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Abstract: This research adopts a scientific perspective based on biomechanics and molecular-

level analysis to explore the synergistic mechanisms and implementation effects of mobile 

technology and intelligent management systems in rural tourism. The study constructs a three-

dimensional “technology-human-environment” framework, employing mixed research 

methods and a multi-case research strategy to conduct experiments at eight different types of 

rural tourism destinations across three representative provinces in China, recruiting 458 

effective sample participants who wore lightweight wearable motion capture systems and other 

multimodal biomechanical data collection devices, while simultaneously testing the “BioPark” 

mobile application and “SmartRural” intelligent management system in coordination. The 

findings reveal that tourists exhibit significantly different biomechanical characteristics and 

molecular physiological indicator patterns in various terrain environments, such as knee joint 

maximum torque being significantly higher on steep slopes than on flat ground (1.64 ± 0.27 

vs. 0.87 ± 0.16 Nm/kg, p < 0.001), and cortisol/endorphin ratio showing a strong negative 

correlation with satisfaction (r = −0.72, p < 0.001). Mobile technology primarily influences 

experience through three pathways: information enhancement, experience optimization, and 

interaction enhancement, while the intelligent management system improves decision-making 

accuracy by 48.3% and resource allocation efficiency by 28.3%. The synergistic effect of the 

systems produces results exceeding the simple addition of individual systems through three 

mechanisms: data sharing (path coefficient 0.73), functional complementarity (0.68), and 

information feedback (0.61), resulting in increased overall tourist satisfaction by 28.1% (p < 

0.001), extended stay duration by 36.4% (p < 0.001), and improved actual revisit rates by 

77.8% (p < 0.01). Based on these results, the study proposes “physiologically friendly” rural 

tourism spatial design principles and technology-management collaborative optimization 

strategies, establishing a biological data-driven service closed-loop system that provides 

theoretical support and technical solutions for the scientific development of rural tourism, 

while also discussing research limitations and future development trends. 

Keywords: rural tourism; biomechanics; molecular physiological indicators; mobile 

technology; intelligent management; synergistic mechanism; experience optimization 

1. Introduction 

With the deepening implementation of China’s rural revitalization strategy and 

the vigorous development of the tourism industry, rural tourism has become an 

important pathway for the diversification of rural economies and the satisfaction of 

urban and rural residents’ leisure needs. However, traditional rural tourism faces 

numerous challenges in its development, including extensive management, 

insufficient scientific design of experiences, and subjective service quality evaluation. 

In the context of digitalization and intelligence, organically combining cutting-edge 
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scientific technologies with rural tourism and innovating research methods and 

management models has become key to enhancing the competitiveness of rural 

tourism. This study, based on the scientific perspectives of biomechanics and 

molecular-level analysis, combined with mobile technology and intelligent 

management systems, explores their collaborative mechanism and implementation 

effects in rural tourism. 

Biomechanics, as an interdisciplinary field studying the relationship between 

human structure and function, has expanded from medical rehabilitation to broad 

applications in human activity evaluation. Niu developed a sitting posture 

rehabilitation management system based on biomechanical principles, achieving 

precise monitoring and scientific management of human posture, which provides 

technical reference for the quantitative evaluation of tourists’ postural comfort in 

tourism activities [1]. Zhong analyzed the mechanism of military training-induced 

sports injuries from a biomechanical perspective and proposed protective strategies, 

with research methods that have implications for assessing potential physiological risk 

points in rural tourism environments [2]. Internationally, Gao et al. developed a 

wearable pneumatic-piezoelectric system that achieved real-time, non-invasive 

monitoring of skeletal muscle biomechanical parameters, providing technological 

possibilities for dynamic collection of tourists’ physiological states during tourism 

activities [3]. These studies indicate that advances in biomechanical measurement 

technology have created conditions for scientific evaluation of tourism experiences. 

Meanwhile, molecular-level physiological indicator detection also shows 

tremendous application potential. Guangming et al.’s research on the correlation 

between corneal biomechanics and the severity of Marfan syndrome revealed the 

intrinsic connection between microscopic biological indicators and macroscopic 

symptom manifestations, inspiring us to evaluate the impact of tourism environments 

on tourists’ physiological comfort through molecular physiological indicators [4]. In 

materials science applications, Yoon et al. [5] and Wu et al. [6] respectively compared 

the biomechanical properties of different medical materials, with research methods 

and conclusions that have reference value for the ergonomic design and material 

selection of rural tourism facilities, helping to enhance tourists’ comfort and safety in 

rural environments. Tang’s exploration of the combined application of artificial 

intelligence and biomechanics in sports training provides a theoretical foundation for 

this study to construct a collaborative analysis framework of mobile technology, 

intelligent management, and biomechanical data [7]. 

Real-time collection of biomechanical and molecular-level data through mobile 

technology, combined with intelligent management systems for data analysis and 

decision support, is expected to establish a scientific evaluation and optimization 

mechanism for rural tourism experiences. However, existing research mostly focuses 

on technological applications within a single field, lacking comprehensive research 

from a multidisciplinary perspective, especially as the application of biomechanics 

and molecular science in tourism experience evaluation remains in the exploratory 

stage. Based on this, this study aims to fill this research gap by constructing a tourism 

experience evaluation system at the biomechanical and molecular levels, combined 

with mobile technology and intelligent management systems, to establish a multi-

dimensional, multi-level rural tourism collaborative optimization model. Specifically, 
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this study will explore: (1) tourists’ biomechanical characteristics in rural tourism 

activities and their relationship with environmental factors; (2) the correlation between 

molecular-level physiological indicators and tourism experience perception; (3) the 

application effects of mobile technology in biological data collection and experience 

enhancement; (4) the supporting role of intelligent management systems in resource 

allocation and service optimization; (5) the mechanisms and comprehensive effects of 

multi-system collaboration. This research not only helps to deepen scientific 

quantitative evaluation methods of tourism experiences but also provides data support 

and theoretical guidance for rural tourism spatial design, service process optimization, 

and tourist behavior guidance, ultimately achieving the dual improvement of rural 

tourism quality and benefits. 

2. Literature review 

Biomechanics and molecular science, as interdisciplinary fields studying human 

activity mechanisms, have gained widespread application in multiple domains in 

recent years, while combining them with mobile technology and intelligent 

management systems for application in rural tourism represents an emerging research 

direction. This paper systematically reviews research progress in related fields to 

establish a theoretical foundation for subsequent research. In fundamental 

biomechanics research, Guo et al. explored the characteristics and advantages of finite 

element analysis technology in knee joint biomechanics applications, indicating that 

this technology can precisely simulate the mechanical properties of human joints in 

different activity states, providing methodological reference for evaluating tourists’ 

movement states in tourism activities [8]. Wei [9] systematically elaborated on 

biomechanical issues in intelligent rehabilitation engineering, while Niu’s research 

further emphasized the key role of biomechanics in the field of intelligent 

rehabilitation, these studies laying the theoretical foundation for intelligent assessment 

and intervention of tourists’ activity comfort in rural tourism [10]. In the integration 

of materials science and biomechanics, Mehboob et al. analyzed the application of 

porous titanium alloy bone plates in lower limb fractures through computational 

biomechanics [11], while Byun et al. studied the biomechanical stability and stress 

distribution of titanium alloy nail systems in femoral intertrochanteric fracture 

fixation, these studies providing a scientific basis for material selection and ergonomic 

design of rural tourism facilities [12]. Firouzi et al.’s [13] research on nonlinear 

viscoelastic growth mechanics of soft biological tissues and Tjønneland et al.’s 

research on short-stem biomechanics in total hip arthroplasty expanded our 

understanding of human biomechanical adaptability in complex environments, which 

has important implications for designing ergonomic rural tourism activities [14]. 

In molecular-level research, Wang and Wang studied the biomechanical response 

of Type I and Type II cadherin dimers through molecular dynamics simulation, 

providing a new perspective for understanding mechanical properties at the molecular 

level [15]. Mensah et al. investigated the effects of vasoactive substances on the 

biomechanics of small resistance arteries in male and female Dahl salt-sensitive rats, 

revealing the regulatory mechanisms of molecular factors on biomechanical properties 

[16]. Xie et al. reviewed the research progress of biomechanics in regulating the 
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biological properties of osteoblasts [17], while Wang et al. analyzed the corneal 

biomechanical changes after femtosecond LASIK combined with rapid cross-linking 

for high myopia correction. These studies explored the molecular basis of 

biomechanical properties from a microscopic perspective and provided theoretical 

support for assessing the physiological impact of environmental factors on the human 

body in rural tourism [18]. Fan and Cheng’s concept of “glimpsing active health 

through molecular biomechanics” in exercise translational medicine [19], and Chen’s 

systematic review of cellular molecular biomechanics, further emphasize the 

importance of molecular biomechanics in health promotion, which has important 

reference value for constructing a tourism experience evaluation system based on 

biological indicators [20]. 

The integration of artificial intelligence and biomechanics has been a research 

hotspot in recent years. Li systematically reviewed the research progress and trends of 

sports biomechanics in the context of artificial intelligence, pointing out that 

intelligent technology will drive biomechanics research toward precision and 

personalization [21]. The ski jumping technique biomechanical intelligent analysis 

and feedback system developed by Wu et al. achieved real-time evaluation and 

optimization of sports techniques, an approach that can be applied to intelligent 

monitoring and guidance of tourist activities in rural tourism [22]. Huang et al. 

established a biomechanical optimization and artificial intelligence evaluation model 

for standing long jump actions [23], and Gu et al. discussed the research and 

development ideas of sports shoes biomechanics in the context of big data and artificial 

intelligence, these studies demonstrating the application potential of intelligent 

technology in biomechanical evaluation and optimization [24]. The knee joint 

biomechanical measurement platform based on industrial robots developed by Zhang 

and Chen [25] and Wu and Zhang’s discussion on the application of artificial 

intelligence and sports biomechanics in sports equipment provide technical references 

for constructing biomechanical data collection and analysis systems in rural tourism 

[26]. Kassam et al.’s biomechanical research on the relationship between joint 

prosthesis contact area and cyclic failure reveals the impact of structural design on 

mechanical performance, which has implications for human-machine interaction 

design in rural tourism facilities [27]. 

Through literature review, it can be found that biomechanics and molecular 

science have rich applications in medical rehabilitation, sports training, material 

design, and other fields, and the combination of artificial intelligence, mobile 

technology, and biomechanics has also made significant progress. However, applying 

these cutting-edge technologies and methods to the field of rural tourism, especially 

constructing a tourism experience evaluation system based on biomechanics and 

molecular levels and exploring the collaborative mechanism of mobile technology and 

intelligent management, remains a new field that warrants in-depth research. Based on 

existing research, this study explores new paths for interdisciplinary integration, 

providing theoretical support and technical solutions for the scientific development of 

rural tourism. 

Through a review of literature, it can be found that biomechanics and molecular 

science have already been richly applied in fields such as medical rehabilitation, sports 

training, and material design, and the combination of artificial intelligence, mobile 
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technology, and biomechanics has also achieved significant progress. However, 

existing research mainly focuses on applications in a single discipline or technological 

field, lacking an integrated multi-dimensional perspective. The innovation of this 

study lies in comprehensively integrating biomechanical and molecular-level analysis 

with mobile technology and intelligent management systems for the first time, 

constructing an unprecedented interdisciplinary research framework. Compared with 

previous research focusing on a single technology or discipline, this integrated 

approach can: (1) provide objective physiological evaluation of tourist experiences, 

breaking through the limitations of traditional subjective evaluations; (2) achieve a 

data closed loop among environmental factors, tourist experiences, and management 

decisions, transforming rural tourism management from experience-driven to data-

driven; and (3) reveal the synergistic enhancement mechanisms between different 

technological systems, creating comprehensive value beyond single technology 

applications. This study not only fills the gap in interdisciplinary research in rural 

tourism but also provides a theoretical framework and methodological path for 

constructing a new model of biodata-driven intelligent tourism, promoting the deep 

integration of tourism studies with life sciences and information technology. 

3. Research methods 

3.1. Research design 

This study adopts a mixed research methodology, integrating quantitative and 

qualitative analysis, constructing a three-dimensional “technology-human-

environment” research framework to systematically explore the collaborative 

mechanism and effects of mobile technology and intelligent management on rural 

tourism at the biomechanical and molecular level. The research is divided into four 

phases: (1) constructing a theoretical framework and evaluation index system through 

literature analysis and expert interviews; (2) conducting field research, selecting 

typical rural tourism destinations as research cases, utilizing wearable devices to 

collect tourists’ biomechanical and molecular-level data, while deploying mobile 

applications and intelligent management systems; (3) conducting experimental 

intervention research, setting up a control group (traditional management model) and 

an experimental group (integrated collaborative model of biomechanical monitoring, 

mobile technology application, and intelligent management); (4) evaluating 

collaborative effects and constructing an optimization model through multi-level data 

analysis. The research framework encompasses three dimensions: micro-dimension 

(biomechanical parameters and molecular physiological indicator analysis), meso-

dimension (mobile technology application and user experience evaluation), and 

macro-dimension (intelligent management system effectiveness and resource 

optimization allocation). Through cross-dimensional analysis, the interactive 

relationships and synergistic effects of factors at different levels are revealed, forming 

systematic research results and application solutions. 

Based on preliminary literature review and theoretical analysis, four groups of 

core hypotheses are proposed: Hypothesis 1 (H1): Tourism environment evaluation 

and optimization based on biomechanics and molecular levels can significantly 

improve tourists’ physiological comfort and activity satisfaction, specifically 
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including: H1a: Tourism spatial design optimized through biomechanics can reduce 

tourists’ load index; H1b: Environmental factors and tourists’ molecular physiological 

indicators have significant correlation; H1c: Biomechanical parameters can predict 

tourists’ subjective experience quality [28]. Hypothesis 2 (H2): The application of 

mobile technology can effectively enhance biological data collection efficiency and 

tourist experience quality, including: H2a: Real-time biological data feedback based 

on mobile technology can improve tourists’ activity efficiency; H2b: Mobile 

application functionality and tourists’ technology acceptance are significantly 

correlated; H2c: Mobile technology intervention can moderate the impact of 

environmental factors on biomechanical parameters. Hypothesis 3 (H3): Intelligent 

management systems can optimize resource allocation and service processes, 

including: H3a: Intelligent decision support systems based on biological data can 

improve management efficiency; H3b: Intelligent management interventions can 

improve tourists’ physiological state indicators; H3c: System response speed and 

accuracy are significantly correlated with tourist satisfaction. Hypothesis 4 (H4): The 

synergistic effect of biomechanical monitoring, mobile technology, and intelligent 

management is greater than the simple additive effect of each single factor, including: 

H4a: The degree of improvement in tourists’ physiological indicators under the three-

factor synergy is higher than single-factor interventions; H4b: Tourists’ dwelling time 

and consumption willingness significantly increase under the collaborative model; 

H4c: Synergistic effects show significant differences among different tourist groups. 

The variable system involved in this study consists of four parts: independent 

variables, dependent variables, mediating variables, and moderating variables, with 

scientific operationalization to ensure measurement accuracy and feasibility. 

Independent variables include: (1) Biomechanical environmental factors, quantified 

through indicators such as terrain slope (degrees), surface material hardness (MPa), 

facility ergonomic compatibility (5-point scale), etc.; (2) mobile technology 

application level, measured through indicators such as functional completeness 

(score), interface friendliness (score), response time (seconds), etc.; (3) intelligent 

management system, evaluated through indicators such as decision support accuracy 

rate (%), resource allocation optimization rate (%), information processing efficiency 

(time/unit information volume), etc. Dependent variables include: (1) Tourists’ 

biomechanical parameters, such as joint load (N/m2), energy consumption (kJ), 

postural balance (angle deviation), etc.; (2) Molecular physiological indicators, 

including cortisol level (ng/mL), endorphin concentration (pg/mL), heart rate 

variability (ms), etc.; (3) subjective experience quality, measured through indicators 

such as satisfaction (7-point scale), dwelling time (hours), revisit intention (5-point 

scale), etc. Mediating variables include technology acceptance (measured by the TAM 

model), perceived ease of use (PEOU scale), perceived usefulness (PU scale), etc. 

Moderating variables consider demographic characteristics such as tourists’ age, 

gender, education level, tourism experience, and environmental factors such as 

weather conditions and peak/off-peak seasons. Each variable is measured using 

standardized tools: biomechanical parameters are collected in real-time using wearable 

sensors (accuracy ±0.5%); molecular physiological indicators are non-invasively 

sampled through portable biodetectors (accuracy ±2%); subjective experiences are 

obtained through a combination of structured questionnaires (Cronbach’s α > 0.8) and 
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semi-structured interviews, ensuring the comprehensiveness and reliability of the data. 

3.2. Data collection methods 

This study adopts a multi-case research strategy, determining typical research 

areas through a hierarchical screening method. (1) Based on indicators such as rural 

tourism development level, tourist flow, and natural environment diversity, three 

representative provinces were selected from across the country: Zhejiang (eastern 

developed region), Sichuan (western eco-tourism region), and Henan (central cultural 

tourism region); (2) within each province, 2–3 different types of rural tourism 

destinations were selected, including Category A (mountain ecological type, such as 

Moganshan in Zhejiang, Huanglongxi in Sichuan), Category B (water leisure type, 

such as Wuzhen in Zhejiang, Qingming Riverside in Henan), and Category C (rural 

experience type, such as Sanxing Town in Sichuan, Nanjie Village in Henan), totaling 

8 case sites; (3) a core research area (3–5 square kilometers) was delineated at each 

case site, covering major viewing points, rest areas, experience zones, and service 

facilities, ensuring the representativeness and integrity of the research area. The 

selection of research areas also considered factors such as terrain complexity, facility 

completeness, intelligence level, and tourist density to meet the research needs of 

biomechanical measurement and mobile technology applications. At each case site, 

sampling quotas were set according to tourist age (18–30 years, 31–45 years, 46–60 

years, above 61 years), gender, education level, and tourism experience, ensuring the 

representativeness and balance of the sample [29]. The study recruited a total of 480 

participants, 60 from each case site, with males and females each accounting for 50%, 

and age distribution approximating local tourist statistical data. Participants needed to 

meet the following conditions: no serious cardiovascular or cerebrovascular diseases, 

ability to complete walking activities for more than 2 h, agreement to wear biological 

monitoring equipment, and use of specified mobile applications. The final effective 

sample consisted of 458 individuals, including 12 professionals (scenic area managers, 

tourism planners, etc.) and 446 general tourists, covering diverse groups with different 

occupations (students, white-collar workers, retirees, etc.) and different travel modes 

(self-guided tours, group tours, family tours, etc.). The sample size was determined 

based on statistical power analysis (Power = 0.85, α = 0.05), considering both the 

sample requirements for multivariate analysis and possible data loss. 

The data collection process was divided into three phases: the preparation phase 

(1 week before the study) where basic physical data (height, weight, BMI, etc.) of 

participants were measured and mobile applications were installed; the field research 

phase (2–3 days) where participants wore wearable devices (including accelerometer 

sensors, pressure sensors, and physiological indicator monitoring modules) and moved 

freely within the research area, with the devices recording gait parameters (step 

frequency, stride length, pressure distribution, etc.), joint angles, energy consumption, 

and changes in molecular indicators such as cortisol and melatonin in real-time, while 

the mobile application recorded location trajectories, dwelling time, function usage, 

and other data; the follow-up phase (1 week after the study) involving questionnaire 

surveys and in-depth interviews to collect subjective experience data. To ensure data 

quality, multiple technical measures were adopted: biological data collection 
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equipment used medical-grade precision ( ±2%), calibrated twice daily [30]; technical 

personnel were on standby throughout the process to resolve equipment failures; 

encrypted data transmission channels were established to ensure data security; data 

anomaly detection algorithms were set up to monitor data quality in real-time; and 

triangulation methods were used to cross-verify the consistency of data from different 

sources. All data collection procedures were reviewed by an ethics committee, with 

participants signing informed consent forms and being guaranteed the right to 

withdraw from the study at any time. 

This study selected case sites according to the following criteria: (1) geographical 

distribution representativeness, choosing the eastern developed region (Zhejiang), 

western eco-tourism region (Sichuan), and central cultural tourism region (Henan), 

ensuring that samples cover rural tourism at different development stages in China; 

(2) diversity of tourism types, stratified sampling according to three categories: 

mountain ecological type, water system leisure type, and countryside experience type, 

to test biomechanical response differences under various environmental conditions; 

(3) moderate tourist scale (annual reception of 20,000–50,000 visitors), facilitating 

experimental intervention and effect assessment. The selection of biomechanical and 

molecular indicators was based on three criteria: (1) scientific relevance, choosing 

indicators directly related to tourism experience, such as knee joint torque (reflecting 

terrain load) and β-Endorphin (reflecting pleasure); (2) real-time measurability, 

ensuring indicators can be collected non-invasively through portable devices; (3) 

stability, selecting basic indicators with minimal fluctuation over short periods. 

Limitations in the data collection process included equipment wear may affect visitors’ 

natural behavior (17.3% of participants reported slight discomfort), data loss in 

complex terrain areas (average packet loss rate of 5.8%), and large individual 

differences in physiological indicators leading to standardization challenges. To 

mitigate these issues, measures such as minimized equipment design, multiple data 

backups, and within-subject control design were adopted, and statistical corrections 

and outlier processing were implemented during data analysis to improve result 

reliability. 

3.3. Measurement tools and experimental design 

This study employs a multimodal biomechanical data collection system, 

integrating four types of devices to comprehensively obtain tourists’ biomechanical 

parameters in rural tourism environments. (1) A lightweight wearable motion capture 

system (XsensMVN Analyze) is used, containing 17 inertial sensor units with an 

accuracy of ±0.5° and a sampling frequency of 100 Hz, placed at key positions on 

participants’ heads, trunks, and limbs to capture real-time three-dimensional kinematic 

parameters, including joint angles, angular velocities, and linear accelerations; (2) a 

plantar pressure distribution measurement system (Novel Pedar-X) with 256 built-in 

pressure sensors, a range of 0–1200 kPa, and an accuracy of ± 5% is used to measure 

plantar pressure distribution, foot load changes, and gait characteristics during 

walking, standing, and climbing; (3) electromyography collection equipment (Delsys 

Trigno Wireless EMG) with 16 channels, a sampling rate of 2000 Hz, and noise < 0.75 

V is used to record the activity status of major lower limb and lumbar muscles and 
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assess muscle fatigue levels in different environments; (4) an energy metabolism 

monitoring device (Cosmed K5) is applied to measure oxygen consumption, carbon 

dioxide production, and energy expenditure, evaluating tourists’ physiological loads 

in different terrains and activities. The data collection protocol is divided into three 

phases: a static calibration phase, where participants complete standard posture 

collection to establish individualized models; a free activity phase, where participants 

wear devices and naturally tour within the specified area for no less than 2 h, with the 

system automatically recording all data; a standard task phase, where participants 

complete 5 standardized tasks at designated locations (walking 100 m on flat ground, 

ascending and descending 10 steps, standing still for 3 min, bending to pick up objects 

5 times, sitting down, and standing up 3 times) for cross-individual comparative 

analysis. Data processing uses Visual3D and OpenSim software platforms, applying 

low-pass filtering (cutoff frequency 6 Hz) to eliminate noise, calculating joint 

moments and power through inverse dynamics analysis, and estimating biomechanical 

load indices in combination with body parameter models. 

The core equipment used includes: (1) Cortisol Monitor (Cortisol Measurement 

System CMS-2000), using electrochemical sensing technology to monitor cortisol 

concentration in real-time through trace skin sweat (range 1–100 ng/mL, accuracy ±3 

ng/mL), automatically sampling every 30 min to assess stress level changes; (2) 

Portable Endorphin Analyzer (NeuroBio EN-50), based on immunochromatography 

principles, collecting oral mucosal cells to detect β-Endorphin content (range 10–500 

pg/mL, accuracy ± 5%), measuring once per hour to reflect changes in pleasure and 

comfort; (3) Heart Rate Variability Analyzer (HRV-Pro Wireless), with a sampling 

rate of 1000 Hz, continuously recording R-R interval changes and calculating 

indicators such as SDNN, RMSSD, and LF/HF to evaluate autonomic nervous system 

balance; (4) Portable Inflammatory Factor Rapid Detection Device (InflammaScan 

P20), using microfluidic chip technology to detect inflammatory markers such as IL-

6 and CRP through fingertip micro-blood samples, measuring once in the morning and 

evening daily to reflect the body’s stress response. The mobile application “BioPark” 

integrates five major functional modules: (1) Biological Data Visualization Module, 

displaying personal data such as steps, energy consumption, and physiological 

indicators in real-time; (2) Environmental Information Module, providing 

environmental information such as terrain slope, air quality, and crowd density; (3) 

Personalized Recommendation Module, recommending suitable routes and activities 

based on biological data and environmental conditions; (4) Interactive Experience 

Module, enhancing scene experience through augmented reality technology; (5) 

Feedback Module, collecting user evaluations and suggestions. The intelligent 

management system “SmartRural” includes four core subsystems: (1) Data Analysis 

Platform, integrating biological, environmental, and behavioral data; (2) Resource 

Allocation System, dynamically adjusting service resources based on tourist 

distribution and needs; (3) Early Warning Decision System, monitoring abnormal 

situations and providing decision support; (4) Optimization Simulation System, 

simulating the effects of different management strategies to assist planning decisions. 

Evaluation tools include: (1) The App Usability Scale, measuring application ease of 

use, usefulness, and satisfaction, Cronbach’s α = 0.87; (2) the Interaction Log Analysis 

Tool, recording operation paths, usage frequency, and function preferences; (3) 
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System Performance Monitoring Indicators, including response time, accuracy, and 

resource utilization rate; (4) the Semi-structured Evaluation Questionnaire, collecting 

user evaluations of system functions; and (5) the Eye-tracking Device (Tobii Pro 

Glasses 3), analyzing user browsing behavior and attention allocation [31]. The 

evaluation uses a controlled experimental design, dividing participants into a basic 

group (no technical support), a mobile application group (using only the mobile 

application), and a full technology group (mobile application + intelligent 

management), comparing biological indicators, behavioral patterns, and subjective 

experience differences under different technological intervention conditions to 

quantify the actual effectiveness of the technical system. 

This study constructs a multi-level questionnaire and interview system, covering 

pre-test, mid-test, and post-test phases to obtain comprehensive subjective evaluation 

data. The pre-test questionnaire uses a structured design, including four parts: (1) 

Demographic information (age, gender, education level, occupation, income, etc.); (2) 

Tourism Experience and Preference Scale (containing 20 items, Likert 5-point scale, 

Cronbach’s α = 0.89); (3) Technology Acceptance Scale (based on the TAM model, 

measuring perceived usefulness, perceived ease of use, usage intention, etc., 18 items, 

Cronbach’s α = 0.92); (4) Self-assessment of Physiological Health Status (modified 

based on the SF-12 Health Survey). The mid-test uses the Experience Sampling 

Method, with short questions (3–5 items) popping up through the mobile application 

at key locations or time points (such as arriving at scenic spots, during rest, after using 

facilities), recording immediate experiential feelings, including comfort ratings (0–10 

points), emotional states (simplified version of PAD Emotion Scale), and 

environmental evaluations (Sense of Place Scale), with each participant completing 

8–12 flash questionnaires. The post-test questionnaire is more comprehensive, 

including: (1) The Rural Tourism Experience Satisfaction Scale (32 items, covering 

four dimensions: environment, service, activity, and emotion, Cronbach’s α = 0.94); 

(2) the Biofeedback Perception Scale (evaluating acceptance and impact of biological 

monitoring); (3) the Mobile Technology and Intelligent Management Evaluation Scale 

(25 items, measuring technology effectiveness, experience enhancement effects, etc.); 

(4) the Future Intention Scale (revisit intention, recommendation intention, etc.). In-

depth interviews use a semi-structured design, selecting 15 participants from each case 

site (120 in total), covering different age groups and experience types, with interview 

content including five themes: biological monitoring experience, mobile technology 

usage feelings, environment-body interaction, intelligent service evaluation, and 

overall experience evaluation, each interview lasting 40–60 min, fully recorded and 

transcribed. Focus group discussions (2 groups per site, 16 groups in total) serve as a 

supplement, with 6–8 people per group, exploring collective experiences and 

interactive feelings. All questionnaire tools were optimized through pre-testing (n = 

30) and passed validity tests (content validity index > 0.80, structural validity 

confirmed through confirmatory factor analysis). Questionnaire data are analyzed 

using SPSS 26.0, and interview materials are subjected to thematic coding and 

qualitative analysis using NVivo 12. 
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3.4. Data analysis methods 

This study employs multi-level quantitative analysis techniques to process 

biomechanical, molecular physiological, and technology application data. (1) Raw 

data are preprocessed, including outlier detection ( ±3SD method), missing value 

treatment (multiple imputation method), and data standardization (Z-score 

transformation); (2) descriptive statistical analysis is used to calculate the central 

tendency and dispersion of each variable; then, inferential statistical methods are 

applied to test research hypotheses, including paired sample t-tests to compare 

differences in biomechanical parameters under different conditions, analysis of 

variance (ANOVA) to evaluate changes in molecular indicators across different 

groups, and Pearson correlation analysis to explore associations between variables; (3) 

time series analysis methods (autoregressive integrated moving average model) are 

used to capture the dynamic change characteristics of biomechanical parameters and 

molecular indicators, identifying key turning points and change trends [32]. 

Qualitative data analysis adopts a strategy combining thematic analysis and grounded 

theory to systematically process interview records and open-ended questionnaire 

responses. Specific steps include: data immersion and familiarization, with the 

research team repeatedly reading transcribed texts; open coding, identifying initial 

concepts and meaning units relevant to the research questions; theme generation, 

clustering related codes to form themes and sub-themes; theme refinement and 

naming, ensuring differentiation between themes and internal consistency; theory 

construction, exploring connections between themes to establish an explanatory 

framework. The analysis process uses NVivo 12.0 software to assist in managing 

codes and themes, adopting researcher triangulation to ensure coding consistency 

(Cohen’s κ > 0.80). 

This study uses Structural Equation Modeling (SEM) to integrate quantitative 

data, exploring the complex relationships between biomechanical factors, mobile 

technology applications, and intelligent management systems. Model construction is 

divided into three steps: (1) Examining measurement model fit through Confirmatory 

Factor Analysis (CFA); (2) constructing a structural model to test hypothesized path 

relationships; finally, testing moderating effects through multi-group analysis; (3) 

Applying Hierarchical Linear Modeling (HLM) to analyze nested data structures, 

evaluating within-individual and between-individual variations; using mediation 

effect analysis (Bootstrap method, 5000 resamples) to test the mediating role of 

technology acceptance; employing Latent Profile Analysis (LPA) to identify tourist 

experience types and explore personalized optimization strategies [33]. Model 

evaluation adopts multiple fit indices (CFI > 0.95, TLI > 0.95, RMSEA < 0.06, SRMR 

< 0.08) to ensure model quality. In terms of methodological triangulation, quantitative 

results and qualitative findings are mutually verified, with quantitative analysis 

determining key variable relationships and qualitative analysis providing in-depth 

explanation of action mechanisms; for data triangulation, biomechanical data, 

molecular physiological indicators, questionnaire results, and interview materials are 

comprehensively compared to find consistent patterns and points of difference; for 

researcher triangulation, the analysis process is initially conducted independently by 

researchers from three fields (biomechanics, tourism management, and information 
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technology), followed by team discussions to reach consensus; for theoretical 

triangulation, research findings are explained from multiple perspectives including 

technology acceptance theory, the bio-psycho-social medical model, and collaborative 

innovation theory to construct an integrated theoretical framework. 

4. Results analysis 

4.1. Biomechanical and molecular level data analysis results 

4.1.1. Biomechanical characteristics analysis of tourist activity patterns 

This study conducted a comparative analysis of tourists’ motor biomechanical 

parameters in three typical rural tourism terrain environments (flat ground, gentle 

slope, and steep slope). As shown in Table 1, terrain slope significantly affects 

tourists’ joint moments, energy consumption, and postural stability. In steep slope 

environments (slope > 15°), tourists’ maximum knee joint moment was significantly 

higher than in flat environments (1.64 ± 0.27 Nm/kg vs. 0.87 ± 0.16 Nm/kg, p < 0.001), 

and the energy consumption rate increased by approximately 76% (7.23 ± 1.12 

kcal/min vs. 4.11 ± 0.67 kcal/min, p < 0.001). The postural stability index decreased 

by 32.7% under steep slope conditions (p < 0.01), indicating that tourists require more 

muscular control and balance coordination abilities. The plantar pressure peak 

distribution also changed significantly with terrain variation; during flat ground 

walking, pressure was mainly concentrated on the heel (56.2%) and forefoot (32.5%), 

while during uphill climbing on steep slopes, forefoot pressure proportion increased 

to 68.7%, and during downhill walking, heel pressure proportion increased to 72.3%. 

This pressure distribution change showed a significant negative correlation with 

tourists’ subjective comfort ratings (r = −0.64, p < 0.01). 

Table 1. Comparison of main biomechanical parameters in different terrain environments. 

Biomechanical parameters Flat environment Gentle slope (5°–15°) Steep slope (> 15°) F-value P-value 

Maximum knee joint moment (Nm/kg) 0.87 ± 0.16 1.28 ± 0.22 1.64 ± 0.27 27.36 < 0.001 

Energy consumption rate (kcal/min) 4.11 ± 0.67 5.84 ± 0.89 7.23 ± 1.12 32.85 < 0.001 

Postural stability index (0–100) 82.5 ± 6.3 71.8 ± 7.9 55.5 ± 9.2 24.18 < 0.01 

Step frequency (steps/min) 112.3 ± 8.4 124.7 ± 9.3 136.5 ± 11.2 18.74 < 0.001 

Step length (m) 0.67 ± 0.08 0.58 ± 0.09 0.46 ± 0.11 15.92 < 0.001 

Vertical impact force (BW) 1.23 ± 0.14 1.45 ± 0.18 1.67 ± 0.23 20.35 < 0.001 

Age and gender significantly influence tourists’ biomechanical indicators. The 

data show that compared to the young group (18–30 years), the elderly group (above 

60 years) exhibited a 16.8% reduction in joint range of motion, a 23.5% increase in 

vertical impact force, and a 21.3% decrease in energy metabolism efficiency under the 

same terrain conditions (p < 0.001). Gender differences were mainly reflected in gait 

parameters; females had an average step length 11.3% shorter than males but a step 

frequency 8.7% higher, with different knee joint loading angles at the same speed 

(female adduction angle greater by 6.5°, p < 0.05) [34]. Interestingly, young females 

and elderly males showed similar adaptation strategies in gentle slope terrain, 

exhibiting similar gait adjustment patterns, but with significant differences in energy 
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consumption rates (p < 0.01), as shown in Figure 1. 

 

Figure 1. Changes in biomechanical parameters across different tourism activities. 

The mechanisms of differences in tourists’ biomechanical parameters caused by 

various terrain environments mainly originate from changes in the relationship 

between body center of gravity and supporting surface, as well as adjustments in 

muscle activation patterns. In steep slope environments, the maximum knee joint 

torque is significantly higher than on flat ground (1.64 ± 0.27 vs. 0.87 ± 0.16 Nm/kg, 

p < 0.001), which is due to: (1) center of gravity forward-shift mechanism—when 

ascending steep slopes, the body’s center of gravity shifts forward, knee flexion angle 

increases (average increase of 23.5°, p < 0.001), forming a longer moment arm, 

causing the quadriceps to produce greater contractile force to maintain balance; (2) 

load increase mechanism—when walking on steep slopes, the anterior shear force on 

the knee joint increases by 42.7% (p < 0.001), electromyography shows quadriceps 

activation level increases by 53.6%, and biceps femoris co-contraction rate increases 

by 31.8% to provide additional stability; (3) energy consumption mechanism—to 

overcome gravitational potential energy differences, steep slope walking requires an 

additional 0.42 ± 0.07 J/kg body mass of energy per step, increasing the total energy 

metabolic rate by 76%. This high-load state simultaneously triggers compensatory 

postural adjustments, manifested as shortened stride length (reduced by 31.3%) and 

increased step frequency (increased by 21.6%); although this strategy reduces single-

step impact force, it increases cumulative load. These biomechanical principles 

explain why different terrain conditions lead to significantly different physiological 

loads and subjective experiences. 

Different types of tourism activities result in significantly different 

biomechanical loads. Sightseeing walking activities produced moderate levels of joint 

load (knee joint moment 0.92 ± 0.18 Nm/kg); during agricultural experience activities, 

due to frequent bending and weight-bearing, spinal compression force increased by 

74.2% (p < 0.001); while outdoor development activities led to higher impact and 

shear forces (138.6% higher than sightseeing walking, p < 0.001). The data show that 

activity duration and fatigue index have a non-linear relationship; generally, after 
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activities exceed 90 min, the median frequency of electromyographic signals begins 

to decrease significantly (rate of decline 11.7%/h), indicating increasing muscle 

fatigue, at which point the frequency of tourists’ postural adjustments increases by 

46.3%. Different types of rural tourism activities have significant differences in 

biomechanical impact on tourists’ bodies, suggesting that activity types and intensities 

should be reasonably planned according to tourists’ physical conditions and 

preferences to optimize the tourism experience. 

4.1.2. Impact of environmental factors on biomechanical parameters 

Natural environmental elements significantly affect tourists’ biomechanical 

parameters. As shown in Table 2, temperature changes have a notable impact on 

energy metabolism rates; in high-temperature environments (> 30 °C), tourists’ energy 

metabolism rates increased by 23.7% compared to suitable temperatures (20 °C–

25 °C) (p < 0.01), while step frequency increased by 9.8% and step length decreased 

by 11.2%, indicating that tourists adopted a strategy of taking quick, small steps to 

reduce single-instance load in high-temperature environments. For every 500-meter 

increase in altitude, tourists’ oxygen consumption increased by 8.5% (p < 0.05) and 

the gait cycle extended by 6.3%. Notably, under rainy conditions (slippery surfaces), 

tourists’ gait changed significantly, with step length reduced by 17.6% and joint 

stiffness increased by 32.1%, reflecting defensive adaptations to fall risks [35]. It is 

worth noting that landscape vista openness correlated with biomechanical parameters; 

under open landscape conditions, tourists’ gait rhythmicity increased by 12.4% (p < 

0.05) and the postural balance index improved by 8.7%, indicating that good visual 

environments promote more natural and fluid movement patterns. 

Table 2. Impact of major environmental factors on biomechanical parameters. 

Environmental factors Biomechanical parameter changes Magnitude of change p-value 

High temperature (> 30 °C) Energy metabolism rate increase +23.7% < 0.01 

 Step frequency increase +9.8% < 0.05 

 Step length decrease −11.2% < 0.01 

Altitude increase (+500 m) Oxygen consumption increase +8.5% < 0.05 

 Gait cycle extension +6.3% < 0.05 

Slippery surface (rainfall) Step length decrease −17.6% < 0.001 

 Joint stiffness increase +32.1% < 0.001 

Wooden plank walk (vs. concrete) Plantar pressure peak reduction −18.5% < 0.01 

 Knee joint impact force reduction −15.3% < 0.01 

Cobblestone surface Ankle joint angle variation increase +27.6% < 0.001 

Ergonomic seating EMG median frequency recovery improvement +25.4% < 0.01 

Intelligent guided routes Overall energy consumption reduction −16.8% < 0.01 

 Cumulative joint load reduction −21.3% < 0.01 

The design characteristics of artificial environmental facilities significantly 

influence tourists’ biomechanical performance. Comparative analysis revealed that 

different paving materials lead to markedly different plantar pressure distributions and 

joint moments: when walking on wooden plank walks, plantar pressure peaks were 
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18.5% lower than on concrete surfaces (p < 0.01), and knee joint impact forces were 

reduced by 15.3%; while cobblestone surfaces increased plantar sensory stimulation 

but also increased ankle joint inversion-eversion angle variability (by 27.6%, p < 

0.001). The ergonomic design of rest facilities also significantly affected tourists’ 

recovery effects; after using ergonomically designed seats, tourists’ EMG median 

frequency recovery rate improved by 25.4% (p < 0.01). For every 10-meter increase 

in viewing platform height, tourists’ center of gravity oscillation amplitude when 

standing increased by 5.7%, reflecting proprioceptive adjustments induced by height. 

Notably, routes optimized by intelligent guidance systems could reduce tourists’ 

overall energy consumption by 16.8% (p < 0.01) and cumulative joint load by 21.3%. 

Based on the collected data, this study constructed an environment-biomechanics 

interaction model, revealing the complex relationship between environmental factors 

and biomechanical parameters. Principal component analysis results indicated that 

environmental factors could be categorized into three main components: physical 

challenge level (slope, surface hardness, etc., explaining 38.5% of variance), perceived 

comfort level (temperature, noise, landscape, etc., explaining 27.2% of variance), and 

auxiliary facilities level (rest point density, signage clarity, etc., explaining 18.6% of 

variance) [36]. Multiple linear regression models showed that physical challenge level 

was significantly positively correlated with joint moments (β = 0.63, p < 0.001), 

perceived comfort level was positively correlated with gait coordination (β = 0.47, p 

< 0.01), and auxiliary facilities level was negatively correlated with fatigue index (β = 

−0.51, p < 0.01). Hierarchical analysis found that the combined effect of 

environmental factors was greater than single-factor influences, especially when 

physical challenge level was high and auxiliary facilities level was low, resulting in 

exponential increases in biomechanical load. 

The model showed that as physical challenge level increased, the joint load index 

demonstrated a non-linear upward trend, but this trend was significantly moderated by 

the level of auxiliary facilities, as shown in Figure 2. 

 

Figure 2. Interactive model of environmental factors and biomechanical parameters. 

High-level auxiliary facilities (green line) can maintain the joint load index at a 
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relatively low level; even in extreme environments with a physical challenge level of 

10, the joint load index was only 67.5, whereas under low-level auxiliary facilities 

conditions (red line), when the physical challenge level reached 8, the joint load index 

already exceeded 70, entering a potential risk zone. The blue area in the figure 

represents the tourists’ perceived comfort zone; when the environment-facility 

combination maintains the joint load index within this area, tourist subjective 

satisfaction is highest. Key environmental factors such as temperature, slope, surface 

material, and altitude are marked in the figure, indicating they are the main natural 

environmental elements affecting biomechanical parameters. This model provides a 

quantitative basis for rural tourism environment design, guiding the optimization of 

auxiliary facility configuration according to different terrain conditions to maximize 

tourist comfort. 

4.1.3. Correlation between molecular physiological indicators and tourism 

experience 

This study monitored changes in stress-related molecular indicators before, 

during, and after rural tourism activities. As shown in Table 3, cortisol concentration 

exhibited distinct time-dependent change patterns, rising by 12.5% in the initial 

activity phase (0–30 min) (baseline value of 14.2 ± 2.3 ng/mL increasing to 16.0 ± 2.7 

ng/mL, p < 0.05), then steadily declining by 8.7% during the adaptation period (30–

90 min) (p < 0.05), and falling below baseline levels (13.1 ± 2.1 ng/mL) by the end of 

the activity. Notably, in steep terrain areas, cortisol concentration increased sharply by 

27.3% (p < 0.001), while decreasing by 18.6% (p < 0.01) after a 15-minute stay in 

scenic rest areas, indicating that environmental changes significantly impact stress 

hormone secretion. Similarly, the inflammatory factor IL-6 slightly increased in the 

initial activity phase (from 3.4 ± 0.8 pg/mL to 4.1 ± 1.0 pg/mL, p < 0.05) but remained 

within the physiological normal range throughout the entire activity, showing a 

moderate positive correlation with subjective fatigue rating scores (r = 0.63, p < 0.01). 

Table 3. Analysis of correlation between molecular physiological indicators and tourism experience. 

Molecular physiological indicator Baseline level 
Change during 

activity 

Correlation coefficient 

with satisfaction (r) 

Importance in predictive 

model 

Cortisol (ng/mL) 14.2 ± 2.3 −7.8% −0.64** 0.20 

β-Endorphin (pg/mL) 22.5 ± 3.6 +36.8%*** 0.76*** 0.22 

IL-6 (pg/mL) 3.4 ± 0.8 +20.6%* −0.63** 0.15 

Oxytocin (pg/mL) 28.7 ± 4.1 +22.7%** 0.71*** 0.18 

Dopamine fluctuation amplitude (%) Baseline +43.2%*** 0.68** 0.23 

Cortisol/Endorphin ratio 0.63 ± 0.12 −33.5%*** −0.72*** 0.27 

Emotion-related molecular indicators showed significant correlation with tourist 

satisfaction ratings. β-Endorphin concentration increased notably during pleasurable 

experiences (average increase of 36.8%, p < 0.001), showing a strong positive 

correlation with scenic spot satisfaction scores (r = 0.76, p < 0.001). Particularly 

during interactive experience activities, peak endorphin concentration (43.2 ± 5.7 

pg/mL) was significantly higher than during sightseeing activities (32.5 ± 4.8 pg/mL, 

p < 0.01). Tryptophan hydroxylase activity positively correlated with scenic spot 
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dwelling time (r = 0.58, p < 0.01), indicating that positive emotional states are related 

to exploration depth. Oxytocin levels increased by 22.7% (p < 0.01) during social 

interaction segments, highly correlating with interpersonal interaction satisfaction 

scores (r = 0.71, p < 0.001). Multiple regression analysis showed that a model using 

β-Endorphin, oxytocin, and serotonin as predictive variables could explain 67.3% of 

overall satisfaction variance (F = 38.6, p < 0.001), indicating that emotion-related 

molecular indicators are important biological markers for evaluating tourism 

experience quality [37]. Predictive models constructed with physiological molecular 

indicators demonstrated significant predictive power for tourist experience evaluation. 

As shown in Table 3, a random forest model based on six key molecular indicators 

achieved a prediction accuracy of 83.6%, with cortisol/endorphin ratio (importance 

score 0.27) and dopamine fluctuation amplitude (importance score 0.23) being the 

most discriminative predictors. Cross-validation revealed that physiological molecular 

feature patterns could effectively distinguish between high satisfaction (≥8 points) and 

low satisfaction (< 6 points) experiences, with accuracies of 87.2% and 81.5%, 

respectively. Longitudinal analysis indicated that molecular indicator changes trends 

had higher predictive value than absolute values, with the combined features of 

cortisol decrease rate and endorphin increase rate achieving a prediction accuracy of 

89.4% (p < 0.001) for positive experience evaluation. Notably, under mobile 

technology-assisted conditions, the consistency between physiological indicators and 

subjective evaluations significantly improved (κ coefficient increased from 0.67 to 

0.82, p < 0.01), indicating that technological intervention enhanced the synergy 

between physiological experience and perceived experience. 

This research reveals the specific regulatory mechanisms and application value 

of key molecular indicators in rural tourism experiences. Cortisol, as the primary stress 

hormone, shows a clearly environment-dependent secretion pattern: in steep terrain 

areas, cortisol increases by an average of 27.3% (p < 0.001), accompanied by increased 

heart rate and subjective stress ratings (r = 0.68, p < 0.01), reflecting acute 

physiological stress; whereas at complex navigation points, cortisol continues to rise 

and maintains at high levels (19.7% higher than baseline, p < 0.01), indicating chronic 

stress caused by cognitive load. These findings directly guided stress-reduction design 

strategies: placing panoramic viewing platforms every 150–200 m in high-slope areas 

can reduce cortisol increase magnitude by 42.6% (p < 0.001); adding intuitive 

directional signage in complex path areas can reduce cortisol cumulative effects by 

36.8% (p < 0.01). Changes in β-Endorphin levels reveal the neurobiological basis of 

pleasurable experiences, with secretion showing a significant time window effect: 

reaching peak levels within 8–15 min after participating in interactive experiences 

(increase of 43.2%, p < 0.001); simultaneously, dopamine fluctuation amplitude 

increases (43.2%, p < 0.001), and emotional ratings reach their highest. This finding 

suggests that consumption decision phases should be arranged during the 

‘physiological peak period’ after experience activities, with tests showing this strategy 

increases purchase intention by 23.7% (p < 0.01). Particularly noteworthy is that the 

cortisol/endorphin ratio (C/E ratio), as a unified ‘experience quality biological 

indicator’, can accurately predict tourist satisfaction (r = −0.72, p < 0.001) and length 

of stay (r = −0.67, p < 0.001). Experiments confirm that reducing the C/E ratio by 25% 

through optimized environmental design and activity arrangement can effectively 
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improve overall satisfaction by 18.5% (p < 0.001), providing quantitative indicators 

for ‘physiologically friendly’ rural tourism space design. 

As seen in Figure 3, tourists exhibited distinctly different molecular indicator 

patterns across different experience stages: in challenging terrain areas, stress-related 

cortisol levels increased significantly (+27.3%), reflecting increased physiological 

stress; during interactive experience activities, β-Endorphin concentration reached its 

peak (+43.2%), indicating significantly enhanced pleasurable emotions; during social 

interaction segments, oxytocin levels rose markedly (+22.7%), highly correlating with 

interpersonal satisfaction (r = 0.71). 

 

Figure 3. Dynamic changes of key molecular indicators during tourism experience. 

In scenic rest areas, cortisol levels decreased significantly (−18.6%), indicating 

that pleasant landscape environments effectively alleviate physiological stress. The 

purple bar chart represents satisfaction scores at each stage, showing trends clearly 

positively correlated with β-Endorphin and negatively correlated with cortisol levels. 

These findings suggest that molecular physiological indicators can objectively reflect 

tourists’ emotional states and experience quality during rural tourism, providing 

biological-level evidence for optimizing tourism experience design. 

4.2. Mobile technology and intelligent management system application 

effects 

4.2.1. Mobile technology usage behavior and effect analysis 

For the “BioPark” mobile application developed in this study, tourist usage 

behavior exhibited distinct spatiotemporal distribution characteristics. As shown in 

Table 4, each tourist used the application an average of 11.3 ± 2.7 times during a 2-

hour tourism activity, with a total usage time of 26.4 ± 5.6 min, accounting for 22.0% 

of the total experience time. Function access frequency analysis showed that the 

biological data visualization module (38.5%) and environmental information queries 

(27.3%) were the most frequently used functions, while personalized 

recommendations (18.6%) and interactive experiences (15.6%) had relatively lower 

usage rates. Notably, usage patterns demonstrated clear context dependency: in rest 
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areas, biological data viewing frequency exceeded the average level by 43.2% (p < 

0.01); in areas with concentrated scenic spots, environmental information queries 

increased by 36.7% (p < 0.01); in steeper areas, route recommendation function usage 

frequency increased by 58.4% (p < 0.001). Age-stratified analysis showed that the 

younger group (18–30 years) had significantly higher average usage frequency (14.7 

times) than the elderly group (over 60 years, 7.6 times, p < 0.001), but the elderly 

group had longer single-use duration (average 3.1 min) than the younger group (2.0 

min, p < 0.01). 

Table 4. Key indicators of mobile technology usage behavior and effects. 

Indicator category Specific indicator Value Significance of between-group differences 

Usage behavior Average usage frequency (times/2 h) 11.3 ± 2.7 Age difference p < 0.001 

 Average total usage time (min) 26.4 ± 5.6 Age difference p < 0.01 

 Biological data viewing proportion (%) 38.5% Context difference p < 0.01 

 Environmental information query proportion (%) 27.3% Context difference p < 0.01 

Function satisfaction Overall satisfaction (1–7 points) 5.4 ± 0.8 Gender difference n.s. 

 Biological data visualization (1–7 points) 5.8 ± 0.7 Function difference p < 0.01 

 Personalized recommendation (1–7 points) 4.9 ± 1.1 Function difference p < 0.01 

Impact pathways Information enhancement pathway (β coefficient) 0.63*** - 

 Experience optimization pathway (β coefficient) 0.58*** - 

 Interaction enhancement pathway (β coefficient) 0.49*** - 

 Satisfaction improvement magnitude (%) +18.7%*** Compared with control group 

***p < 0.001, **p < 0.01, *p < 0.05, n.s. = not significant. 

Mobile application function satisfaction assessment showed that tourists’ 

evaluations of different function modules varied significantly. The overall satisfaction 

score was 5.4/7 points, with the biological data visualization module receiving the 

highest satisfaction (5.8/7 points) and the personalized recommendation function 

receiving the lowest satisfaction (4.9/7 points). In detailed function satisfaction 

indicator evaluations, “information accuracy” (5.9/7 points) and “interface 

friendliness” (5.7/7 points) scored relatively high, while “level of personalization” 

(4.7/7 points) and “response speed” (4.8/7 points) scored relatively lower. Survey data 

showed that 82.7% of users considered biological data visualization “very helpful” for 

understanding their own condition, 76.3% of users indicated that environmental 

information queries “significantly enhanced their sense of security,” but only 57.8% 

of users believed that personalized recommendations were “highly matched with 

personal needs” [38]. Evaluations of real-time feedback on biomechanical parameters 

were particularly positive, with 89.3% of users stating that this helped them “timely 

adjust activity intensity” (mean 5.8/7 points, standard deviation 0.96), especially in 

complex terrain areas, where satisfaction scores increased by 0.7 points (p < 0.01). 

Structural equation modeling analysis revealed multiple pathways through which 

mobile technology usage influences tourism experience. As shown in Table 4, the 

three main impact pathways are: (1) Information enhancement pathway: 

Environmental information and biofeedback provided by mobile technology enhanced 

tourists’ perceived sense of control (β = 0.63, p < 0.001), thereby improving security 
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and satisfaction (indirect effect = 0.47, p < 0.001); (2) Experience optimization 

pathway: Personalized recommendations based on real-time biological data helped 

tourists optimize activity selection (β = 0.58, p < 0.001), reduce physiological load (β 

= −0.42, p < 0.01), and improve comfort (β = 0.51, p < 0.001); (3) Interaction 

enhancement pathway: Augmented reality functions enriched scenic spot interactive 

experiences (β = 0.49, p < 0.001) and promoted positive emotions (β = 0.56, p < 0.001). 

Mediation effect analysis indicated that perceived sense of control (mediation effect = 

0.37, p < 0.001) and physiological comfort (mediation effect = 0.33, p < 0.001) are 

key mediating variables for mobile technology’s impact on satisfaction. Comparative 

analysis showed that the mobile technology usage group with integrated biological 

data had 18.7% higher overall satisfaction (p < 0.001) and 23.4% longer dwelling time 

(p < 0.001) than the group with only scenic spot information, indicating that the 

combination of biomechanics and mobile technology significantly enhanced the 

tourism experience. 

Figure 4 illustrates a structured path analysis model of mobile technology’s 

impact on rural tourism experience. This model explains how mobile technology 

influences tourists’ overall satisfaction through three main pathways: (1) Information 

enhancement pathway: Mobile technology improves satisfaction (β = 0.51) by 

providing biofeedback information (β = 0.67) and increasing physiological comfort (β 

= 0.59); (2) control sense enhancement pathway: Mobile technology enhances 

tourists’ perceived sense of control (β = 0.63), improves sense of security (β = 0.71), 

thereby increasing satisfaction (β = 0.68); (3) experience optimization pathway: 

Mobile technology improves satisfaction (β = 0.49) through personalized 

recommendations (β = 0.58) that simultaneously reduce physiological load (β = −0.42) 

and enhance positive emotions (β = 0.56). 

 

Figure 4. Path analysis of mobile technology’s impact on rural tourism experience. 

In addition to these mediating pathways, mobile technology also has a significant 

direct effect on satisfaction (β = 0.24). The model fit indices (CFI = 0.94, TLI = 0.92, 

RMSEA = 0.057, SRMR = 0.043) indicate that this path analysis model has good fit, 

verifying that mobile technology comprehensively influences rural tourism experience 
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through multiple mechanisms. This model reveals key association mechanisms 

between biomechanical data, mobile technology, and tourist experience, providing a 

theoretical basis for optimizing rural tourism mobile application design. 

4.2.2. Operational efficiency evaluation of intelligent management system 

This study evaluated the operational efficiency of the “SmartRural” intelligent 

management system, focusing on system response speed and data processing 

accuracy. As shown in Table 5, the system’s average response time under different 

load conditions was 238.6 ± 42.3 milliseconds, far below the industry standard 

threshold of 500 milliseconds, with the biological data processing module responding 

fastest (186.4 ± 35.7 milliseconds) and the resource allocation module responding 

slowest (312.5 ± 58.2 milliseconds, p < 0.01). Under peak conditions (tourist density > 

70 people/hectare), response time increased by only 18.7%, indicating that the system 

has good load adaptability. Data accuracy tests showed that the system achieved a 

classification accuracy of 92.7% for biomechanical data, 94.5% for environmental 

condition recognition, and 88.6% for tourist behavior pattern recognition. Notably, the 

system’s effectiveness in biomechanical risk early warning in complex terrain areas 

reached 96.3% (sensitivity 94.2%, specificity 97.5%), significantly outperforming 

traditional manual monitoring methods (35.7% improvement, p < 0.001). In the system 

stability assessment, only 3 unplanned interruptions occurred during a 30-day 

continuous operation period, with an average repair time of 7.3 min, achieving 99.85% 

system availability. 

Table 5. Key indicators of intelligent management system operational efficiency. 

Evaluation dimension Indicator Value Improvement magnitude Significance 

System performance Average response time (ms) 238.6 ± 42.3 - - 

 Data classification accuracy (%) 92.7% +31.5% p < 0.001 

 System availability (%) 99.85% - - 

Resource optimization Facility usage efficiency improvement (%) +28.3% - p < 0.001 

 Human resource allocation efficiency (%) +21.4% - p < 0.01 

 Tourist waiting time reduction (%) −46.2% - p < 0.001 

Decision support Emergency response accuracy (%) 94.0% +48.3% p < 0.001 

 Decision time reduction (%) −67.2% - p < 0.001 

 Facility improvement suggestion matching degree (%) 87.5% +40.5% p < 0.01 

Management staff satisfaction Satisfaction (1–7 points) 5.8 ± 0.87 +42.6% p < 0.001 

The intelligent system demonstrated significant optimization effects on rural 

tourism resource allocation. The dynamic resource allocation model based on 

biomechanical data and environmental information achieved precise matching 

between service resources and tourist needs. Data showed that after system 

implementation, rest facility usage efficiency increased by 28.3% (p < 0.001), and 

average idle rate decreased by 35.6% (from 24.7% to 15.9%, p < 0.001). In terms of 

human resource allocation, the intelligent scheduling scheme based on biomechanical 

risk prediction improved staff deployment efficiency by 21.4%, with response time in 

high-risk areas shortened by 34.5% (from an average of 8.7 min to 5.7 min, p < 0.01) 

[39]. Tourist flow path optimization showed that system-recommended routes could 
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improve overall tourist movement efficiency by 17.6% and reduce waiting time in 

congested areas by 46.2% (p < 0.001). Regarding energy and material consumption, 

intelligent management achieved a 15.3% reduction in water usage and a 12.7% 

reduction in energy consumption, while tourist satisfaction increased by 13.6% (p < 

0.01), achieving dual optimization of resource utilization and service quality. The 

intelligent decision support system significantly enhanced the effectiveness of 

management decisions. Through biomechanical data and behavioral pattern analysis, 

the system provided data-driven decision support for managers. Comparative analysis 

showed that system-assisted decision-making outperformed traditional experience-

based decision-making in multiple aspects: Emergency event (such as tourist 

discomfort, environmental risks) response decision accuracy increased by 48.3% 

(from 63.4% to 94.0%, p < 0.001), and average decision-making time shortened by 

67.2% (from 4.5 min to 1.5 min, p < 0.001) [40]. In terms of long-term planning 

decisions, facility improvement suggestions based on historical biomechanical and 

behavioral data achieved a matching degree of 87.5% with actual needs, significantly 

higher than traditional survey methods (62.3%, p < 0.01). Management staff feedback 

showed that 91.4% of decision-makers believed that the biomechanical risk early 

warning provided by the system “greatly improved emergency response efficiency,” 

86.7% believed that the system’s resource optimization suggestions “significantly 

reduced operational costs,” and 83.2% stated that the data visualization function 

“made complex situations easier to understand and handle” (average score 5.8/7 

points, standard deviation 0.87). 

 

Figure 5. Comparative analysis of performance and decision-making efficiency 

between intelligent management systems and traditional management methods. 

Figure 5 illustrates the comparative analysis of performance and decision-

making efficiency between the intelligent management system and traditional 

management methods. The left chart compares system accuracy: in risk early warning, 

the intelligent system achieved 92.7% accuracy, 31.9 percentage points higher than 

the traditional method’s 60.8%; in emergency response, the intelligent system reached 

94.0% accuracy, 30.6 percentage points higher than the traditional method’s 63.4%; 
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in facility planning, the intelligent system’s suggestion matching degree reached 

87.5%, 25.2 percentage points higher than the traditional method’s 62.3%. The right 

chart compares response efficiency: decision-making time was reduced from 4.5 min 

with traditional methods to 1.5 min with the intelligent system, a 67.2% reduction; 

staff response time decreased from 8.7 min to 5.7 min, a 34.5% reduction; system 

processing time was reduced from 0.75 min to 0.24 min, a 68.0% reduction. Key 

indicators of resource optimization are displayed at the bottom of the chart: facility 

usage efficiency improved by 28.3%, personnel deployment efficiency increased by 

21.4%, and tourist waiting time decreased by 46.2%. 

4.2.3. User acceptance and satisfaction analysis 

Structural equation analysis based on the Technology Acceptance Model (TAM) 

framework revealed key factors influencing tourists’ adoption of mobile technology 

and intelligent management systems. As shown in Table 6, perceived usefulness (β = 

0.68, p < 0.001) was the strongest predictor, with biometric data feedback (weight = 

0.73), personalized recommendations (weight = 0.64), and safety prompts (weight = 

0.59) being the three core elements constituting perceived usefulness. Perceived ease 

of use (β = 0.57, p < 0.001) was the second strongest predictor, with interface 

intuitiveness (weight = 0.68) and operational simplicity (weight = 0.65) contributing 

the most. Notably, the comprehensibility of biomechanical and molecular data (β = 

0.42, p < 0.001) as a special factor significantly influenced technology acceptance 

[41]. Data privacy concerns were the main inhibiting factor (β = −0.35, p < 0.01), 

particularly concerns about biological data collection (weight = 0.71). Path analysis 

indicated that perceived usefulness indirectly influenced acceptance by enhancing the 

sense of experience control (mediation effect = 0.37, p < 0.001), explaining 47.3% of 

the variance. 

Table 6. Analysis of key indicators for technology acceptance and satisfaction. 

Dimension Indicator Value Impact strength Significance 

Acceptance influencing factors Perceived usefulness (β value) 0.68 Strong p < 0.001 

 Perceived ease of use (β value) 0.57 Moderate-strong p < 0.001 

 Data comprehensibility (β value) 0.42 Moderate p < 0.001 

 Privacy concerns (β value) −0.35 Moderate p < 0.01 

User group acceptance Middle-aged group (31–45 years) 5.7/7 points - - 

 Young group (18–30 years) 5.5/7 points - p > 0.05 

 Elderly group (> 60 years) 4.2/7 points - p < 0.001 

 Highly educated elderly group 5.1/7 points - p < 0.001 

Satisfaction and intention Overall satisfaction 5.4/7 points - - 

 Continued use intention 87.3% - - 

 Recommendation intention 74.5% - - 

 Additional payment willingness +14.7% - p < 0.01 

Significant differences in technology acceptance existed among different user 

groups. Age-tier analysis revealed an inverted U-shaped distribution: the middle-aged 

group (31–45 years) had the highest technology acceptance (average 5.7/7 points), 
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followed by the young group (18–30 years, 5.5/7 points), with the elderly group (> 60 

years) having the lowest acceptance (4.2/7 points, p < 0.001). Education level 

positively correlated with technology acceptance (r = 0.53, p < 0.001), but this 

relationship weakened after controlling for technology self-efficacy (partial 

correlation = 0.31, p < 0.05). Travel experience also significantly influenced 

acceptance, with frequent travelers (> 5 times per year) scoring 0.8 points higher than 

occasional travelers (1–2 times per year) (p < 0.01). Multivariate analysis of variance 

(MANOVA) revealed significant interaction effects of user characteristics: highly 

educated, experienced elderly tourists had significantly higher acceptance (5.1/7 

points) than less educated, less experienced elderly tourists (3.5/7 points, p < 0.001), 

indicating that personal background can moderate age effects. Cluster analysis 

identified three typical user types: active adopters (31.5%), cautious users (43.7%), 

and technology resisters (24.8%), with significant differences in function preferences 

and usage barriers among these groups [42]. User satisfaction evaluations of mobile 

technology and intelligent systems were generally positive, with an average 

satisfaction of 5.4/7 points. Multi-dimensional satisfaction assessment showed that 

biological data visualization had the highest satisfaction (5.8/7 points), followed by 

environmental information services (5.6/7 points) and intelligent navigation (5.5/7 

points), while personalized recommendations had relatively lower satisfaction (4.9/7 

points). Multiple regression analysis indicated that system usefulness (β = 0.52, p < 

0.001), data accuracy (β = 0.47, p < 0.001), and response speed (β = 0.38, p < 0.01) 

were the three key factors influencing satisfaction. Satisfaction was strongly positively 

correlated with continued use intention (r = 0.76, p < 0.001), exerting indirect 

influence through perceived value (mediation effect = 0.41, p < 0.001). Longitudinal 

surveys showed that 87.3% of users expressed willingness to continue using the 

system on their next trip, 74.5% were willing to recommend it to others, and purchase 

intention scored 4.8/7 points. Price sensitivity analysis indicated that users were 

willing to pay an additional average of 14.7% (p < 0.01) for services with biofeedback 

functionality, indicating that biomechanical data enhanced the perceived value of 

services. 

Figure 6 comprehensively illustrates the relationship between user 

characteristics and technology acceptance. The left chart shows technology acceptance 

comparisons across different age groups, with the middle-aged group (31–45 years) 

having the highest acceptance (5.7 points), followed by the young group (18–30 years, 

5.5 points), while the older group (46–60 years) had lower acceptance (4.8 points). 

The right chart provides an in-depth analysis of the interactive influence of education 

level and travel experience on technology acceptance, particularly highlighting the 

significant moderating effect of these factors on the elderly group: highly educated, 

experienced elderly people had much higher acceptance (5.1 points) than less 

educated, less experienced elderly people (3.5 points). 

The top-left panel displays key factors influencing technology acceptance, with 

perceived usefulness (β = 0.68) having the greatest impact, followed by perceived ease 

of use (β = 0.57) and data comprehensibility (β = 0.42). The bottom information bar 

summarizes user satisfaction (5.4 points) and behavioral intention indicators, 

including continued use intention (87.3%), recommendation intention (74.5%), and 

additional payment willingness (+14.7%). This comprehensive analysis reveals how 



Molecular & Cellular Biomechanics 2025, 22(5), 1784.  

25 

user characteristics influence the acceptance of mobile technology and intelligent 

systems, and how acceptance and use across different population groups can be 

promoted by enhancing perceived usefulness and ease of use and improving data 

comprehensibility, particularly considering educational background and travel 

experience differences in technology design for the elderly group. 

 

Figure 6. Analysis of user characteristics and technology acceptance. 

4.3. Synergistic mechanism and comprehensive effects 

4.3.1. Multi-system collaboration path analysis 

This study revealed the collaborative mechanism between mobile technology and 

intelligent management systems through structural equation modeling analysis. As 

shown in Table 7, technology-management collaboration is primarily realized through 

three pathways: (1) Data sharing pathway (path coefficient = 0.73, p < 0.001), where 

real-time biomechanical data and location information collected by mobile terminals 

flow directly to the management system, improving management decision accuracy 

by 37.5%; (2) function complementary pathway (path coefficient = 0.68, p < 0.001), 

where personalized services of mobile applications and resource allocation of the 

management system form a closed loop, increasing service matching by 42.6%; (3) 

information feedback pathway (path coefficient = 0.61, p < 0.001), where 

environmental monitoring and crowd flow analysis data from the management system 

are pushed to mobile terminals in real-time, optimizing user experience [43]. Cross-

lag analysis indicated that the time difference between management decisions and 

mobile application responses decreased from 8.7 min in the traditional model to 1.2 

min in the collaborative model (86.2% improvement, p < 0.001), demonstrating that 

the collaborative mechanism significantly improved system response speed. 
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Table 7. Multi-system collaboration pathways and effect analysis. 

Collaboration pathway type Specific pathway 
Path 

coefficient 
Effect enhancement Significance 

Technology-management collaboration Data sharing pathway 0.73 Decision accuracy +37.5% p < 0.001 

 Function complementary pathway 0.68 Service matching +42.6% p < 0.001 

 Information feedback pathway 0.61 Response time −86.2% p < 0.001 

Biodata-technology collaboration Personalized recommendation pathway 0.65 Comfort +23.8% p < 0.01 

 Risk warning pathway 0.71 Discomfort incidents −63.5% p < 0.001 

 Feedback regulation pathway 0.58 Physiological load −18.5% p < 0.01 

Multi-system integration Data-driven type 0.65 Efficiency baseline - 

 Service optimization type 0.63 Efficiency +7.2% p < 0.05 

 Resource allocation type 0.62 Efficiency +5.8% p < 0.05 

 Comprehensive collaboration type 0.82 Efficiency +26.3% p < 0.001 

Path analysis of collaboration between biomechanical and molecular-level data 

and mobile technology showed that they enhanced service precision through multi-

level interactions. (1) The bio-data-driven personalized recommendation pathway (β 

= 0.65, p < 0.001) matched real-time heart rate variability, energy consumption rate, 

and other physiological indicators with environmental characteristics to provide 

tourists with “physiologically friendly” route recommendations, increasing tourist 

comfort ratings by 23.8% (p < 0.01). (2) The risk warning collaboration pathway (β = 

0.71, p < 0.001) monitored biomechanical load and molecular stress indicators, issuing 

warnings before tourists reached critical thresholds (such as cortisol rise rate > 25%/h), 

reducing the incidence of discomfort by 63.5% (p < 0.001) [44]. (3) The feedback 

regulation pathway (β = 0.58, p < 0.01) enabled tourists to adjust activity intensity and 

rest frequency according to biological data feedback, reducing the overall 

physiological load index by 18.5%. These three collaborative pathways worked 

together to significantly strengthen the service adaptability of mobile technology, 

thereby enhancing user experience quality. Based on the above analysis, this study 

constructed a ternary collaborative integration model of biomechanical data, mobile 

technology, and intelligent management systems. Network analysis indicated that a 

high-density interaction network formed among the three systems (network density = 

0.78), with core nodes including biomechanical monitoring (centrality = 0.83), data 

analysis platform (centrality = 0.79), and mobile service interface (centrality = 0.76). 

Latent class analysis identified four collaborative patterns: (1) Data-driven type 

(accounting for 31.2%), centered on biological data analysis; (2) service optimization 

type (accounting for 28.6%), centered on mobile services; (3) resource allocation type 

(accounting for 24.5%), centered on intelligent management; (4) comprehensive 

collaboration type (accounting for 15.7%), with balanced development of the three 

systems [45]. Experimental comparisons showed that the comprehensive collaboration 

mode had the highest overall efficiency, with an average increase of 26.3% compared 

to other modes, particularly outstanding in user satisfaction (+32.4%, p < 0.001) and 

resource utilization efficiency (+29.7%, p < 0.001). Path analysis confirmed that the 

complete closed-loop pathway of biological data → mobile technology → 

management system → biological data (path coefficient = 0.57, p < 0.001) is key to 
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achieving optimal collaborative effects. 

To visually demonstrate the actual operating mechanisms of multi-system 

collaboration, the following case illustrates how data sharing, functional 

complementarity, and information feedback pathways work together in practice to 

enhance tourist experiences: On the steep flagstone path section of Huanglong Ancient 

Town in Sichuan, the system recorded a 65-year-old female tourist’s knee joint torque 

rapidly increasing by 28.7% within 10 min (from 1.12 to 1.44 Nm/kg), while cortisol 

levels rose by 22.3% and heart rate variability decreased by 18.5%, indicating 

physiological stress accumulation. (1) The data-sharing pathway was immediately 

activated—these biological indicators were transmitted in real-time to the intelligent 

management system, which determined this pattern as a fatigue risk precursor based 

on historical data (accuracy 93.4%); (2) the functional complementarity pathway 

operated synchronously—the management system detected two rest areas within a 

500-meter range, with the western pavilion currently at 87% crowding level and the 

eastern viewing platform at only 32%, automatically pushing navigation to the eastern 

rest point to the tourist’s mobile device; (3) the information feedback pathway 

completed the loop—the tourist received the information and proceeded to the 

recommended rest area, with the system monitoring that after the tourist arrived and 

stayed for 12 min, knee joint torque decreased by 31.2%, cortisol decreased by 18.7%, 

and physiological indicators returned to normal range. Meanwhile, the system 

recorded this successful intervention case and updated algorithm parameters, sending 

recommendations 5 min earlier the next time similar physiological characteristics were 

encountered, improving preventive intervention efficiency by 23.5%. The entire 

process took only 2.8 min, whereas in the traditional model, tourists might continue to 

bear high loads until obvious discomfort appeared (average 47.3 min) before seeking 

rest. This case verifies the extraordinary value of three-system collaboration: not only 

achieving early identification and precise intervention for potential risks, but also 

continuously optimizing system response parameters through data loops, creating 

intelligent experience enhancements impossible to achieve with a single system. 

Figure 7 illustrates the collaborative mechanism and efficiency analysis among 

biomechanical data systems, mobile technology, and intelligent management systems. 

The three main systems are interconnected in a triangular manner, with each 

connection pathway representing different collaborative mechanisms and their path 

coefficients. Between the biological data system and mobile technology, bidirectional 

interaction formed through personalized recommendation pathways (0.65***) and 

feedback regulation pathways (0.58**); between the biological data system and 

intelligent management system, data exchange was established through risk warning 

(0.71***) and function complementation (0.68***); between mobile technology and 

intelligent management systems, a closed loop formed through data sharing (0.73***) 

and information feedback (0.61***). The collaboration coefficient (0.82***) at the 

center of the figure indicates that comprehensive integration of the three systems 

produced significant synergistic effects. The right side shows performance 

improvement comparisons across four collaborative modes, with the comprehensive 

collaboration model improving by 26.3% compared to the baseline data-driven model, 

significantly outperforming the service optimization type (+7.2%) and resource 

allocation type (+5.8%) modes. The bottom of the figure summarizes four key 
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performance improvements brought by collaboration: a decision accuracy 

improvement of 37.5%, a discomfort incident reduction of 63.5%, a service matching 

increase of 42.6%, and a response time reduction of 86.2% [46]. This analysis reveals 

that multi-system collaborative integration not only improves the independent 

performance of each subsystem but also generates comprehensive benefits beyond the 

simple addition of single systems through inter-system collaborative pathways, 

providing a scientific basis for the integrated application of biomechanical data, 

mobile technology, and intelligent management in rural tourism. 

 

Figure 7. Multi-system collaborative mechanism and efficiency analysis. 

4.3.2. Differential collaborative effect assessment 

This research conducted a comparative analysis of the collaborative effects in 

different types of rural tourism activities. As shown in Table 8, the intensity of 

collaborative effects exhibits significant differences among various activity types. In 

sightseeing activities, the experience enhancement effect of the collaborative system 

was highest (collaborative gain rate 31.5%, p < 0.001), mainly manifested in biometric 

data-guided recommendations for optimal viewing points and optimization of stay 

duration. In experiential activities, the safety assurance effect was most prominent 

(risk incident reduction rate reached 72.3%, p < 0.001), with the synergistic effect of 

biometric indicators for early warning and intelligent management significantly 

improving the safety of high-intensity experience activities. In leisure activities, the 

improvement in resource utilization efficiency was most evident (facility usage 

efficiency increased by 46.7%, p < 0.001), with biometric data-supported personalized 

rest area recommendations and intelligent flow guidance creating a more balanced 

distribution of leisure facilities. Notably, in composite activities that integrate multiple 

types, the comprehensive collaborative effect index (0.78) was significantly higher 

than in single-type activities (average 0.62, p < 0.01), indicating that the collaborative 

system plays a greater role in complex and diverse scenarios. 
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Table 8. Comparison of collaborative system effects under different conditions. 

Classification dimension Specific category Main collaborative effect Effect intensity Significance 

Tourism activity type Sightseeing Experience enhancement effect +31.5% p < 0.001 

 Experiential Risk incident reduction −72.3% p < 0.001 

 Leisure Facility usage efficiency +46.7% p < 0.001 

 Composite Comprehensive index improvement 0.78 vs. 0.62 p < 0.01 

Tourist groups Elderly group Physiological load reduction −32.6% p < 0.001 

 Youth group Interaction satisfaction +24.3% p < 0.01 

 First-time visitors Navigation information acquisition +43.5% p < 0.001 

 Special needs tourists Accessibility improvement +52.8% p < 0.001 

Environmental conditions Complex terrain Comfort difference +65.3% p < 0.001 

 Adverse weather Early warning time advance +7.6 min p < 0.001 

 High visitor density Waiting time reduction −52.7% p < 0.001 

 Peak hours Flow control effectiveness 0.72 vs. 0.53 p < 0.01 

The effects of experiencing the collaborative system showed marked differences 

across different tourist groups. Age-stratified analysis indicated that elderly groups 

(above 60 years) benefited the most from the collaborative system (experience 

improvement index 0.73, p < 0.001), with biometric data-guided route optimization 

reducing their physiological load by 32.6% and increasing their sense of security by 

47.5%. In comparison, youth groups (18–30 years) were most sensitive to enhanced 

interactive experiences (satisfaction improvement rate 24.3%, p < 0.01). Categorized 

by tourism experience, first-time visitors showed significantly higher collaborative 

gains in navigation and information acquisition (43.5%, p < 0.001) compared to 

experienced visitors (21.8%). Notably, tourists with special needs (such as those with 

mobility difficulties) experienced a 52.8% improvement in accessibility ratings (p < 

0.001) with the support of the collaborative system, indicating that the combination of 

biomechanical data and intelligent guidance can effectively overcome physical 

barriers. Multi-dimensional group comparisons revealed that the interaction factors of 

health status and travel purpose had the greatest impact on collaborative effects 

(explaining 38.7% of variance, p < 0.001). 

Analysis of the moderating effect of environmental conditions on collaborative 

system efficiency indicated that system efficiency increases with environmental 

complexity. In areas with complex terrain (slopes > 15°), the biomechanical 

optimization effect of the collaborative system was most significant (comfort 

difference 65.3%, p < 0.001), primarily through real-time route adjustments to reduce 

physiological load [47]. Under adverse weather conditions (rain, high temperature), 

the early warning effectiveness was most notably improved (increased early warning 

time by 7.6 min, p < 0.001). In high visitor density environments (> 70 people/hectare), 

resource allocation optimization effects were prominent (waiting time reduced by 

52.7%, p < 0.001). Time factor analysis showed that the flow control effectiveness of 

the collaborative system during peak hours (10:00–14:00) (0.72) was significantly 

higher than during off-peak hours (0.53, p < 0.01). Seasonal comparisons showed that 

the collaborative gains in extreme weather seasons (summer heat, winter cold) (0.68) 

were higher than in favorable seasons (0.54, p < 0.05), indicating that the collaborative 
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system has greater value when addressing environmental challenges. The 

environment-visitor-system interaction model revealed that environmental complexity 

is a key moderating variable for collaborative effect intensity (moderating effect β = 

0.41, p < 0.001). 

4.3.3. Comprehensive impact of collaborative effects on tourism experience 

The collaborative effects of biomechanical data, mobile technology, and 

intelligent management systems have significantly enhanced the quality of rural 

tourism experiences. Comparative experimental results showed that the overall 

satisfaction score of the collaborative system group (5.84/7 points) increased by 28.1% 

compared to the baseline group (4.56/7 points) (p < 0.001). As shown in Table 9, 

multi-dimensional experience quality indicators all improved, with comfort showing 

the most significant improvement (+35.7%, p < 0.001), primarily due to route 

optimization and rest point recommendations guided by biometric data; sense of 

security improved secondarily (+32.5%, p < 0.001), attributed to real-time risk 

warnings and rapid response from the management system; and convenience of 

experience improved (+26.8%, p < 0.01) mainly from information integration between 

mobile terminals and the management system. Path analysis indicated that 

physiological comfort (β = 0.43, p < 0.001), perceived sense of control (β = 0.38, p < 

0.001), and information accessibility (β = 0.34, p < 0.01) are the three key mediating 

variables through which the collaborative system affects experience quality, 

collectively explaining 71.5% of the variance in experience quality improvement. 

Table 9. Comprehensive analysis of collaborative system impact on tourism experience. 

Impact dimension Specific indicator Control group 
Experimental 

group 

Improvement 

magnitude 
Significance 

Experience quality Overall satisfaction (1–7 points) 4.56 5.84 +28.1% p < 0.001 

 Comfort rating (1–7 points) 4.32 5.86 +35.7% p < 0.001 

 Security rating (1–7 points) 4.65 6.16 +32.5% p < 0.001 

 Convenience rating (1–7 points) 4.78 6.06 +26.8% p < 0.01 

Stay and consumption Average stay duration (min) 104 142 +36.4% p < 0.001 

 Per capita consumption (yuan) 268 342 +27.6% p < 0.001 

 Experience-type consumption (yuan) 95 129 +35.8% p < 0.001 

 Food and beverage consumption (yuan) 89 111 +24.7% p < 0.01 

Behavioral intentions Revisit intention (1–7 points) 4.78 5.92 +23.8% p < 0.001 

 Recommendation intention (1–7 points) 4.65 5.98 +28.6% p < 0.001 

 Actual revisit rate (%) 21.6% 38.4% +77.8% p < 0.01 

The collaborative system had a positive impact on visitor behavior, particularly 

in terms of extended stay duration and increased consumption. Regarding stay 

duration, the collaborative system group’s average stay time increased by 36.4% 

compared to the control group (from an average of 104 min to 142 min, p < 0.001), 

with a more reasonable allocation at high-quality scenic spots, and an increase in dwell 

time at hotspot attractions by 47.2% (p < 0.001). In terms of consumption behavior, 

the collaborative system group’s per capita consumption increased by 27.6% 

compared to the control group (from an average of 268 yuan to 342 yuan, p < 0.001), 
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with experience-type consumption showing the largest increase (+35.8%, p < 0.001), 

followed by food and beverage consumption (+24.7%, p < 0.01), and product 

purchases showing the smallest increase (+17.3%, p < 0.05). Multiple regression 

analysis showed that for every 10% improvement in biomechanical comfort, stay 

duration extended by 6.8% (p < 0.01) and consumption increased by 5.2% (p < 0.05); 

while for each additional personalized recommendation based on biometric data, the 

probability of tourists accepting the recommendation increased by 23.5% (p < 0.001), 

with a corresponding 18.7% increase in consumption probability (p < 0.01). 

Analysis of the collaborative system’s influence on tourists’ future behavioral 

intentions indicated that it has a significant predictive effect on revisit intention. The 

experimental group’s revisit intention score (5.92/7 points) increased by 23.8% 

compared to the control group (4.78/7 points) (p < 0.001), with recommendation 

intention showing an even more significant improvement (+28.6%, p < 0.001). 

Structural equation modeling analysis revealed that the collaborative system 

influences revisit intention through three main pathways: experience quality pathway 

(indirect effect = 0.38, p < 0.001), perceived value pathway (indirect effect = 0.33, p 

< 0.001), and emotional connection pathway (indirect effect = 0.29, p < 0.01). Among 

these, improvement in biomechanical indicators (β = 0.42, p < 0.001) was the strongest 

predictor of revisit intention, indicating that enhancement of physiological comfort 

plays a crucial role in tourists’ future decision-making. A longitudinal follow-up 

survey (n = 157, after 6 months) validated this predictive effect, with the collaborative 

system experience group’s actual revisit rate (38.4%) being 77.8% higher than the 

control group’s (21.6%) (p < 0.01), confirming the long-term impact of the 

collaborative system on revisit behavior. 

5. Discussion 

5.1. Practical application value of research results 

The findings of this study provide a scientific basis and innovative ideas for rural 

tourism space optimization. Based on biomechanical data analysis, it is recommended 

that rural tourism planning should adopt “physiologically friendly” design principles, 

specifically including: (1) Designing a gradient system of touring routes according to 

biomechanical parameter differences among different populations, such as providing 

low-load routes for elderly tourists with slopes < 10° and rest points every 300–500 

meters; (2) using biomechanical heat map technology to identify high-load areas and 

prioritizing the placement of ergonomic rest facilities in these locations to effectively 

reduce tourists’ cumulative fatigue; (3) scientifically arranging landscape nodes based 

on patterns of molecular physiological indicator changes, adding open landscapes or 

relaxation spaces in areas where cortisol levels tend to rise, and setting up experience 

projects at peak endorphin level locations [48]; (4) implementing humanized 

modifications to existing facilities through the tourist biomechanical load and spatial 

environment relationship model, such as converting ordinary steps into compound 

structures with gentle slopes and steps in parallel, allowing tourists of different age 

groups to find the most suitable activity mode, achieving a transformation from 

“landscape-oriented” to “human adaptability-oriented” planning concepts. 

Regarding the application of mobile technology in rural tourism, this study 
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proposes the following precise implementation strategies: (1) Establishing 

individualized biometric data configuration profiles to enable mobile applications to 

automatically adjust service parameters based on tourists’ age, health conditions, and 

immediate physiological state, such as prioritizing low-load routes and rest point 

information for elderly tourists; (2) constructing a “perception-feedback-regulation” 

closed-loop system that immediately pushes micro-rest suggestions when abnormal 

biometric indicators are detected (such as heart rate variability decreasing by more 

than 20%) while simultaneously alerting the management system; (3) adopting a tiered 

push strategy that categorizes information into three levels: necessary (safety 

warnings), beneficial (environmental information), and enhancing (landscape 

interpretation), dynamically adjusting push frequency and content density according 

to tourists’ attentional resource states; (4) deploying a context-aware engine that 

combines biometric data with environmental information and behavioral patterns to 

achieve predictive judgment of tourist needs, such as predicting rest requirements 

through biomechanical fatigue indices and pushing relevant service information 5–10 

min in advance, effectively improving service timeliness. 

In light of the research results, future optimization of intelligent management 

systems should develop in the following directions: (1) Establishing a multi-source 

data fusion platform to conduct spatio-temporal correlation analysis of biomechanical 

data, environmental monitoring data, and behavioral trajectory data, constructing a 

“human-environment-behavior” three-dimensional digital model to provide a 

panoramic view for management decisions; (2) developing adaptive resource 

allocation algorithms that adjust service resource distribution 10–30 min in advance 

based on tourist flow trends predicted by biometric indicators, improving human 

resource allocation efficiency by more than 25%; (3) constructing a risk-graded early 

warning mechanism that categorizes biometric abnormalities into three levels—

reminder, intervention, and emergency—adopting corresponding measures for 

different levels, shifting from passive response to proactive prevention; (4) designing 

a closed-loop optimization system that continuously collects tourist biofeedback data 

and experience evaluations to iteratively optimize management strategies, forming a 

“monitoring-analysis-adjustment-verification” cyclical improvement path to achieve 

continuous evolution of the management system. Through the above optimizations, 

the intelligent management system will transform from a simple information 

processing platform into an intelligent decision support system that integrates 

biometric data. 

5.2. Analysis of research limitations 

This study has certain limitations at the technical application level. (1) Although 

wearable biomechanical monitoring devices were designed to be lightweight, they still 

had some impact on tourists’ natural activities, with some participants (17.3%) 

reporting discomfort during device wear, which may have interfered with behavioral 

data. (2) Signal transmission stability faced challenges in complex outdoor 

environments, with brief data loss (average packet loss rate 5.8%) occurring in areas 

such as canyons and dense forests, affecting the completeness of environment-

biomechanical correlation analyses. (3) Real-time data interaction between mobile 
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applications and the intelligent management system was limited by network 

infrastructure, with synchronization delays (average delay 4.7 s) occurring in areas 

with poor network coverage (approximately 18.5% of the research area), weakening 

the immediate response capability of the collaborative system in extreme situations 

[49]. (4) The battery life of biomechanical monitoring devices (average 6.4 h) limited 

continuous tracking of full-day experiences, and large-scale deployment of the system 

also faced cost challenges (approximately 3800 yuan per set), constraining the 

promotion and application of the technology in low-income rural areas. 

Despite using a multi-case design and applying stratified sampling methods, the 

representativeness of the sample still had certain limitations. The research subjects 

were mainly concentrated in 8 rural tourism sites across three provinces in eastern, 

central, and western China, with insufficient geographical coverage to fully reflect the 

diversity characteristics of rural tourism nationwide. In terms of sample composition, 

although gender ratios were balanced, the proportion of elderly groups over 60 years 

old was relatively low (12.6%), yet these groups are precisely the ones highly 

dependent on biomechanical optimization. Additionally, tourists who voluntarily 

participated in the research may have had more open attitudes toward new technology, 

creating self-selection bias; excessive exclusion of individuals with poor physiological 

conditions (exclusion rate 15.2%) may also have resulted in higher-than-average 

health levels in the sample [50]. Seasonal limitations were also evident, as the research 

was mainly conducted during spring and summer, lacking verification of collaborative 

effects under extreme climate conditions in autumn and winter. These factors 

collectively limited the generalizability of the research results to different 

geographical areas, population groups, and seasonal conditions. 

From a traditional rural tourism planning perspective primarily based on 

landscape aesthetics and economic benefits, this research reveals that biomechanical 

adaptation strategies and molecular physiological response patterns suggest that the 

physiological foundations of tourist experiences should become the primary 

consideration in planning and design. Specifically, micro-design adjustments 

supported by biomechanical data (such as gentle slope designs to reduce knee joint 

torque in steep areas, and surface material selection optimized based on plantar 

pressure distribution) can directly translate into practical measures to enhance 

experiences. Molecular indicator and scene correlation analysis (such as optimizing 

rest point layout based on endorphin peak periods) provides objective evidence for 

emotional design. Simultaneously, we clearly recognize the limitations of this study: 

(1) Regional limitations, as the research only covers eight destinations across three 

provinces, with applicability to extreme climate regions (such as high-altitude cold or 

high-temperature areas) yet to be verified; (2) cultural difference impacts, as 

physiological response patterns may vary among tourists from different cultural 

backgrounds, with this study primarily focusing on domestic tourists, thus cross-

cultural applicability requires further research; (3) seasonal restrictions, as 

experiments were mainly conducted during spring and summer, with low-temperature 

environments in autumn and winter potentially triggering different biomechanical 

adaptation strategies; (4) technological dependency, as the collaborative system’s 

effectiveness is based on specific technology platforms, facing implementation 

challenges in areas with weak technological infrastructure. These limitations suggest 
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that future research should expand geographical and seasonal coverage, increase cross-

cultural comparisons, and explore implementation schemes suitable for different 

technological conditions. 

6. Conclusion and prospects 

6.1. Research conclusions 

(1) This study confirms the unique value of biomechanical and molecular-level 

evaluation in rural tourism experience research. Through systematic monitoring and 

analysis of tourists’ biomechanical parameters (joint load, energy consumption, 

postural stability, etc.) and molecular physiological indicators (cortisol, β-Endorphin, 

heart rate variability, etc.), an objective measurement system for tourism experience 

evaluation was established, breaking through the limitations of traditional subjective 

evaluation methods. The research found that biomechanical load index is significantly 

correlated with subjective comfort ratings (r = −0.64, p < 0.01), and the change 

patterns of molecular physiological indicators can accurately predict experience 

quality (prediction accuracy 83.6%). In particular, the quantitative analysis of tourists’ 

biomechanical adaptation strategies (such as gait adjustments on steep slopes) and 

physiological stress responses (such as a cortisol increase of 27.3%, p < 0.001) under 

different environmental conditions provides a scientific basis for tourism environment 

design and activity arrangements, achieving a methodological transformation from 

“perceived evaluation” to “physiological evidence,” opening new perspectives and 

pathways for tourism experience research. 

(2) The research reveals a triple collaborative mechanism between mobile 

technology and intelligent management systems. First is the data sharing pathway 

(path coefficient 0.73, p < 0.001), where real-time biomechanical data and location 

information collected through mobile terminals flow to the management system, 

improving decision accuracy by 37.5%; second is the functional complementary 

pathway (path coefficient 0.68, p < 0.001), where personalized services of mobile 

applications and resource allocation of management systems form a closed loop, 

increasing service matching by 42.6%; third is the information feedback pathway (path 

coefficient 0.61, p < 0.001), reducing the time lag between management decisions and 

mobile application responses from 8.7 min to 1.2 min (improvement of 86.2%, p < 

0.001). This collaborative mechanism transforms one-way technology application into 

a multi-directional interactive system, creating added value effects beyond the addition 

of single systems, confirming the systematic value of technology-management 

collaboration for rural tourism service enhancement. 

(3) The research empirically demonstrates the multi-dimensional promotional 

effects of integrating biomechanical data, mobile technology, and intelligent 

management systems on rural tourism development. (1) At the tourist experience level, 

the collaborative system significantly improved experience quality (overall 

satisfaction +28.1%, p < 0.001), with the most pronounced effects in comfort (+35.7%, 

p < 0.001) and sense of security (+32.5%, p < 0.001). (2) At the economic benefit 

level, the collaborative system extended tourists’ stay duration (+36.4%, p < 0.001) 

and increased per capita consumption (+27.6%, p < 0.001), with the most notable 

improvement in high-value experience-type consumption (+35.8%, p < 0.001). (3) At 
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the sustainable development level, the collaborative system optimized tourist flow and 

resource allocation, improving facility usage efficiency (+46.7%, p < 0.001) and 

reducing environmental load. Most importantly, the system’s significant promotion of 

tourists’ revisit intention (+23.8%, p < 0.001) and actual revisit rate (+77.8%, p < 0.01) 

laid the foundation for the long-term sustainable development of rural tourism. The 

research confirms that multi-system collaborative integration not only optimizes the 

short-term operational effects of rural tourism but also provides technical support and 

methodological pathways for building its long-term competitiveness. 

6.2. Practical recommendations 

Based on the biomechanical and molecular-level data analysis results of this 

study, it is recommended that rural tourism planning and design should shift toward a 

“physiologically friendly” spatial layout mode. (1) A biomechanical load gradient 

principle should be adopted for route design, establishing multi-level difficulty path 

systems according to differences in tourist carrying capacity (knee joint load in elderly 

tourists is 32.6% higher than in younger groups) and placing ergonomically designed 

rest facilities at points of measured high physiological load (such as areas with slopes > 

15°), with design parameters based on biomechanical test data rather than experiential 

estimates. (2) Optimize scenic spot layouts according to patterns of molecular 

indicator changes (such as endorphin release peaks occurring 12–15 min after 

experience activities), set up interactive experience projects at emotional peak 

positions, and add soothing landscape nodes in areas where cortisol levels tend to rise 

(approximately 100–150 m after load increase points). (3) Apply biomechanical heat 

map technology to identify stress points and comfort zones in existing rural tourism 

spaces, reconstructing tour routes and service facility layouts accordingly, and actively 

intervening in tourist experience quality through precise environmental adaptation 

measures (such as adding shaded rest spaces at points of high physiological stress). 

Based on the biomechanical and molecular-level data analysis results of this 

study, rural tourism planning and design should shift toward a ‘physiologically 

friendly’ spatial layout pattern, with the following specific implementation guidelines 

provided: (1) Route system hierarchical design: Establish a three-tier route network 

based on biomechanical data—Level A routes (slope < 8°, surface hardness < 40 

Shore, rest points averaging every 200 m) suitable for elderly and family tourists; 

Level B routes (slopes 8°–15°, rest point intervals of 300–400 m) suitable for general 

adults; Level C routes (allowing short-distance slopes > 15°, rest point intervals of 

500–700 m) meeting challenging demands. Each level of route should be equipped 

with corresponding signage indicating knee joint load index and detailed guidance at 

intersections. (2) Spatial node layout optimization: Based on molecular indicator 

change patterns, construct a ‘stress-release-pleasure’ three-phase experience 

sequence—establish ‘physiological buffer zones’ in high cortisol areas (after steep 

slopes, after complex navigation points), equipped with ergonomic rest facilities (seat 

height 40–45 cm, backrest angle 100°–105°); arrange interactive displays or specialty 

product sales points during endorphin level peak periods (8–15 min after activity 

experiences); increase semi-open gathering spaces in social interaction areas to 

promote oxytocin release. (3) Terrain adaptive design: Steep slope sections should 
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adopt a ‘steps + gentle slope’ parallel design, allowing tourists with different walking 

abilities to choose; surface material selection should be based on biomechanical 

testing, prioritizing composite materials with a shock absorption coefficient > 40%; 

rest areas should provide multi-height seating (35–50 cm) to meet the needs of people 

of different heights; observation platform design should consider sight line height 

diversity, ensuring good views for tourists of all age groups. (4) Intelligent micro-

environment creation: In areas where physiological data indicates stress peaks, add 

natural soundscapes (such as water sounds) and aromatic plants, which testing shows 

can reduce cortisol levels by 12.6%; optimize lighting and ventilation in rest areas, 

maintaining 500–1000 lux light intensity and gentle breeze environments, helping 

rapid recovery of physiological indicators. The above design guidelines have been 

pilot implemented in Moganshan, Zhejiang, increasing tourist comfort ratings by 

24.3% (p < 0.001) and extending average stay time by 46.7% (p < 0.001). 

Regarding technology application and management aspects, it is recommended 

to construct an intelligent service closed-loop system centered on biometric data. (1) 

Mobile application design should establish personalized configuration mechanisms, 

automatically adjusting information density and push frequency through simple user 

profile collection (age, health status, travel experience), and setting biomechanical 

data visualization modules as core functions to facilitate tourists’ real-time 

understanding of their own status. (2) Intelligent management systems should deploy 

predictive resource allocation algorithms to anticipate changes in tourist needs 10–30 

min in advance based on biometric data analysis, prioritizing service resource 

allocation in high-risk areas (locations with biomechanical load index > 70). (3) 

Establish a three-level risk warning mechanism, categorizing biometric abnormalities 

into reminder level (slight deviation of a single indicator), intervention level 

(simultaneous deviation of multiple indicators), and emergency level (indicators 

exceeding safety thresholds), adopting progressive response strategies. Most crucially, 

a technology-management collaborative evaluation system should be constructed, 

regularly collecting the matching degree between biometric data and subjective 

evaluations, ensuring that technology applications always closely align with changes 

in tourists’ actual needs through continuous iterative optimization of service 

parameters. 

At the policy level, support for biomechanical, data-driven, intelligent 

development of rural tourism is recommended in the following aspects. (1) Establish 

new standards for rural tourism suitability evaluation, incorporating biomechanical 

adaptability indicators (such as route physiological load index and facility ergonomic 

scores) into the tourism product grading evaluation system, guiding the industry to 

shift from landscape orientation to human adaptability orientation. (2) Set up special 

support funds for “Smart Rural Tourism,” focusing on supporting infrastructure 

renovation and intelligent system construction based on biomechanical data, lowering 

the threshold for technology application, and prioritizing support for adaptive projects 

serving special groups (elderly, children, individuals with mobility difficulties). (3) 

Improve data collection and usage regulations while encouraging innovative 

applications, strictly protecting tourist biometric data security, and clarifying data 

processing boundaries and anonymization requirements. (4) Establish a collaborative 

innovation mechanism involving industry, academia, research, and application, 
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supporting cooperation between interdisciplinary research teams and rural tourism 

practitioners, promoting the standardization and productization of biomechanical 

evaluation technology, accelerating the transformation of scientific research results 

into industrial applications, and forming a complete innovation chain from basic 

research to practical application. 

Based on the findings of this study, we suggest that future research should expand 

in-depth along the following five specific directions: (1) Conduct longitudinal tracking 

studies over 3–5 years to systematically evaluate the long-term impact of 

biomechanical optimization and technological synergy on tourist satisfaction, loyalty, 

and economic benefits at rural tourism destinations, with special attention to dynamic 

changes across different seasons and the evolution of tourist behavioral patterns; (2) 

Adopt experimental-control designs to empirically validate the ‘physiologically 

friendly’ spatial design principles proposed in this study at different types of rural 

tourism locations, quantitatively assessing changes in tourists’ biomechanical load and 

experience quality before and after optimization; (3) Expand cross-cultural 

comparative research, examining physiological response differences among tourists 

from various cultural backgrounds, and establishing culturally adaptive biomechanical 

evaluation standards; (4) Explore in depth the combined application of biofeedback 

technology and intelligent environmental regulation, developing adaptive rural 

tourism systems capable of automatically adjusting service parameters according to 

tourists’ real-time physiological data; (5) Establish a rural tourism biomechanics big 

data platform, integrating biological data from multiple regions, populations, and 

scenarios to provide data foundation and decision support for the precise, personalized, 

and intelligent development of rural tourism. These forward-looking studies will 

further expand the application boundaries of biomechanics and intelligent technology 

in the tourism field, promoting the development of rural tourism toward more 

scientific and humanized directions. 

Regarding regional limitations, this study only covers eight rural tourism 

destinations across three provinces in China, and the applicability of its results in other 

geographical and cultural contexts needs careful consideration. The differences that 

may arise from different regional backgrounds are mainly manifested in: (1) Climate 

environment differences—this study was conducted in temperate monsoon climate 

zones; in extreme climate regions (such as severe cold areas in Northern Europe or 

high-temperature arid areas in the Middle East), tourists’ biomechanical adaptation 

strategies and molecular physiological responses may differ significantly, such as in 

high-cold environments, where energy metabolic rates may increase by 35%–50% and 

joint range of motion may decrease by 15%–20%, requiring substantial adjustment of 

system parameters; (2) Cultural behavioral pattern differences—tourists in East Asian 

cultural backgrounds generally tend toward collective experiences (team proportion 

reaching 62.7%), while Western cultural backgrounds have a greater proportion of 

individualized, adventurous experiences (independent travel proportion reaching 

78.5%), which would alter human flow distribution patterns and intelligent 

management strategies; (3) Regional differences in technology acceptance—Chinese 

tourists have high smartphone penetration rates (98.3% in the study sample) and strong 

mobile payment habits; in areas with weak technological infrastructure, system 

implementation needs to lower technological barriers and may require increased 
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public equipment support; (4) Geographical and topographical uniqueness—

biomechanical load patterns in special environments such as karst terrain, deserts, and 

snow mountains have essential differences from the terrains included in this study, 

requiring the establishment of specialized evaluation parameters. Therefore, when 

applying the results of this study in different rural tourism environments globally, 

adaptive adjustments need to be made according to the local natural environment, 

cultural background, and infrastructure conditions. It is recommended to conduct 

small-scale localized adaptation tests before implementation to adjust system 

parameters to match regional characteristics. 

Extending beyond the aforementioned research directions, the following specific 

research questions are proposed to extend the theoretical depth and application breadth 

of this study: (1) Research on the long-term health effects of rural tourism 

biomechanical load: By tracking joint health status, bone density changes, and balance 

ability development of rural tourism participants at different frequencies, explore the 

positive role of moderate biomechanical stimulation in chronic disease prevention 

among middle-aged and elderly populations, establish a ‘healthy dose-response’ 

curve, and provide scientific basis for health-oriented rural tourism; (2) research on 

expanding the comprehensive evaluation system of molecular indicators: Beyond 

cortisol and β-Endorphin focused on in this study, explore how more comprehensive 

neurotransmitter combinations such as dopamine (related to reward expectation), 

oxytocin (related to social connection), and serotonin (related to emotional stability) 

collectively shape the emotional dimensions of tourism experiences, and develop 

‘molecular fingerprint’ identification models to predict individual experience 

preferences; (3) research on biomechanical-psychological-social integration models: 

Explore the interaction mechanisms between biomechanical load, molecular 

responses, psychological perception, and social interaction; construct a multi-level 

integrated theoretical framework for tourism experiences, breaking traditional barriers 

in physiological-psychological research; (4) research on contextual intelligence and 

biological adaptive technology: Develop intelligent systems capable of actively 

adjusting environmental parameters (such as lighting, sound, and temperature) 

according to real-time biological data, achieving dynamic mutual adaptation between 

tourists and the environment, and exploring the potential of ‘biomechanically-driven 

environmental regulation mechanisms’ in enhancing inclusive experiences, especially 

the service enhancement effect for people with special needs. These research questions 

not only expand the intersectional boundaries between tourism studies and biological 

sciences but also open new theoretical and practical pathways for ‘tourism experience 

design from a biomechanical perspective’. 
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