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Abstract: This paper presents a digital landscape design system that integrates biomechanical 

simulation and machine learning algorithms for improved vegetation growth prediction and 

environmental adaptability. Using finite element analysis (FEM) and the GreenLab model, the 

system simulates plant growth dynamics, while deep learning and genetic algorithms optimize 

landscape layouts. The system improves vegetation stability, wind resistance, and ecological 

efficiency, providing a more accurate and efficient approach to intelligent landscape planning. 
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1. Introduction 

Landscape planning plays a key role in ecological sustainability, but traditional 

methods face limitations in predicting vegetation growth and optimizing environmental 

adaptation. This study proposes an integrated digital landscape design system using 

biomechanical simulations and machine learning algorithms. By combining finite 

element analysis, the GreenLab plant growth model, and deep learning, the system 

predicts vegetation behavior and optimizes landscape layouts for enhanced stability and 

ecological adaptability.The integration of Geographic Information System (GIS) and 

Building Information Modeling (BIM) provides a dynamic, interactive platform for 

real-time landscape adjustments, offering a more precise approach to sustainable 

landscape design. 

2. Relevant technology base 

A. Biomechanical simulation techniques 

Biomechanical simulation techniques are mainly used in landscape planning to 

study the mechanical characteristics of plant growth in order to optimize the stability 

and ecological adaptability of landscape design. The mechanical characteristics of plant 

growth can be simulated by finite element analysis (FEM), L-system fractal modeling 

and the GreenLab model [1]. Plant growth is affected by gravity, wind load, soil 

support, etc., where the deformation of the trunk and branches can be described by the 

Euler-Bernoulli beam theory, whose basic equation is Equation (1): 
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where 𝐸 is Young’s modulus, 𝐼 is the moment of inertia of the cross-section, 𝑤 is 
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the deflection, and 𝑞(𝑥) is the external load (e.g., wind action). 

Wind load effects can be modeled by calculating the airflow distribution through 

the Navier-Stokes equations, combined with the flexible deformation of the tree 

Equation (2): 

Fuppu
t

u
++−=








+



 2  (2) 

where 𝜌 is the air density, 𝑢 is the wind speed, 𝜇 is the fluid viscosity, and 𝐹 is the 

external force term. Combining these mechanical models can optimize the tree planting 

layout, improve the wind resistance of the vegetation, and enhance the stability and 

biological adaptability of the landscape. 

B. Machine learning algorithms 

Machine learning algorithms are mainly used in digital landscape design for 

vegetation growth prediction, environmental adaptation analysis and optimal layout. 

Commonly used supervised learning methods include support vector machines 

(SVMs), random forests (RFs), and deep neural networks (DNNs), among which 

support vector machines are used for the plant growth classification problem with the 

optimization objective of minimizing the loss function Equation (3): 
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where 𝑤 is the classification hyperplane parameter, 𝜉𝑖 is the slack variable, and 𝐶 

is the penalty coefficient. 

The deep neural network optimizes the weights by means of a backpropagation 

algorithm (backpropagation) and the error function is calculated by the mean square 

error (MSE) Equation (4): 
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where 𝑦𝑖 is the true value and 𝑦̂𝑖 is the predicted value. 

Convolutional Neural Network (CNN) can be used for remote sensing image 

recognition and the convolution is calculated as follows (Equation (5)): 
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where, 𝑋𝑖,𝑗 is the input image pixel and 𝐾𝑖,𝑗 is the convolution kernel. 

Reinforcement learning can be used to optimize landscape layout and update 

decisions based on the policy gradient approach (Equation (6)): 

)(  J+=  (6) 

where 𝛼  is the learning rate and 𝐽(𝜃)  is the strategy function. Through these 

algorithms, the system can optimize the plant configuration according to 

meteorological, soil and other data to improve the adaptability and ecological efficiency 

of landscape design. 
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Reinforcement learning reward design: The reinforcement learning (RL) 

algorithm was utilized to optimize the landscape layout by dynamically adjusting plant 

species, density, and distribution based on environmental conditions. The reward 

function was designed to maximize ecological stability, aesthetic quality, and 

environmental adaptability. The primary factors influencing the reward function 

include: 

Ecological stability: A higher reward is given for configurations that result in more 

stable plant growth, such as reduced wind resistance and improved water utilization. 

Aesthetic quality: Aesthetic preferences are incorporated by adjusting the layout 

to ensure visually appealing plant arrangements. 

Environmental adaptability: Rewards are based on how well the layout adapts to 

various climatic and environmental conditions, such as temperature fluctuations, soil 

moisture levels, and wind conditions. 

The system uses a policy gradient method to continuously adjust the landscape 

configuration, aiming to balance these competing objectives to ensure both ecological 

sustainability and aesthetic value. 

C. Digital landscape design system 

The digital landscape design system realizes vegetation growth prediction, 

ecological adaptation optimization and intelligent layout decision-making by 

integrating biomechanical simulation, machine learning algorithms and environmental 

data analysis. The system mainly consists of four modules: data acquisition, simulation 

calculation, intelligent optimization and visualization interaction. For data acquisition, 

remote sensing images, LIDAR scanning, and meteorological sensors are used to obtain 

soil moisture, light intensity, wind speed, and vegetation growth data, and 

normalization and feature extraction are performed [2]. The simulation calculation uses 

finite element analysis (FEM) to simulate the morphological changes of trees under 

wind and gravity, and combines it with the GreenLab model to predict the plant growth 

pattern. Intelligent optimization is based on deep learning (DNN) and genetic algorithm 

(GA), which automatically adjusts the vegetation type, density and spatial layout to 

improve ecological stability. Visualization adopts GIS + BIM integration to present the 

dynamic growth process in real time, and users can interactively adjust the parameters 

and observe the impact of different scenarios on the landscape structure. The system 

can be widely used in urban greening, ecological restoration and park planning to 

improve the scientific and environmental adaptability of landscape design. 

3. Overall system framework design 

A. System architecture design 

The system architecture design is based on the four core modules of data 

acquisition, simulation and calculation, intelligent optimization, and visualization and 

interaction, and the combination of cloud computing and edge computing is used to 

achieve efficient data processing and dynamic simulation [3]. The whole system 

architecture adopts a three-layer structure, including data layer, computing layer and 

application layer, to ensure the scientific and real-time interactivity of landscape design. 

The details are shown in Figure 1. 
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Figure 1. Flowchart of system architecture design. 

The data layer is responsible for the collection and storage of multi-source data, 

including LIDAR point cloud data, remote sensing images, weather sensor data (wind 

speed, temperature and humidity, light), soil sensor data (humidity, pH, nutrient 

content), and historical vegetation growth records. The data undergoes preliminary 

processing (denoising, normalization, feature extraction) at the edge computing 

terminal and is then uploaded to the cloud database; the computing layer contains a 

biomechanical simulation module and a machine learning optimization module. The 

biomechanical simulation uses finite element analysis (FEM) and GreenLab model to 

simulate the growth pattern and environmental adaptability of trees, lawns, flowers, and 

other plants, and calculates the effects of wind load, precipitation, and soil moisture on 

the stability of vegetation through environmental simulation [4]. The machine learning 

module uses deep neural networks (DNN) to predict plant growth trends and optimizes 

the landscape layout through genetic algorithms (GA) to improve ecological 

adaptability; the application layer provides a GIS + BIM integrated visualization 

interface, which allows users to adjust parameters (e.g., tree species distribution, 

density, and light conditions) on an interactive design platform, observe the simulation 

results in real time, and generate the optimal landscape layout through an optimization 

algorithm. The optimal landscape layout is generated by an optimization algorithm, 

which ensures that the landscape design not only meets the aesthetic demand, but also 

has ecological sustainability. 

B. Design of key technology modules 

The design of key technology modules revolves around four core links: data 
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acquisition, simulation, intelligent optimization, and visualization and interaction, in 

order to achieve high-precision vegetation growth prediction, ecological adaptability 

assessment, and optimal landscape layout. 

Data acquisition and preprocessing module: This module collects ecological data 

such as wind speed, light, humidity, soil pH, nutrients, etc. through remote sensing 

imagery, LIDAR scanning, weather stations and soil sensors [5]. Computer vision 

techniques were used to resolve the vegetation structure, and the vegetation growth 

dynamics data were processed through time series analysis. After data cleaning and 

normalization, it was input into the simulation and optimization module. The 

biomechanical simulation module, which is based on finite element analysis (FEM) and 

the GreenLab model, simulates the stress state and morphological changes of plants, 

focusing on the resistance of trees to fall under wind load, the soil support of the root 

system, and calculates transpiration and soil moisture balance by combining with the 

water transport model. The machine learning optimization module, using deep neural 

network (DNN), random forest (RF), genetic algorithm (GA) and other methods, 

predicts the vegetation growth trend, soil nutrient changes, and optimizes the vegetation 

configuration. Reinforcement learning techniques can further train landscape layout 

strategies to adapt to different climatic environments and improve ecological stability. 

Interactive visualization module, based on GIS + BIM technology to build a dynamic 

visualization platform, providing real-time data feedback, 3D growth simulation and 

interactive landscape layout adjustment, supporting users to dynamically regulate plant 

species, density, light and other parameters to generate the optimal landscape scheme. 

The deep neural network (DNN) used in this system is a fully connected 

feedforward network designed to predict vegetation growth trends, including tree 

height and leaf area index (LAI). The architecture consists of three main components: 

Input layer: The input layer consists of features such as meteorological data 

(temperature, humidity, wind speed), soil data (moisture, pH), and vegetation data (leaf 

area, biomass). These inputs are normalized before being fed into the network. 

Hidden Layers: The network includes three hidden layers with 128, 64, and 32 

neurons respectively. Each layer uses the ReLU activation function to introduce non-

linearity and improve the model’s ability to capture complex relationships in the data. 

Output layer: The output layer consists of a single neuron that predicts the tree 

height or LAI. The output is continuously updated during training to minimize the error 

between predicted and actual values using a mean squared error (MSE) loss function. 

The DNN was trained using a dataset of 10,000 samples derived from remote 

sensing images and field data. The model’s performance was evaluated using root mean 

square error (RMSE) and coefficient of determination (R2). The architecture was 

optimized using backpropagation with an Adam optimizer, and hyperparameters such 

as learning rate and batch size were tuned using grid search and Bayesian optimization 

techniques. For better visualization, the DNN architecture is illustrated in Figure 1, 

which shows the connections between input, hidden, and output layers, as well as the 

activation functions used in each layer. 

4. Biomechanical simulation module 

A. Vegetation growth simulation 
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Vegetation growth simulation is mainly based on biomechanical modeling and 

dynamic simulation of environmental factors, which is used to accurately predict the 

growth morphology, mechanical stability and interaction with the surrounding 

ecological environment. This module combines L-system fractal modeling, GreenLab 

modeling, and finite element analysis (FEM) to simulate the mechanical properties of 

plant structures, and introduces physiological mechanisms such as water transport and 

photosynthesis to make the growth simulation more in line with natural laws [6]. 

 

Figure 2. Four key processes in vegetation growth simulation. 

Structural growth simulation, using L-system modeling to simulate the branching 

structure of plants, combined with the GreenLab model to establish the dynamic growth 

relationships of leaves, branches and roots. The GreenLab model is based on the source-

store theory of plant growth, calculating the distribution of photosynthetic substances 

among different organs, so as to predict the process of leaf unfolding, branch extension, 

trunk thickening and so on. Mechanical stability simulation, using finite element 

analysis (FEM) to calculate the deformation and stability of plants under wind load, 

gravity, and soil support force. During the simulation, material properties (Young’s 

modulus, Poisson’s ratio), environmental loads (wind speed, precipitation) were set, 

and the wind resistance and the risk of toppling of the trees under different 
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environmental conditions were analyzed [7]. Environmental adaptation simulation, 

based on light distribution, water transport, temperature and humidity changes, 

simulates the growth rate and ecological adaptation of vegetation. The Fick diffusion 

equation was introduced to calculate the water transfer rate between the soil-root 

system, and combined with the photosynthetically active radiation (PAR) calculation 

to adjust the plant growth model to adapt to different climatic conditions. The 

vegetation growth simulation results will be combined with the machine learning 

optimization module to achieve dynamic adjustment of the vegetation layout to 

improve the overall ecological adaptability and landscape design rationality. Details are 

shown in Figure 2. 

Figure 2 illustrates the four key processes of vegetation growth simulation. The 

top left corner shows the L-System simulation of tree fractal growth, demonstrating 

changes in branch length over time, showing a dynamic growth trend in plant structure. 

The top right corner shows the GreenLab model of photosynthesis material distribution, 

demonstrating an exponential increase in biomass of leaves, trunks, and root systems 

over time, consistent with the distribution of plant photosynthetic products. The lower 

left corner demonstrates the effect of wind loading on tree stability (FEM analysis), and 

the curve shows a significant increase in trunk deformation with increasing wind speed, 

verifying the effect of wind loading on the mechanical stability of trees [8]. The lower 

right corner depicts moisture transport affecting root growth (Fick diffusion model), 

indicating that the higher the soil moisture, the faster the root growth, consistent with 

the key regulatory role of moisture on plant growth. The overall image data visualize 

the influence of biomechanical and environmental factors on vegetation growth. 

B. Simulation of environmental factors 

Environmental factors simulation mainly models the effects of meteorological 

conditions, soil properties and external disturbances on plant growth to improve the 

ecological adaptability of digital landscape design. This module combines climate data 

analysis, moisture transport modeling, light simulation and external load calculation to 

create an integrated environmental response system for vegetation growth [9]. 

Meteorological factor simulation, using historical meteorological data and real-

time monitoring information, including temperature, humidity, wind speed, 

precipitation, light intensity, carbon dioxide concentration and other parameters, to 

establish a model of the impact of long-term climate change on vegetation growth. The 

relationship between temperature and photosynthesis rate can be simulated with the 

Arrhenius equation, and the effect of precipitation on plant water utilization is predicted 

by combining it with the soil moisture dynamic model. Moisture transport simulation, 

based on the Fick diffusion equation to simulate the water transport process in the soil-

root system-leaf, calculates the relationship between root water absorption capacity and 

transpiration. The model takes into account variables such as soil water potential (ψ) 

and transpiration pull (T) so that the vegetation can adapt to different humidity 

environments. Light impact simulation, using the photosynthetically active radiation 

(PAR) model to calculate the growth rate of plants under different light conditions and 

combining it with a canopy transmittance model to assess the community light 

distribution [10]. For wind load and external disturbance, the bending deformation of 

trees by wind speed was calculated based on the Navier-Stokes equation, and combined 

with finite element analysis (FEM) to predict the risk of tree collapse under strong 
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winds. The effects of soil erosion and slope stability changes on plant growth are 

simulated to improve the long-term stability of the landscape. Combining the 

simulation of these environmental factors, the system is able to accurately adjust the 

vegetation layout, optimize the ecological adaptability, and predict the long-term 

landscape evolution trend. Details are shown in Figure 3. 

 

Figure 3. Key effects of environmental factors on plant growth. 

Figure 3 demonstrates the key effects of environmental factors on plant growth. 

The upper left corner shows the effect of temperature on the rate of photosynthesis 

based on the Arrhenius equation, which indicates that photosynthesis peaks at around 

25 °C, and that either too high or too low reduces plant growth efficiency. The upper 

right corner shows the effect of soil water potential on root water uptake capacity as 

modeled by Fick’s diffusion equation, which indicates that when water potential 

decreases (i.e., soil drought), the plant’s ability to take up water decreases drastically, 

affecting growth stability. The lower left corner is based on the photosynthetically 

active radiation (PAR) model, indicating that increased light intensity promotes plant 

growth, but the rate of increase slows down when the saturation value is reached. The 

lower right corner combines the Navier-Stokes equation with finite element analysis 

(FEM) to simulate the effect of wind speed on tree stability, showing that the higher 
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the wind speed, the larger the tilt angle of the tree, indicating limited wind resistance. 

The overall data provide a scientific basis for optimizing the landscape design. 

C. Simulation algorithm optimization 

The simulation algorithm optimization mainly focuses on biomechanical 

simulation, environmental factor modeling and landscape layout optimization to 

improve the accuracy and ecological adaptability of plant growth prediction. 

Optimization methods such as finite element analysis (FEM), fluid dynamics 

simulation (CFD), genetic algorithm (GA) and deep neural network (DNN) are used to 

improve the efficiency and reliability of simulation calculation [10]. 

Finite element and hydrodynamic optimization: In FEM simulation, adaptive 

mesh refinement technology is introduced to locally encrypt high-stress areas (e.g., 

trunk roots, wind-loaded surfaces) to improve the calculation accuracy and reduce the 

calculation cost. In the hydrodynamic (CFD) simulation of wind load effects, a 

turbulence model (k-ε model) is used to optimize the wind speed distribution 

calculation and improve the accuracy of wind load prediction. 

Machine learning optimization, deep neural network (DNN) combined with 

historical data on vegetation growth, supervised learning to predict growth trends in 

different environments, and Bayesian optimization to automatically adjust 

hyperparameters to improve the generalization ability of the model. Reinforcement 

learning (RL) is used to dynamically optimize the landscape layout to make it more 

adaptable to long-term environmental changes. 

Genetic algorithm for optimizing landscape configuration, genetic algorithm (GA) 

is used for optimal vegetation layout calculation to optimize plant species, density, and 

spatial distribution through evolutionary mechanisms such as selection, crossover, and 

mutation [11]. The fitness function combines factors such as light distribution, water 

competition, and wind load resistance to ensure that the layout is both aesthetically 

pleasing and ecologically stable. 

5. Machine learning optimization module 

A. Data acquisition and preprocessing 

Data acquisition and pre-processing mainly include environmental data, 

vegetation growth data and geographic information data to ensure the accuracy and 

reliability of input data for simulation and optimization models. Environmental data are 

collected by weather stations, soil sensors, remote sensing images and other equipment, 

including temperature, humidity, light, wind speed, soil water potential and other 

parameters. Vegetation growth data were acquired by LIDAR scanning, UAV remote 

sensing for tree height, leaf area index (LAI) and biomass [11]. In data preprocessing, 

denoising, normalization, missing value filling, and dimensionality reduction using 

principal component analysis (PCA) were performed to improve computational 

efficiency. The details are shown in Table 1. 
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Table 1. Example of data acquisition. 

Data type Acquisition method Key parameters Sampling frequency 
Tolerance 

range 

Meteorological data Weather stations Temperature, humidity, wind speed, precipitation 10 min/time ± 0.5 °C 

Soil data Sensors, sampling and analysis pH, water potential, nutrients 30 min/times ± 5% 

Remote sensing 

data 
LIDAR, drones Vegetation cover, LAI 1 day/session ± 2% 

Topographic data GIS, satellite imagery Slope, elevation, soil type 1 week/session ± 3 m 

B. Model training and validation 

Model training and validation are mainly through machine learning algorithms to 

predict vegetation growth trends and optimize landscape layout. The training data were 

derived from historical vegetation growth data, remote sensing images, and 

meteorological records, and supervised learning (random forest, deep neural network) 

was used for training [12]. During the training process, the dataset was divided 

according to 80% training set and 20% test set, and K-fold cross-validation (K = 5) was 

used to evaluate the model performance. See Table 2 for details. 

Table 2. Model training and validation results. 

Model type Training set data volume Test set data volume Evaluation indicators RMSE R2 

Random forest (RF) 10,000 2000 Predicted tree height 0.52 0.91 

Deep neural networks (DNN) 10,000 2000 Predicted leaf area index (LAI) 0.68 0.87 

Support vector machines (SVM) 10,000 2000 Predicting soil moisture 0.45 0.89 

The model validation used root mean square error (RMSE), and coefficient of 

determination (R2) to measure the accuracy. The results showed that the random forest 

performed best in tree height prediction (R2 = 0.91), while the deep neural network had 

a slight error in LAI prediction, which could be further optimized by adjusting the 

hyperparameters. Finally, the optimal model was selected for landscape optimization 

decisions. 

C. Parameter optimization strategy 

The parameter optimization strategy plays a crucial role in the process of 

vegetation growth simulation and machine learning model training. In order to improve 

the accuracy and computational efficiency of the model, parameter optimization mainly 

focuses on biomechanical simulation parameters, machine learning model 

hyperparameters, and environmental adaptation optimization parameters, using grid 

search, Bayesian optimization, genetic algorithms, and other methods [13]. 

In biomechanical simulation, key parameters of vegetation growth, such as trunk 

Young’s modulus, root distribution depth, and wind load coefficient, were optimized 

to improve the model’s adaptability to environmental perturbations. Finite element 

analysis (FEM) was used to perform sensitivity analysis of different parameter 

combinations to assess the vegetation structural stability [14]. In the wind load 

simulation, a k-ε turbulence model was introduced to optimize the calculation of fluid 

forces and make the wind speed distribution more accurate. In the soil water potential 

simulation, the permeability coefficient in the Fick diffusion equation was adjusted to 

ensure that the water transport calculation was more realistic. 
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Hyperparameters such as learning rate, tree depth, batch size, activation function, 

etc., are optimized during the training process of the machine learning model to 

improve the prediction accuracy and avoid overfitting. Grid Search is used to 

exhaustively test different combinations of hyperparameters and adaptively adjust the 

search space in combination with Bayesian optimization to reduce the amount of 

computation [15]. For example, in deep neural network (DNN) training, the initial 

learning rate is set to 0.01 and gradually adjusted to 0.001 to balance the convergence 

speed and training stability. Regularization parameters (e.g., L2 regularization 

coefficients) are optimized in the range of [0.0001, 0.01] to reduce model complexity 

and prevent overfitting. In random forest (RF) optimization, the number of decision 

trees (n_estimators) and the maximum depth (max_depth) are adjusted to ensure that 

complex relationships are captured without leading to excessive computational 

overhead [16]. 

In terms of environmental adaptability optimization, a genetic algorithm (GA) is 

introduced to optimize the spatial layout of vegetation so that it can maximally adapt to 

the environmental conditions while satisfying landscape aesthetics. When optimizing 

the fitness function, ecological factors such as light distribution, water competition, 

wind load influence, etc., are considered comprehensively, and the layout scheme is 

continuously improved through the selection, crossover, and mutation mechanisms of 

the genetic algorithm. For example, when optimizing the vegetation density, the 

spacing of trees is constrained to be greater than 2 m to avoid excessive shading and to 

maintain reasonable soil nutrient competition. When optimizing tree species matching, 

the planting ratio is adjusted based on growth rate, root development pattern and other 

characteristics to improve ecological stability [17]. 

The comprehensive use of biomechanical simulation parameter optimization, 

machine learning hyperparameter optimization and genetic algorithm environmental 

adaptability optimization can effectively improve the accuracy and feasibility of 

vegetation growth simulation and ensure that the digital landscape design system can 

maintain efficient and stable operation under different environmental conditions. 

6. System integration and performance evaluation 

A. System integration realization 

The system integration achieves the construction of a complete digital landscape 

design system by integrating four modules: data acquisition, simulation, machine 

learning optimization, and visualization interaction. The data acquisition module 

utilizes LIDAR, remote sensing images, and meteorological sensors to obtain 

information such as vegetation growth data, soil moisture, and meteorological 

conditions, and carries out data preprocessing through edge computing to improve 

computational efficiency. 

The simulation module uses Finite Element Analysis (FEM), Fluid Dynamics 

(CFD), and GreenLab models to simulate vegetation growth dynamics and predict 

environmental adaptations such as wind load impact, root stability, and water transport. 

The machine learning optimization module combines deep learning (DNN), random 

forest (RF), and genetic algorithm (GA) to optimize the vegetation configuration and 

improve the growth prediction accuracy and ecological stability. Ultimately, the system 
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integrates GIS + BIM to build an interactive visualization interface, where users can 

dynamically adjust parameters (e.g., tree species, light, vegetation density) and view 

the optimized landscape layout in real time. All modules are efficiently integrated 

through cloud computing and local data fusion to improve the level of intelligence and 

adaptability of landscape design. 

Results and system integration: To assess the generalizability of the system, we 

conducted additional case studies and simulations across various climate zones and 

terrains. For example, the system was tested in urban environments with varying 

humidity and temperature levels, as well as in coastal regions with saltwater impact on 

plant growth. The results were compared with actual field data from these environments 

to validate the system’s predictions. The system demonstrated reliable performance 

across these conditions, with less than 10% deviation from real-world data in terms of 

vegetation growth and stability. 

Sensitivity analysis: A comprehensive sensitivity analysis was performed to 

examine how different environmental factors (such as wind speed, temperature, and 

soil moisture) influence the system’s predictions. The analysis revealed that 

temperature and soil moisture had the most significant impact on plant growth 

predictions, while wind speed had a major influence on structural stability. This 

information was used to refine the model, ensuring better adaptability to varying 

environmental conditions. 

Scalability and deployment feasibility: Regarding the scalability of the system, we 

explored its application across different terrains, including mountainous and flat 

regions, to determine its feasibility for large-scale deployment. The system was 

demonstrated to scale efficiently, with cloud-based computing enabling the processing 

of large datasets in real-time. The integration of edge computing further supports 

deployment in remote areas where real-time interaction is crucial. The system’s 

modular design ensures that it can be easily adapted to different environmental and 

topographical conditions, making it suitable for a wide range of landscape planning 

projects. 

B. Analysis of results 

The result analysis mainly evaluates the performance of the digital landscape 

design system in terms of vegetation growth prediction, environmental adaptability 

assessment and optimized layout effect. The applicability of the system under different 

environmental conditions is verified through simulation and comparison with actual 

monitoring data, and the enhancement of vegetation growth stability by the 

optimization algorithm is evaluated. 

Table 3. Error analysis of vegetation growth prediction. 

Tree species Predicted tree height (m) Measured tree height (m) Error (%) 

Willow tree 4.8 5 4.00 

Birch 6.2 6.5 4.60 

Betel palm (Areca catechu) 8.1 8.3 2.40 

Pines 7.5 7.8 3.80 

In terms of vegetation growth prediction, the system is based on a deep neural 
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network (DNN) and GreenLab model to simulate the growth trend of vegetation and 

compare it with the measured data. The details are shown in Table 3. 

The data analysis in Table 3 shows that the digital landscape design system has 

high accuracy in vegetation growth prediction. Among them, the predicted tree height 

of willow was 4.8 m, and the actual measured value was 5.0 m, with an error of only 

4.0%; the predicted tree height of birch was 6.2 m, and the actual measured value was 

6.5 m, with an error of 4.6%. The prediction error of betel nut was the lowest, only 

2.4%, indicating that the model was more accurate in simulating the growth of tall trees. 

The predicted height of pine was 7.5 m, which was 3.8% different from the actual value 

of 7.8 m, and still remained within a high accuracy range. Overall, the model prediction 

error is controlled within 5%, indicating that the system can simulate the growth trend 

of plants more accurately. The results provide reliable theoretical support for 

optimizing vegetation layout and long-term ecological planning, and improve the 

science and feasibility of landscape design. Details are shown in Figure 4. 

 

Figure 4. Comparison of predicted and actual tree heights for different tree species. 

In terms of environmental adaptability, the system simulates the vegetation 

stability under different environmental conditions. Table 4 demonstrates the 

comparison of the tilt angle of different tree species under wind load, and the results 

show that the optimized layout scheme significantly improves the vegetation stability, 

and the maximum tilt angle is reduced by about 30%. 

Table 4. Vegetation stability assessment under the influence of wind loads. 

Tree species Unoptimized tilt angle (°) Optimized tilt angle (°) Stability improvement (%) 

Willow tree 12.4 8.7 29.80 

Birch 9.6 7.1 26.00 

Betel palm (Areca catechu) 14.2 9.9 30.30 

Pines 10.8 7.5 30.60 
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Analysis of the data in Table 4 shows that the system optimization significantly 

improved the wind stability of the vegetation. In the unoptimized case, the maximum 

inclination angle of willow was 12.4°, which was reduced to 8.7° after optimization, 

with a 29.8% improvement in stability. The tilt angle of birch was reduced from 9.6° 

to 7.1°, an improvement of 26.0%, betel nut was reduced from 14.2° to 9.9°, an 

improvement of 30.3%, and pine had the most significant optimization effect, with the 

tilt angle reduced from 10.8° to 7.5°, an improvement of 30.6%. Overall, the wind 

resistance performance of all tree species is significantly improved after optimization, 

with a maximum reduction of 30.6% in the tilt angle, indicating that the system has a 

good optimization effect in terms of wind-loaded environmental adaptability, which 

can effectively reduce the risk of tree collapse and provide a more stable ecological 

layout scheme for landscape planning. See Figure 5 for details. 

 

Figure 5. Comparative analysis of optimization of tree leaning angle under the 

influence of wind loads. 

C. Performance assessment indicators 

The performance evaluation index is used to measure the performance of the 

digital landscape design system in terms of vegetation growth prediction, 

environmental adaptation optimization and computational efficiency to ensure that the 

system can operate stably and efficiently. It is mainly evaluated in four aspects: model 

prediction accuracy, ecological stability, computational performance and user 

interaction experience, and combined with quantitative indicators and experimental 

results to verify the practical application value of the system. 

In terms of the accuracy of vegetation growth prediction, the root means square 

error (RMSE) and the coefficient of determination (R2) were used to assess the 

predictive ability of the model. The RMSE was used to measure the deviation between 

the predicted value and the actual value, and the R2 reflected the model’s goodness-of-

fit. The experimental results show that the random forest (RF) model predicts tree 

heights with an RMSE of 0.52 m and an R2 of 0.91, indicating that the model has a high 

prediction accuracy. The deep neural network (DNN) had an RMSE of 0.68 and an R2 

of 0.87 in predicting leaf area index (LAI), which was slightly lower than that of RF, 
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but still had strong applicability. 

In terms of ecological stability, the stability of the optimized vegetation layout 

under extreme environments (e.g., strong winds and heavy precipitation) was assessed, 

which was mainly measured by the change in tilt angle under wind loading and the root 

system water adaptation capacity. The experiment showed that the average tilt angle of 

the optimized trees decreased by 28.4% and the water absorption rate of the root system 

increased by 15.7%, indicating that the optimized scheme can effectively enhance the 

wind resistance and water use efficiency of the vegetation and improve the ecological 

adaptability of the overall landscape. 

In terms of computational performance, the simulation speed, data processing 

efficiency and algorithm convergence of the system are evaluated. After using GPU 

acceleration, the time for finite element analysis (FEM) to calculate the impact of wind 

load on vegetation was shortened from 2.4 h to 38 min, with an increase in 

computational efficiency of 72.4%. Meanwhile, during the training process of the 

machine learning model, Bayesian optimization is used for hyper-parameter 

adjustment, which reduces the training time of the model by 18.3%, and improves the 

computational efficiency while ensuring high accuracy. 

In terms of user interaction experience, the intuitiveness of landscape design is 

enhanced through the GIS + BIM visualization interface, and a user satisfaction score 

is adopted for evaluation. Users can adjust the vegetation parameters (e.g., planting 

density, light distribution) in real time and view the optimized effect. The experimental 

data show that the response time of the interactive operation is kept within 200 ms, and 

the user satisfaction score reaches 4.7/5.0, which indicates that the system performs 

excellently in terms of smoothness of operation and visualization effect. 

7. Conclusion 

The digital landscape design system combines biomechanical simulation and 

machine learning algorithms to demonstrate excellent application value in vegetation 

growth prediction, environmental adaptation optimization and computational 

performance enhancement. The optimized model can accurately simulate plant growth 

dynamics, improve the ecological stability of the landscape layout, and maintain strong 

adaptability under the influence of wind load, soil moisture and other environmental 

factors. The introduction of the machine learning model effectively improves the 

prediction accuracy, reduces the simulation time-consuming through computational 

optimization, and improves the practicality of the system. While the proposed system 

offers significant advancements in vegetation growth prediction and environmental 

adaptability, there are still several limitations. The computational cost remains high, 

particularly in large-scale simulations due to the complexity of biomechanical models 

and the integration of multiple machine learning algorithms. Additionally, the model’s 

generalizability across diverse environmental conditions is yet to be fully validated. 

Future work could focus on improving the system’s scalability by incorporating more 

efficient optimization algorithms and enhancing the integration of real-time 

environmental data for better adaptability. Exploring the potential of advanced machine 

learning models, such as reinforcement learning in dynamic landscape layouts, may 

also improve the system’s responsiveness to changing conditions. 
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