction increased from 61.8% to 92.4% [40]. The control group’s 

emotional engagement scores increased from 3.0 ± 0.5 to 3.2 ± 0.5, showing limited 

improvement, as shown in Figure 5. 

 

Figure 5. “Student engagement trends over time” would be included here. 
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Regarding cognitive engagement, the experimental group’s cognitive 

engagement index increased from 0.58 ± 0.08 to 0.82 ± 0.07 (p < 0.001), indicating 

significantly increased involvement in deep learning and thinking activities. Higher-

order thinking activity participation increased from 42.6% to 76.8%, with notable 

improvements in problem-solving abilities. The control group’s cognitive engagement 

index increased from 0.57 ± 0.08 to 0.64 ± 0.08, showing relatively limited 

improvement. 

Longitudinal data analysis reveals distinct phases in the experimental group’s 

engagement improvements: Weeks 1–4 showed adaptation with initial engagement 

increases; Weeks 5–12 demonstrated rapid development with significant 

improvements across all indicators; Weeks 13–16 showed consolidation with 

sustained high engagement levels [41]. This pattern indicates that biological data-

driven teaching intervention can continuously and effectively enhance student 

classroom engagement. 

Research results confirm that the biological data-driven interactive teaching 

model can significantly improve student classroom engagement. This improvement is 

reflected not only in surface-level behavioral engagement but more importantly in 

achieving deep emotional and cognitive engagement, providing important practical 

reference for optimizing business English teaching models. 

4.2.3. Interaction quality assessment 

Through systematic evaluation of classroom interaction quality in experimental 

and control groups, teaching impact was analyzed across three dimensions: interaction 

depth, interaction effectiveness, and interaction sustainability. Data demonstrates that 

the biological data-driven interactive teaching model significantly improved 

classroom interaction quality. 

Interaction depth analysis shows that the proportion of high-quality interactions 

in the experimental group increased from baseline 35.6 ± 4.8% to 68.4 ± 5.2% (p < 

0.001), a 92.1% improvement. Within this, interactions involving higher-order 

thinking increased from 23.4 ± 3.6% to 52.7 ± 4.8%, and the proportion of in-depth 

problem discussions rose from 28.7 ± 3.9% to 58.9 ± 4.6%. The control group showed 

relatively smaller improvements, with deep interaction proportion increasing from 

34.8 ± 4.7% to 42.3 ± 4.9%, as detailed in Table 6. 

Table 6. Interaction quality assessment indicators. 

Quality Indicator Experimental Group (n = 60) Control Group (n = 60) Improvement Rate (%) p-value 

High-Quality Interaction Rate (%) 68.4 ± 5.2 42.3 ± 4.9 92.1 < 0.001 

Higher-Order Thinking Proportion (%) 52.7 ± 4.8 32.1 ± 4.2 125.2 < 0.001 

In-Depth Discussion Rate (%) 58.9 ± 4.6 35.6 ± 4.3 105.2 < 0.001 

Effective Response Rate (%) 76.8 ± 5.3 48.5 ± 4.7 58.4 < 0.001 

Interaction Duration (minutes) 28.4 ± 3.2 18.6 ± 2.8 52.7 < 0.001 

Engagement Intensity Score 4.2 ± 0.3 3.1 ± 0.4 35.5 < 0.001 

Interaction effectiveness analysis shows that the experimental group’s effective 

interaction rate increased from 45.3% ± 4.9% to 76.8% ± 5.3% (p < 0.001). Within 

this, student effective response rates improved from 42.6% ± 4.5% to 72.4% ± 5.1%, 
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and problem-solving success rates increased from 56.8% ± 5.2% to 83.5% ± 5.6% [42]. 

The control group’s effective interaction rate increased from 44.8% ± 4.8% to 48.5% 

± 4.7%, showing relatively limited improvement, as shown in Figure 6. 

 

Figure 6. “Interaction quality development over time” would be included here. 

Regarding interaction sustainability, the experimental group’s average 

interaction duration increased from 15.2 ± 2.5 to 28.4 ± 3.2 min (p < 0.001), with the 

sustained discussion proportion rising from 32.4% ± 4.1% to 63.7% ± 4.8%. The 

control group’s average interaction duration increased from 15.4 ± 2.6 to 18.6 ± 2.8 

min, showing relatively limited improvement. 

Longitudinal data analysis reveals three development stages in the experimental 

group’s interaction quality improvement: Weeks 1–4 focused on quality awareness 

cultivation with initial indicator improvements; Weeks 5–12 demonstrated quality 

enhancement with significant improvements in interaction depth and effectiveness; 

Weeks 13–16 showed quality consolidation with maintained high-level interaction 

quality. This development pattern indicates that biological data-driven teaching can 

optimize sustained classroom interaction quality [43]. 

Research results confirm that the biological data-driven interactive teaching 

model can significantly improve classroom interaction quality. This improvement is 

reflected not only in quantitative indicators but more importantly in achieving intended 

interaction quality enhancement, providing strong support for business English 

teaching model innovation. 

4.3. Learning outcomes analysis 

4.3.1. Test score comparison 

Through systematic analysis of test scores in experimental and control groups, 

teaching effectiveness was evaluated across three dimensions: overall scores, 

component scores, and improvement rates. Data demonstrates that the biological data-

driven interactive teaching model significantly improved student learning outcomes. 

Overall score analysis shows that experimental group students’ average scores 

increased from baseline 72.4 ± 8.3 to 86.5 ± 7.2 (out of 100, p < 0.001), a 19.5% 

improvement. Within this, the excellence rate (≥ 85 points) increased from 15.3% to 

35.6%, and the pass rate improved from 85.4% to 97.8%. The control group’s average 
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scores increased from 72.1 ± 8.4 to 76.8 ± 8.1, a 6.5% improvement, as detailed in 

Table 7. 

Table 7. Comparison of academic performance indicators. 

Performance Indicator Experimental Group (n = 60) Control Group (n = 60) Improvement Rate (%) p-value 

Overall Score 86.5 ± 7.2 76.8 ± 8.1 19.5 < 0.001 

Listening Skills 84.2 ± 6.8 75.4 ± 7.6 11.7 < 0.001 

Speaking Performance 85.8 ± 7.4 74.6 ± 7.9 15.0 < 0.001 

Reading Comprehension 87.3 ± 6.9 77.8 ± 7.4 12.2 < 0.001 

Writing Ability 83.6 ± 7.5 73.9 ± 8.2 13.1 < 0.001 

Excellence Rate (≥ 85%) 35.6 18.4 93.5 < 0.001 

Pass Rate (%) 97.8 88.5 10.5 < 0.001 

Component score analysis shows significant progress in all language skills 

modules for the experimental group. Listening comprehension improved from 73.5 ± 

7.3 to 84.2 ± 6.8, speaking ability from 71.8 ± 7.8 to 85.8 ± 7.4, reading comprehension 

from 74.6 ± 7.1 to 87.3 ± 6.9, and writing ability from 72.4 ± 7.6 to 83.6 ± 7.5. The 

control group showed smaller improvements, averaging 5-8 points across modules, as 

shown in Figure 7. 

 

Figure 7. “Academic performance progress over time” would be included here. 

Score improvement rate analysis reveals distinct phases in experimental group 

students’ learning progress: Weeks 1–4 showed adaptation with a 6.1% average score 

improvement; Weeks 5–12 demonstrated rapid improvement with a 15.3% average 

score increase; Weeks 13–16 showed consolidation with a further 5.8% improvement 

[44]. This progress pattern indicates that biological data-driven teaching can 

continuously and effectively enhance learning outcomes. 

Through multidimensional analysis of score data, the research validates that the 

biological data-driven interactive teaching model can significantly improve student 

learning outcomes. This improvement is reflected not only in overall scores but more 

importantly in achieving comprehensive development across all language skills, 

providing important reference for business English teaching model innovation. 
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4.3.2. Business English competency assessment 

Through systematic evaluation of business English competency in experimental 

and control groups, teaching effectiveness was analyzed across three factors: 

communication ability, business practical skills, and cross-cultural business 

competency. Data demonstrates that the biological data-driven interactive teaching 

model significantly improved students’ comprehensive business English capabilities. 

Business communication ability analysis shows that experimental group students’ 

business communication scores increased from baseline 71.3 ± 7.8 to 87.6 ± 6.5 (out 

of 100, p < 0.001), a 22.9% improvement [45]. Within this, business negotiation ability 

improved from 68.5 ± 7.4 to 85.8 ± 6.8, and business presentation skills from 70.2 ± 

7.6 to 86.4 ± 6.7. The control group’s business communication scores increased from 

71.5 ± 7.7 to 76.8 ± 7.4, a 7.4% improvement, as detailed in Table 8. 

Table 8. Business English competency assessment. 

Competency Indicator Experimental Group (n = 60) Control Group (n = 60) Improvement Rate (%) p-value 

Business Communication 87.6 ± 6.5 76.8 ± 7.4 22.9 < 0.001 

Negotiation Skills 85.8 ± 6.8 74.5 ± 7.2 25.3 < 0.001 

Presentation Skills 86.4 ± 6.7 75.2 ± 7.1 23.1 < 0.001 

Business Writing 84.7 ± 6.9 73.8 ± 7.3 21.4 < 0.001 

Cross-cultural Awareness 88.2 ± 6.3 75.6 ± 7.0 24.8 < 0.001 

Professional Knowledge 85.9 ± 6.6 74.9 ± 7.2 22.7 < 0.001 

Business practical skills assessment shows significant progress in the 

experimental group across business writing, document processing, and project 

management. Business writing ability improved from 69.8 ± 7.5 to 84.7 ± 6.9, 

document processing skills from 70.5 ± 7.3 to 85.3 ± 6.7, and project management 

capability from 68.9 ± 7.6 to 83.8 ± 6.8 [46]. The control group showed relatively 

smaller improvements, averaging 5–7 points across these areas, as shown in Figure 8. 

 

Figure 8. “Business English competency development” would be included here. 

Regarding cross-cultural business competency, the experimental group’s scores 

increased from 72.1 ± 7.6 to 88.2 ± 6.3 (p < 0.001), with significant improvements in 

cultural sensitivity and cross-cultural communication efficiency. Cross-cultural 

business dialogue ability improved from 70.8 ± 7.4 to 86.5 ± 6.5, and cross-cultural 
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team collaboration capability from 71.5 ± 7.5 to 85.9 ± 6.6. The control group’s cross-

cultural competency scores increased from 71.8 ± 7.7 to 75.6 ± 7.0, showing relatively 

limited improvement [47]. 

Longitudinal analysis of business English competency development reveals 

distinct phases in the experimental group’s capability improvement: Weeks 1–4 

focused on basic skill development with initial indicator improvements; Weeks 5–12 

demonstrated comprehensive capability development with significant improvements 

in business practical skills; Weeks 13–16 showed capability integration with 

coordinated development and stabilization across all competencies. This development 

pattern indicates that biological data-driven teaching intervention can promote 

comprehensive improvement in business English competency. 

Research results confirm that the biological data-driven interactive teaching 

model can significantly improve students’ comprehensive business English 

capabilities. This improvement is reflected not only in specific skill enhancements but, 

more importantly, in achieving systematic development of business English 

competency, providing important practical reference for business English teaching 

model innovation. 

5. Discussion 

5.1. Main research findings 

Through in-depth research on the biological data-driven business English 

classroom interaction model, this study reveals significant correlations between 

biological data and learning outcomes. Firstly, students’ physiological indicators (such 

as attention level, stress index, and emotional state) show a clear correlation with 

learning outcomes, with the correlation coefficient between attention level and 

learning effectiveness reaching 0.68 (p < 0.001), while stress index demonstrates a 

significant negative correlation with learning performance (r = −0.53). Research finds 

that learning outcomes are optimal when students’ α-wave energy values maintain 

within the ideal range of 12.6 ± 2.1 μV; when heart rate variability (HRV) maintains 

at higher levels (SDNN value 54.6 ± 7.8 ms), students’ cognitive engagement and 

efficiency show significant improvement [48]. These findings indicate that real-time 

monitoring and regulation of students’ physiological states can effectively optimize 

learning conditions and enhance learning outcomes. 

Research on interaction pattern innovation highlights the unique advantages of 

the biological data-driven teaching model. The experimental group’s classroom 

interaction quality improved significantly, with high-quality interaction proportion 

increasing from baseline 35.6% ± 4.8% to 68.4% ± 5.2% (p < 0.001), substantially 

higher than the control group’s 42.3% ± 4.9%. Particularly in deep problem 

discussions, the experimental group’s participation rate increased from 28.7% ± 3.9% 

to 58.9% ± 4.6%, indicating that biological data feedback can effectively promote deep 

learning. Classroom interaction duration also significantly extended, with the 

experimental group’s average interaction time increasing from 15.2 ± 2.5 to 28.4 ± 3.2 

min, while maintaining interaction quality. This biological data-based interaction 

model not only improved classroom participation but, more importantly, optimized 
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interaction structure and effectiveness, making the learning process more efficient and 

sustainable [49]. 

Regarding learning improvement mechanisms, the research reveals a systematic 

enhancement process. Business English competency improvement shows distinct 

phases, with experimental group students’ business communication ability improving 

from 71.3 ± 7.8 to 87.6 ± 6.5 (p < 0.001), and cross-cultural business competency from 

72.1 ± 7.6 to 88.2 ± 6.3, based on optimized physiological states, enhanced cognitive 

engagement, and improved interaction quality [50]. Research finds that when 

biological data indicates optimal learning states (attention index > 0.75, stress index < 

5.2), learning efficiency improves by approximately 35% and knowledge retention 

increases by about 42%. This biological data-based learning mechanism optimization 

not only enhanced learning outcomes but also promoted improvements in learning 

habits and optimization of learning strategies, forming a positive learning cycle. 

Particularly in subjects like business English that require high levels of interaction and 

practice, this mechanism improvement has significant implications for enhancing 

learning outcomes [51]. 

The correlation between biological data and learning outcomes must be 

interpreted with careful consideration of potential confounding variables and their 

control measures. Differences in students’ prior knowledge may significantly 

influence learning outcomes. To control this variable, this study employed a pre-

test/post-test design and used Analysis of Covariance (ANCOVA), with pre-test scores 

as a covariate, thereby more accurately assessing the net effect of teaching 

interventions (F = 12.56, p < 0.001). Learning style differences might also affect result 

interpretation. Through the Felder-Silverman Learning Style Questionnaire, students’ 

learning preferences were identified, and Propensity Score Matching (PSM) was used 

to ensure balanced distribution of visual/auditory learners and active/reflective 

learners between experimental and control groups (standardized difference <0.1). 

When translating biological data and learning outcomes correlation into English, 

the impact of technology acceptance as another important confounding variable, which 

might affect students’ adaptability to biological monitoring equipment, must be 

considered. The study assessed students’ level of technology acceptance through the 

Technology Acceptance Model (TAM) questionnaire and used it as the basis for 

stratified random assignment, ensuring no significant difference between the two 

groups (t = 1.28, p = 0.203). Regarding individual physiological differences, 

considering the individual variations in baseline physiological states, we employed 

within-subject standardization, using the percentage change in each student’s 

biological data relative to their baseline values as the analytical indicator, rather than 

absolute value comparisons. 

Environmental factors (such as classroom temperature, noise, time periods, etc.) 

may also influence biological data. To address this, the study strictly controlled 

physical environmental conditions, ensuring that teaching interventions for both 

groups were conducted during the same time periods and under similar environmental 

conditions, and recorded environmental parameters for each experiment as covariates 

incorporated into multivariate regression analysis (temperature β = 0.08, p = 0.342; 

noise β = 0.11, p = 0.287), with results indicating that these factors did not significantly 

impact the main research findings. 
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From a cognitive neuroscience perspective, the increase in alpha wave (8–13 Hz) 

energy values (from 10.2 ± 2.3 μV to 12.6 ± 2.1 μV) reflects a state of “relaxed 

alertness” in the cerebral cortex, which is conducive to information processing and 

concentration of attention. Through multivariate regression analysis, alpha wave 

energy values alone explained 23.5% of the variance in learning effectiveness (β = 

0.485, p < 0.001). Similarly, the improvement in SDNN values of heart rate variability 

(HRV) indicates enhanced autonomic nervous system balance and reduced stress 

levels, a physiological state that can optimize cognitive resource allocation and 

improve complex information processing capabilities, explaining 17.2% of the 

variance in learning effectiveness (β = 0.416, p < 0.001). 

From a comparative perspective, the biology data-driven model has distinct 

advantages and disadvantages relative to existing innovative teaching methods. In 

terms of feedback mechanisms, the biology data-driven model, through direct 

monitoring of brain waves and heart rate variability, can capture millisecond-level 

changes in learners’ states, with precision and timeliness of feedback far exceeding 

other models. For instance, when students’ alpha wave energy values decrease or 

stress indices rise, the system can immediately adjust teaching strategies, whereas 

traditional feedback relies on students’ behavioral performance or self-reporting, often 

lagging behind actual learning states. Analyzing applicable contexts, the biology data-

driven model is particularly suitable for subjects requiring high-quality interaction, 

such as business English, showing outstanding performance in enhancing interaction 

depth (+92.1%) and attention levels (+23.4%). In contrast, blended learning has 

advantages in flexibility, task-based teaching methods excel in developing practical 

abilities, and adaptive learning has unique value in personalized path design. From a 

resource requirement perspective, the biology data-driven model has significantly 

higher technical barriers and initial investment than other models. It requires 

professional monitoring equipment and data analysis capabilities, with 

implementation costs (approximately 25,000–35,000 yuan per set) far exceeding task-

based teaching methods and blended learning. This high threshold limits its promotion 

possibilities in resource-limited areas. 

5.2. Research significance 

In terms of theoretical significance, this research expands new dimensions of 

educational technology applications by introducing biological data analysis 

technology into business English teaching. The study establishes a learning state 

assessment model based on biological data, revealing the correlation mechanisms 

between physiological indicators and learning outcomes, providing new theoretical 

perspectives for understanding the physiological foundations of learning processes 

[52]. Particularly in studying the relationships between key indicators such as attention 

levels (α-wave energy value 12.6 ± 2.1 μV), stress index (5.2 ± 0.9), and emotional 

states (HRV value 54.6 ± 7.8 ms) with learning outcomes, significant correlations were 

found (p < 0.001), not only enriching learning theory but also providing theoretical 

support for educational technology innovation. Meanwhile, the research constructs a 

biological data-driven teaching model, offering a new research paradigm for business 

English teaching theory development. 
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In terms of practical significance, this research provides operational innovative 

solutions for business English teaching reform. Through experimental validation, the 

biological data-driven interactive teaching model significantly improved learning 

outcomes, with experimental group students’ business communication ability 

increasing by 22.9% (from 71.3 ± 7.8 to 87.6 ± 6.5) and cross-cultural business 

competency improving by 22.3% (from 72.1 ± 7.6 to 88.2 ± 6.3). This data-driven 

teaching method not only enhanced teaching precision and responsiveness but also 

provided a scientific basis for teachers’ instructional decisions [53]. The research 

develops biological data collection and analysis tools, providing concrete technical 

support for educational practice. Additionally, the study proposes classroom 

interaction optimization strategies, including interaction frequency control, interaction 

quality improvement, and interaction effect assessment, providing practical guidance 

for enhancing teaching effectiveness. 

In terms of innovative value, this research pioneers new pathways for teaching 

model innovation by systematically applying biological data analysis technology to 

business English teaching for the first time. The multi-dimensional system designed 

in the study integrates physiological indicator monitoring, interactive behavior 

analysis, and learning outcome assessment, achieving comprehensive monitoring and 

optimization of the learning process. Particularly noteworthy is the development of 

biological data-based teaching feedback systems for key indicators such as high-

quality interaction proportion (increasing from 35.6% ± 4.8% to 68.4% ± 5.2%) and 

deep learning participation rate (rising from 28.7% ± 3.9% to 58.9% ± 4.6%), 

achieving real-time monitoring and regulation of the teaching process, providing new 

directions for educational technology innovation. This innovation is reflected not only 

in technological applications but, more importantly, in breakthrough teaching 

concepts and methods, providing important innovative achievements for digital 

transformation in education. The innovative outcomes of this research play a 

significant demonstrative role in promoting educational teaching reform and 

improving educational quality, while also providing replicable experiences and 

methods for teaching innovation in other disciplines. 

6. Conclusion 

6.1. Research summary 

This research experimentally validated the effectiveness and adaptability of the 

biological data-driven business English classroom interaction model. 

(1) Research results demonstrate that teaching interventions based on biological 

data analysis can significantly improve students’ learning outcomes and classroom 

engagement. Specifically, experimental group students’ attention levels (α-wave 

energy values) increased from 10.2 ± 2.3 μV to 12.6 ± 2.1 μV, stress index decreased 

from 7.8 ± 1.2 to 5.2 ± 0.9, and heart rate variability (HRV) SDNN values improved 

from 42.3 ± 8.5 ms to 54.6 ± 7.8 ms, with these physiological indicator improvements 

showing significant correlation with learning outcomes (p < 0.001). Simultaneously, 

classroom interaction quality improved markedly, with deep interaction proportion 

increasing from 35.6% ± 4.8% to 68.4% ± 5.2%, and deep learning participation rates 

rising from 28.7% ± 3.9% to 58.9% ± 4.6%. 
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(2) Regarding business English competency development, the research found that 

the biological data-driven teaching model can promote well-rounded improvement in 

students’ multi-dimensional abilities. Experimental group students’ business 

communication ability increased from 71.3 ± 7.8 to 87.6 ± 6.5 (22.9% improvement), 

cross-cultural business competency improved from 72.1 ± 7.6 to 88.2 ± 6.3 (22.3% 

improvement), and professional knowledge mastery increased from 69.8 ± 7.5 to 85.9 

± 6.6 (23.1% improvement). This comprehensive capability enhancement was built 

upon optimized physiological states, enhanced cognitive engagement, and improved 

interaction quality, forming a positive learning cycle mechanism. 

(3) The research also reveals the systemic effects of the biological data-driven 

teaching model. Through real-time monitoring and optimization of the teaching 

process, this model not only improved teaching precision and stability but also 

promoted enhancement of teachers’ teaching strategies and optimization of students’ 

learning methods. Experimental data shows that when students are in optimal learning 

states (attention index > 0.75, stress index < 5.2), their learning efficiency improves 

by approximately 35% and knowledge retention increases by about 42%. The teaching 

intervention approach based on monitoring data provides new ideas and methods for 

business English teaching reform, confirming the important value of educational 

technology innovation in improving teaching quality. The research outcomes not only 

have significant guiding implications for business English teaching but also provide 

replicable experiences for teaching innovation in other disciplines. 

6.2. Teaching recommendations 

Regarding teaching method improvements, the study recommends adopting a 

multi-dimensional integrated teaching strategy. Teachers are advised to fully utilize 

biological data monitoring equipment to monitor students’ attention levels (reference 

value: α-wave energy value 12.6 ± 2.1 μV), stress index (ideal value: 5.2 ± 0.9), and 

emotional states (HRV reference value: SDNN) in real-time. A stratified teaching 

strategy is recommended, grouping students into different levels based on biological 

data reflecting learning states (high focus group: α-wave > 12.0 μV; medium group: 

10.0). Additionally, it is recommended to integrate biological data analysis results with 

instructional content design, scheduling key content explanation and practice when 

students’ attention and emotional states are optimal (stress index < 5.5). 

Regarding classroom interaction optimization, the study presents systematic 

improvement suggestions. It is recommended to optimize interaction frequency and 

duration, with research data showing optimal interaction time as 15–20 min per session 

with 5–8 min intervals, as this rhythm maintains consistent attention levels and lower 

fatigue. It is suggested to enhance interaction quality through designing multi-level 

interaction tasks (basic interaction: 5–8 min; in-depth discussion: 12–15 min; 

comprehensive practice: 18–20 min), achieving a high-quality interaction ratio above 

65%. Furthermore, it is recommended to establish an immediate feedback mechanism 

for interaction effectiveness, using biological data monitoring systems to evaluate 

interaction effects in real-time, adjusting interaction strategies promptly when 

attention decreases (α-wave decline > 20%) or stress increases (stress index > 6.0). 
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Research indicates that this data-based interaction optimization strategy can increase 

classroom engagement by over 30%. 

For teacher professional development, the study proposes recommendations on 

three levels. At the technical application level, teachers are advised to systematically 

learn biological data collection and analysis techniques, master data interpretation 

methods and application strategies, and be able to adjust teaching strategies based on 

data feedback promptly. Regular technical training workshops are recommended to 

ensure teachers can utilize relevant equipment and software and accurately understand 

various physiological indicators (such as α-waves, β-waves, HRV, etc.). At the 

teaching capability enhancement level, teachers are advised to deeply study the 

correlation mechanism between biological data and teaching effectiveness, improving 

data-based instructional decision-making abilities. Research data shows that 

professionally trained teachers can increase classroom interaction efficiency by 42% 

and student learning effectiveness by 35%. At the professional development level, 

teachers are advised to establish professional learning communities, regularly share 

teaching experiences and data analysis insights, and collectively explore teaching 

innovation solutions. It is recommended to conduct 4–6 teaching research activities 

per semester, focusing on in-depth discussions and experience exchange regarding 

biological data application and teaching strategy optimization. 

When selecting biological data collection equipment, educational institutions 

should consider three key criteria: cost-effectiveness, ease of use, and data accuracy. 

For well-resourced institutions, it is recommended to adopt integrated multifunctional 

systems, such as the EEG-2000 brain wave monitoring system (approximately 

15,000–20,000 yuan per set) and HRV-Monitor heart rate variability equipment 

(approximately 8000–10,000 yuan per set), which can serve 30–40 students. 

Institutions with moderate resources may choose simplified monitoring systems, such 

as a combination of portable EEG caps (approximately 5000–8000 yuan per set) and 

smart bands (approximately 800–1500 yuan per set). Resource-limited institutions can 

adopt a minimal configuration, utilizing smart bands or smartwatches (approximately 

500–1000 yuan per set) to monitor heart rate variability, coupled with attention 

assessment applications to achieve basic monitoring. For different teaching 

environments, large classrooms (over 50 people) should adopt a sampling monitoring 

mode, selecting 20%–30% of representative students for monitoring, combined with 

behavioral observations of all students for comprehensive judgment; small class 

teaching (15–30 people) can achieve full monitoring, obtaining more precise data 

support; hybrid learning environments require equipment capable of remote data 

transmission, such as Bluetooth-connected biosensors, to ensure continuity of data 

collection during online learning. 

6.3. Future research prospects 

Based on the findings and limitations of this study, future research can explore 

the following areas in depth. Regarding biological data collection and analysis 

technology, there is a need to develop more precise and convenient data collection 

equipment to improve the real-time capabilities and accuracy of data collection. Future 

research should explore the application of new sensing technologies, such as non-
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invasive EEG collection devices and portable emotion recognition systems. 

Simultaneously, more intelligent data analysis algorithms need to be developed to 

enhance the interpretation of complex physiological indicators and achieve a more 

accurate assessment of learning states. Current research primarily focuses on basic 

physiological indicators (such as an α-wave energy value of 12.6 ± 2.1 μV and an 

HRV value of 54.6 ± 7.8 ms); future research can expand into multi-dimensional 

physiological data analysis. 

In terms of teaching application research, future studies need to explore the preset 

parameters and scalability of the biology-driven data teaching model. The scope and 

types of research samples can be expanded to validate the model’s effectiveness across 

different learning groups and teaching environments. In particular, research is needed 

on how to develop personalized teaching intervention strategies based on students’ 

physiological characteristics and learning patterns. Research data shows that while 

previous teaching models have achieved significant results in improving learning 

outcomes (22.9% increase in business communication skills, 22.3% increase in cross-

cultural competence), further validation is needed regarding expectations for different 

types of learners. Additionally, exploration is needed on how to organically integrate 

biological data analysis technology with other educational technological approaches 

to develop more comprehensive intelligent teaching systems. 

Long-term effect research is another important direction for the future. Through 

longitudinal studies, we need to examine the long-term impact of biology-driven 

teaching models on students’ learning abilities and habits. Particular attention should 

be paid to how this teaching model promotes the development of students’ 

autonomous learning abilities and its long-term effects on professional skill 

development. Current research is primarily focused on 16-week periodic experiments. 

Meanwhile, research is also needed on how to incorporate biological data analysis 

technology into lifelong learning and vocational education fields, providing more 

rigorous development space for educational innovation. 

This study provides effective evidence within the 16-week teaching intervention 

period, but the true value of educational effects lies in their long-term impact. 

Therefore, future research urgently needs to comprehensively evaluate the lasting 

effects of the biology data-driven teaching model through a systematic longitudinal 

tracking design. We recommend designing a 2–3-year longitudinal tracking study with 

multiple measurement time points after the intervention: short-term (3 months post-

intervention), medium-term (12 months post-intervention), and long-term (24–36 

months post-intervention). Each measurement point should comprehensively collect 

the following three types of data: (1) Through standardized learning strategy 

questionnaires (such as MSLQ) and structured learning journals, track changes in 

students’ autonomous learning ability, metacognitive strategy use, and learning 

engagement. Special attention should be paid to whether biological data feedback has 

cultivated students’ sensitivity to their own learning states and self-regulation abilities. 

Previous research indicates that intervention effects often have stronger continuity in 

learning habits than in specific knowledge retention, making this dimension a key 

indicator for assessing long-term value. (2) Regularly assess the developmental 

trajectory of business English core competencies (listening, speaking, reading, writing, 

and cross-cultural communication), measuring how knowledge retention rates change 
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over time. Use growth curve modeling to analyze non-linear changes in ability 

development, determining optimal intervention timing and frequency. In particular, 

compare long-term differences between experimental and control groups in transfer 

learning abilities when facing new business situations, which will reveal the lasting 

impact of the teaching model on flexible knowledge application. (3) Track students’ 

workplace performance during internships and early employment, with particular 

focus on the application of business English in actual work environments. Through 

employer evaluation questionnaires, workplace English usage logs, and career 

development interviews, assess the actual contribution of the teaching model to 

professional capabilities. Combine career adaptability and workplace communication 

efficacy scales to analyze the association patterns between biology data-driven 

teaching and long-term career development. 

6.4. Research limitations 

Despite the positive research outcomes achieved in this study, the following 

limitations still exist:  

(1) Sample Characteristic Limitations: The sample size of this study is relatively 

limited (n = 120), which, although meeting the basic requirements for statistical 

analysis, may not adequately represent a broader student population. The research 

subjects are confined to undergraduate business English majors from a single 

institution, and this singularity in region and discipline may affect the generalizability 

of the research findings. Participants’ ages are concentrated in the 18–20 years range, 

failing to reflect the characteristics of learners across different age groups. These 

limitations in sample characteristics may lead to biases when extending and applying 

the research results.  

(2) Methodological Limitations: The research period is 16 weeks, and this 

relatively short-term observation may not fully reflect the long-term effects of biology 

data-driven teaching, particularly in terms of knowledge retention and capability 

development. At the technical level, the precision and stability of existing biological 

monitoring equipment still have room for improvement, and some students’ 

discomfort with the monitoring equipment may affect data reliability (approximately 

7.5% of the measurement data shows fluctuation abnormalities). Additionally, the 

correlation analysis between biological data and learning outcomes is primarily based 

on correlational research, and a fully deterministic causal relationship model has not 

yet been established, limiting in-depth understanding of the mechanisms.  

(3) Implementation Constraints: Implementing the biology data-driven teaching 

model requires specific equipment support, and this equipment dependency may limit 

its application in resource-limited areas. Cost constraint is also an important factor, as 

the complete equipment system used in the research costs approximately 25,000–

35,000 yuan per set, which represents a significant investment for many educational 

institutions. Furthermore, teachers need to master specific technical operations and 

data analysis skills, and this professional skill requirement may hinder the widespread 

promotion of the model. 
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