
Molecular & Cellular Biomechanics 2024, 21(1), 305. 

https://doi.org/10.62617/mcb.v21i1.305 

1 

Article 

Using wearable technology to optimize sports performance and prevent 

injuries 

Zehao Yang
1,2

 

1 School of Physical Education, North University of China, Taiyuan 030051, Shanxi, China; yangzehao2024@163.com 
2 Yongin University, Yongin 17092, South Korea 

Abstract: Purpose: Wearable devices, as emerging computing platforms, have gradually 

penetrated into people’s daily life, especially in the field of medical health management 

showing excellent potential. Methods Motion state recognition is performed by deep fusion 

CNN-LSTM model, CNN is used to obtain the most representative feature information 

characteristics of the local space of the motion data, while the LSTM layer is used to capture 

the long-term temporal correlation of these local features, and both of them are combined to 

obtain the more representative temporal-spatial correlation transportation state feature 

information implicit in the wearable gait data. An injury prevention method for exercise 

example parameters is designed, including patient training load characterization, and a Bi-

LSTM network structure is used to design lightweight acceleration features to predict 

abnormalities in exercise physiological indicators. Results: Monitoring parameters such as 

heart rate rise slope, 1-minute heart rate recovery value, blood oxygen drop area, and 1-

minute oxygen saturation recovery value, the false alarm rate of wearable device health data 

warning were kept at 2.55%. After exercise status and detected abnormalities in physiological 

parameters, personalized breathing training was performed, and the contribution ratio of 

abdominal breathing increased by 27% after training, and the patient’s heart rate decreased 

by 8.5 bpm and oxygen saturation increased by 2.4% compared to the pre-training period. 

Conclusion: The methodology in this paper can be more comprehensively optimized for 

sports performance and injury prevention, and is widely applicable in practical applications. 

Keywords: wearable devices; motion state recognition; local features; temporal-spatial 

correlation; exercise physiological metrics 

1. Introduction 

With the rapid development of science and technology and the deepening of 

medical research, the application of wearable technology in the field of sports 

medicine and health management has received increasing attention [1,2]. Traditional 

medical research methods often rely on doctors’ experience and patients’ self-

description, while traditional manual methods are increasingly limited in terms of 

sports status monitoring and injury prevention. Currently, with the continuous 

integration of sensors and advanced algorithms, wearable devices have evolved from 

the initial basic health monitoring devices, such as smart bracelets and watches, to 

today’s smart sports equipment that integrates complex sensors and advanced 

algorithms [3,4]. Especially in sports science, rehabilitation medicine, and sports 

injury prevention, wearable technology helps doctors to more accurately assess 

patients’ exercise status and training loads, and provides a scientific basis for the 

prevention of sports injuries and the development of rehabilitation programs [5]. 
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The purpose of this paper is to explore the optimization of sports performance 

and prevention of sports injuries based on wearable technology by combining CNN 

and LSTM in deep learning. Firstly, the local spatial features of the most data 

obtained by convolutional neural network and the temporal correlation of the 

intrinsic features of the data obtained by the long and short-term memory neural 

network model are utilized to effectively explore the temporal and spatial gait 

features of wearable sensing time-series gait data that are closely related to the 

changes of gait patterns, so as to improve the performance of classifying the 

movement state patterns. Subsequently, an innovative injury prevention method for 

exercise example parameters is highlighted. By describing the patient training load 

characteristics in detail and predicting the abnormalities of exercise physiological 

indexes using the Bi-LSTM network structure, the physiological parameter 

abnormality warning algorithm based on these characteristics set in the Bi-LSTM 

network structure realizes the accurate description of the patient training load and the 

timely warning of the potential injury risk. Finally, the effectiveness of the 

previously proposed method is verified through experiments. Experimental 

validation is used to assess the practical effectiveness of the method in optimizing 

exercise performance and preventing injuries, including the monitored physiological 

parameters such as heart rate rise slope, 1-minute heart rate recovery value, blood 

oxygen drop area, and 1-minute oxygen saturation recovery value, etc., and to 

analyze the false alarm rate of the health data warning of wearable devices. Finally, 

the potential application potential of wearable devices in the field of medical health 

management in the future is explored. Through the discussion in this paper, we 

expect to provide new references and insights for researchers and practitioners in the 

field of medical exercise science. 

2. Related works 

In recent years, several scholars have conducted in-depth research on the 

optimization of practical applications of wearable technology. In particular, 

significant progress has been made in practical application optimization, health 

monitoring and disease diagnosis. For example, Lown et al. utilized wearable 

technology and machine learning algorithms to detect the feasibility and 

effectiveness of atrial fibrillation, also known as AF, by designing a new AF 

detection algorithm using a de-correlation Lorenz plot of 60 consecutive RR 

intervals. Combined with wavelet transform for optimization as input data, the user’s 

ECG signals are continuously monitored by wearable devices such as smart watches 

and bracelets to identify the occurrence of AF in real time or near real time [6]. Yuan 

et al. performed a multi-objective optimization considering power density, material 

consumption and power matching for wearable electronic devices to achieve 

intelligent power management and data monitoring, which will be used in wearable 

electronic devices for use in personal health care [7]. Smuck et al. in their study 

pointed out that wearable devices in clinical care, the potential is very obvious to 

provide technical support to doctors and personalized experience to patients [8]. 

Rajinikanth et al. focused on monitoring tic episodes in patients with Tourette 

Syndrome using machine learning and wearable technology. A wearable wristband 



Molecular & Cellular Biomechanics 2024, 21(1), 305.  

3 

device called TSBand, which integrates multiple sensors and machine learning 

algorithms, was designed to monitor tic attacks and notify caregivers when an attack 

occurs. The TSBand is used to identify tic attacks by monitoring metrics such as 

movement, heart rate, sweating, and body temperature, combined with localized 

abnormality factors and regression algorithms. In addition, the device contains audio 

tic attack detection mechanism using recurrent neural network with manually 

activated backup button and audio mechanism to notify the hospital caregivers in the 

application in a highly efficient manner [9]. Xie et al. stated that the use of Artificial 

Intelligence to provide intelligent recommendations for diagnosis and treatment of 

diseases by analyzing the patient’s physiological data from the wearable device. 

Combining organizational and analytical data to achieve the ultimate goal of 

improving chronic disease management can enhance the efficiency of monitoring, 

diagnosing, and treating chronic diseases, thereby improving patients’ health and 

quality of life [10]. Ferguson et al. emphasized the importance of wearable 

technology in monitoring the heart health of older adults through the integration of 

advanced sensors and semi-structured focus group interviews for a descriptive 

qualitative study, wearable devices are able to monitor patients’ heart rate, step count, 

exercise intensity and other key indicators in real time. Timely physiological 

feedback and early warning systems can also effectively prevent sports injuries and 

safeguard the health and safety of patients [11]. Jin et al. mainly investigated the 

drawbacks of wearable devices and discussed the feasibility of edge computing to 

improve the drawbacks from four aspects, namely, computational scheduling, 

information perception, energy saving and security [12]. 

In summary, although these research results have made significant progress in 

the fields of health monitoring, disease diagnosis and personalized medicine, many 

of them focus on a single type of data, such as heart rate, blood pressure or a single 

type of features, such as spatial features or temporal features, which leads to the 

limited generalization ability of the models in complex scenarios. Therefore, in this 

paper, we propose to solve the limitation of single network in feature extraction in 

previous studies by deeply fusing CNN-LSTM model, which realizes the 

comprehensive capture of spatio-temporal features of exercise data. In addition many 

health monitoring systems fail to fully consider the individual differences of patients, 

and are unable to provide personalized health guidance and risk warning, and thus 

this paper designs a lightweight acceleration feature prediction method based on Bi-

LSTM, which achieves real-time monitoring and early warning feedback for patients 

on individual exercise physiological indexes, and improves the pertinence of injury 

prevention. 

3. Theoretical framework 

3.1. CNN-LSTM motion state recognition model 

The CNN-LSTM deep fusion learning model proposed in this paper aims to 

make full use of the excellent characteristics of CNN and LSTM models to obtain 

the spatial and temporal correlation feature information inherent in the data structure, 

respectively, and deeply fuse the two to obtain more temporal and spatial correlation 

feature information embedded in the wearable sensing motion state data, which is 



Molecular & Cellular Biomechanics 2024, 21(1), 305.  

4 

closely related to the change of motion state, so as to improve the performance of the 

motion state pattern recognition. It is assumed that the gait pattern to be recognized 

is data set 𝑉 = {𝑣1, 𝑣2,⋯ , 𝑣𝑙}, where 𝑙  represents the motion state pattern to be 

recognized [13]. The wearable sensing motion state time series data is: 

𝐷 = (𝑑1, ⋯ , 𝑑𝑗, ⋯ , 𝑑𝑡) = (
𝑑1
1, ⋯ , 𝑑1

𝑡

⋮
𝑑𝑚
1 , ⋯ , 𝑑𝑚

𝑡
)  (1) 

where 𝑑𝑗 = (𝑑1
𝑗
, ⋯ , 𝑑𝑚

𝑗 )
𝑇

 denotes the wearable sensing data at time point 𝑗, 𝑚 and 𝑡 

denote the number of wearable sensors and the number of motion state pattern time 

series samples respectively. Each motion state pattern 𝑣 . the time series data is 

selected so that each data segment ℎ𝑖 = (𝑡𝑖−1 , 𝑡𝑖)  contains motion state spatio-

temporal feature information, and all the selected data segments are defined as the 

dataset ℎ𝑖 = (𝑡𝑖−1, 𝑡𝑖), and 𝑘  is the number of all selected data segments [14]. In 

order to accurately recognize the motion state patterns, a model plant is constructed 

to obtain the vector 𝑌𝑖 containing the motion state feature information from each data 

segment ℎ, i.e., 𝑌𝑖 = 𝛤(𝐷, ℎ𝑖). Then, the set of confidence values corresponding to 

each motion state pattern 𝑣𝑖 is calculated: 

𝑃: 𝑃(𝑣𝑖/𝑌𝑖 , 𝛽) = 𝛹(𝑌𝑖 , 𝛽) (2) 

where 𝛽 denotes the training parameter set, calculate the following maximum score 

value 𝑣𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃 (𝑣/𝑌𝑖 , 𝛽), you can accurately obtain the motion state pattern 

𝑣𝑖
∗, to realize each motion state pattern 𝑣. On this basis, based on the LSTM deep 

learning model to obtain the temporal correlation of the local spatial features of the 

motion state data, to obtain more temporal-spatial feature information related to the 

change of the motion state pattern, the maximum probability of obtaining to the 

motion state pattern 𝑣𝑖
∗, to accurately recognize the motion state pattern 𝑣𝑖. 

In this paper, we propose a CNN-LSTM fusion based deep learning of motion 

state patterns, and the recognition model framework is shown in Figure 1, which 

consists of three parts: the motion state data input layer, the CNN-LSTM fusion deep 

learning, and the fully connected layer. In view of the time-space correlation 

characteristics of wearable motion state sensing data, the CNN consists of three 

convolutional layers CL1, CL2, CL3, one pooling layer MP1, and two dropout layers 

to accurately obtain the most representative local spatial features inherent in the 

motion state data. In order to accurately obtain the temporal correlation of the most 

representative local spatial features inherent in the motion state data, the LSTM 

model is composed of 32 cells. In order to accurately obtain the temporal correlation 

of the most representative local spatial features inherent in the motion state data, the 

full connectivity layer consists of 6 cells to identify the motion state patterns with 

maximum probability [15]. 
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Figure 1. Recognition model framework. 

3.2. Spatial characterization of motion state motion data 

In order to effectively obtain the motion state feature information, the wearable 

sensing motion state time series at the moment is defined as: 

𝑑𝑡 = (𝑑𝐵𝐴−𝑥
𝑡 𝑑𝐵𝐴−𝑦

𝑡 𝑑𝐵𝐴−𝑧
𝑡 𝑑𝐺𝐴−𝑥

𝑡 𝑑𝐺𝐴−
𝑡 , 𝑑𝐺𝐴−𝑧

𝑡 , 𝑑𝐺𝑦−𝑥
𝑡 , 𝑑𝐺𝑦−𝑦

𝑡 , 𝑑𝐺𝑦−𝑧
𝑡 ) (3) 

where, BA-XYZ denotes 3D human motion acceleration data, GA-XYZ denotes 3D 

gravity acceleration data, and Gy-XYZ denotes 3-axis gyroscope data . For ease of 

analysis, 𝑡 ∈ {1,⋯ ,128}  is selected [16]. Its sensing motion state data input 

sequence is defined as: 

𝐷 = (𝑑1 , ⋯ , 𝑑𝑡 ,⋯ , 𝑑128) =

(

 
 
 
 
 
 
 
 
 
 

𝑑𝐵𝐴−𝑥
1 , ⋯ , 𝑑𝐵𝐴−𝑥

128

𝑑𝐵𝐴𝑦𝑦
1 , ⋯ , 𝑑𝐵𝐴−𝑦

128

𝑑𝐵𝐴𝑧
1 , ⋯ , 𝑑𝐵𝐴−𝑧

128

𝑑𝐺𝐴−𝑥
1 , ⋯ , 𝑑𝐺𝐴2𝑥

128

𝑑𝐺𝐴𝑦
1 , ⋯ , 𝑑𝐺𝐴−𝑦

128

𝑑𝐺𝐴𝑧
1 , ⋯ , 𝑑𝐺𝐴−𝑧

128

𝑑𝐺𝑦−
1 , ⋯ , 𝑑𝐺𝑦−𝑥

128

𝑑𝐺𝑦𝑦
1 , ⋯ , 𝑑𝐺𝑦−𝑦

128

𝑑𝐺𝑦𝑧𝑧
1 , ⋯ , 𝑑𝐺𝑦−𝑧

128
)

 
 
 
 
 
 
 
 
 
 

 (4) 

Assume that the CNN model used to obtain the most representative local spatial 

features of the motion state has a total of 𝐿  convolutional layer, each with a 

convolutional kernel defined as 𝑀𝑙 × 𝑁𝑙 . The 𝑙 ∈ {1,⋯ , 𝐿}rd convolutional layer 

extracts the local spatial features of the motion state 𝐹(𝑙), which is defined as: 

𝐹(𝑙) = 𝑓(𝑏(𝑙) + ⟨𝑤(𝑙), 𝑑𝑖 , ⋯ , 𝑑𝑖+𝜙−1⟩), 𝑖 = 1,⋯ , 𝑡 − 𝜙 + 1 (5) 

where 𝑓(⋅)represents the activation function, ⟨⋅⟩ represents the inner product, 𝑏(𝑙) is 

the bias term, 𝑤(𝑙) is the one-dimensional convolution kernel vector, and 𝜙 is the 

length of 𝑤(𝑙). Due to the high dimensionality, nonlinearity, randomness and low 

algorithmic complexity of wearable sensing motion state data, this paper constructs 

three one-dimensional convolutional layers, each with 32 convolutional kernels, the 

size of which is defined as 3 × 3, and the step size is defined as 1. A good nonlinear 

ReLU function is used as the activation function. A Dropout layer is constructed. In 
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order to effectively maintain the intrinsic properties of the motion state features 

obtained by the convolutional layer and reduce its redundancy information, the 

pooling layer is used to reduce the feature dimensions and increase its spatial 

invariance, and the pooling layer of the maximal pooling technique is defined to 

obtain the local spatial features that contain more information about the changes of 

the most motion states 𝑃 [17]. Define: 

𝑃𝑗 = 𝑚𝑎𝑥(𝐹(𝑗−1)𝑅+1, ⋯ , 𝐹𝑗𝑅) , 𝑗 = 1,⋯ , 𝑡/𝑅 (6) 

where 𝑅 denotes the pooling window size.  

3.3. Temporal correlation of localized features of motion states 

A motion state activity can be considered as a long sequence of time series, and 

through the autoregressive network architecture characteristic of the long and short-

term memory network which is good at dynamically learning the intrinsic temporal 

correlation of the time series data, we constructed the LSTM cell, including one 

memory cell 𝐶  and three gate functions, input 𝑖𝑡 , forget 𝑓𝑡 , and output 𝑜𝑡 , and 

extracted the intrinsic long-term temporal correlation characteristics of the motion 

state data in real time. 

Assuming that 𝑝𝑡  is used to denote the one-dimensional feature map of the 

motion state data sample processed by the CNN model at the moment of 1 as the 

input item of the LSTM neuron, the useless extracted data information is firstly 

discarded by the forgetting gate when passing through the cell of the LSTM [18]. Its 

output is: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [𝑝
𝑡 ,ℎ𝑡−1] + 𝑏𝑓) (7) 

where 𝜎  denotes an activation function Sigmoid, 𝑊𝑓  is a weight value, and 𝑏𝑓 

denotes a bias value, followed by an input gate 𝑖𝑡 and a candidate memory unit �̃�𝑡  to 

determine the updated data information: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [𝑝
𝑡 ,ℎ𝑡−1] + 𝑏𝑖) (8) 

�̃� = 𝑡𝑎𝑛(𝑊𝑐 ⋅ [𝑝
𝑡 ,ℎ𝑡−1] + 𝑏𝑐) (9) 

where 𝑊𝑖 and 𝑊𝑐 refer to the weights and 𝑏𝑖 and 𝑏𝑖 refer to the bias values. This is 

followed by a memory cell 𝐶𝑡  indicating the cell update status of this LSTM: 

𝐶𝑡 = 𝑖𝑡 ⋅ �̃� + 𝑓𝑡 ⋅ 𝐶𝑡−1 (10) 

Finally, the output data information ℎ𝑡 of the LSTM unit is determined to be: 

𝑜𝑡 = 𝜎(𝑊𝑜[𝑝
𝑡 ,ℎ𝑡−1] + 𝑏𝑜) (11) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛(𝐶𝑡) (12) 

where 𝑜𝑡 is the output gate and ℎ𝑡  is the output of the current neuron at time. By 

retaining the information that has experienced forgetting and inputs through the 

above mentioned memory cell 𝐶𝑡 , the LSTM cell is realized to efficiently transmit 

historical information at long time intervals, thus obtaining the intrinsic temporal 

correlation features of the data [19]. The proposed LSTM layer consists of 32 cells to 

process the temporal signals represented as one-dimensional feature vectors: 

𝑠 = [ℎ1, ⋯ , ℎ𝑡], 𝑡 ∈ {1,⋯ ,32} (13) 

Feature vector 𝑠  enters the fully connected layer consisting of 6 cells for 

processing and its output is: 

ℎ = 𝑓[𝑊𝑠 + 𝜀] (14) 
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where 𝑊 is the weight matrix of the fully connected layer and 𝜀 is the bias term 

vector. Setting the activation function of the fully connected layer as a Softmax 

function, the final maximum probability of recognizing the motion state pattern 𝑣𝑖 is 

output as: 

, {1, ,6}
i

i

v

i v

e
v i

e

 = 


  (15) 

4. Proposed method 

The above obtained feature information embedded with rich spatio-temporal 

correlations, covering the type, intensity, duration of the motion, and how it 

dynamically changes over time. Further, this value-rich feature information can be 

used as input or auxiliary information for training the Bi-LSTM network. Parameters 

include respiration, cardiac, blood oxygen, blood pressure, etc., which are essential 

for monitoring the training status of the athlete, assessing the risk of potential 

injuries, and understanding the body’s adaptation to training. Then a bi-directional 

LSTM network is used to extract abnormal internal features of physiological 

parameters. Bidirectional LSTM is able to utilize both past and future information to 

learn the internal features of the data by running in both forward and reverse 

directions, thus improving the accuracy of anomaly detection. Further, a Tensorflow 

deep learning framework is used to build and train an abnormal early warning model 

for exercise physiological parameters. During the training process, the generalization 

ability of the model is improved by introducing dropout technique and regularization 

term to prevent the occurrence of overfitting phenomenon. Meanwhile, binary cross 

entropy is used as a loss function to evaluate the performance of the model. Finally, 

the trained model is transformed into TFLite format for deployment and inference in 

real applications. 

4.1. Characterization of patient training loads 

For the use of wearable technology exercise physiological parameters early 

warning indicators, for which this paper selected 14 indicators covering common 

physiological parameters during respiratory training, including respiration, 

cardiovascular, blood oxygen, and blood pressure, end-expiratory carbon dioxide 

partial pressure. Other important indicators related to body temperature, perspiration, 

sweating, and lactate concentration were used to monitor and warn of physiological 

states during exercise [20]. Table 1 shows the symbols of characteristics related to 

early warning of exercise physiological parameters to understand the patient’s 

training status, potential risk of injury, and the body’s adaptation to training, so as to 

develop a more scientific training program and preventive measures. Research in the 

medical field has identified a variety of physiological parameters such as respiratory 

rate, heart rate, oxygen saturation and other indicators as recognized important 

monitoring indicators. Among them, parameters such as respiratory rate, tidal 

volume, and respiratory minute ventilation are important in assessing respiratory 

system function. Heart rate, heart rate variability, electrocardiogram and other 

parameters help to understand the health of the heart, oxygen saturation, blood 
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pressure, carbon dioxide partial pressure at the end of expiration and other 

parameters can reflect the blood circulation and gas exchange, body temperature, 

sweating, lactic acid concentration and other parameters are closely related to 

thermoregulation, water metabolism and muscle fatigue. These feature symbols 

provide a dataset for constructing an injury prevention early warning model for 

exercise physiological parameters, which facilitates the subsequent extraction of 

abnormal internal features of physiological parameters using bidirectional LSTM, 

enabling the understanding of the patient’s training status, potential injury risk, and 

the body’s adaption to the training, so as to formulate a more scientific training 

program and preventive measures. 

Table 1. Characteristic symbols related to early warning of exercise physiological parameters. 

Characteristic symbol Characteristic Name Description 

RR Respiratory rate 
Number of breaths/minute, 10–16 breaths/minute for normal adults in quiet 
state 

VT Tidal volume Amount of gas inhaled or exhaled during each breath 

VE Respiratory minute ventilation Total amount of gas inhaled or exhaled per minute 

HR Heart rate Number of heart beats per minute 

HRV Heart rate variability The extent to which the heart rate varies over time 

ECG Electrocardiogram Recordings of the electrical activity of the heart 

SpO2 Oxygen Saturation 
The percentage of total hemoglobin in the blood that is oxygenated 
hemoglobin 

BP Blood Pressure 
The pressure exerted on the walls of blood vessels by the flow of blood 
through the vessels, including systolic and diastolic pressures 

ETCO2 
Carbon dioxide partial pressure at end-
expiration 

The partial pressure of carbon dioxide at the end of exhalation 

TEMP Body Temperature 
The internal temperature of the body, with a normal adult underarm 
temperature of 36–37 degrees Celsius 

SWEAT Sweating The degree of sweating of the body during exercise 

EMG Myoelectric Signal 
Signals reflecting the electrical activity of muscles, used to assess muscle 
fatigue and injury. 

LACTATE Lactate Concentration Lactic acid level in the blood, reflecting muscle fatigue and metabolic status. 

4.2. Bidirectional LSTM to extract abnormal internal features of 

physiological parameters 

The working principle of LSTM is one strand runs from front to back according 

to the time sequence, learns the internal features of the data, and obtains the final 

result through the classifier. The use of bi-directional LSTM, which runs in the 

forward and reverse direction according to the time sequence, and the internal 

features of the classifier are determined by the 2 uni-directional LSTMs together to 

determine the final output result, which enables the algorithm to learn the internal 

features of the abnormal data of the exercise physiological parameters in a better 

way, and to improve the exercise physiological parameter abnormality detection and 

classification accuracy. Bidirectional LSTM network structure is shown in Figure 2, 

because through the exercise physiological parameter abnormality detection found 

that the use of unidirectional LSTM in the exercise physiological parameter 
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abnormality detection occurs more omission or misjudgment. While the two-way 

LSTM output is characterized by the forward layer and the inverse layer to jointly 

determine the final output result, which can greatly reduce the situation of missed or 

misjudgment. Short-term memory neural network) consists of two layers of recurrent 

neural networks with the same inputs but different timing of information transfer, 

which use both past and future information to learn the internal features of the 

sensing data and improve the accuracy of abnormal prediction of exercise 

physiological parameters. In this case, the forward and backward transmissions are 

independent of each other, and the final prediction result is determined by the hidden 

layer that retains the bidirectional information. 

t-1 t t+1

Output layer

Forward layer

Reverse layer

Input layer

 

Figure 2. Bidirectional LSTM network structure. 

4.3. Bi-LSTM-based early warning of physiological parameters 

In order to realize wearable exercise physiological parameter abnormality 

warning that takes into account both accuracy and timeliness, this paper adopts a 

deep learning algorithm to end-to-end automatically extract deep features for 

prediction, and accurately predicts physiological parameter abnormality in real time. 

The architecture of exercise physiological parameter fall abnormality warning is 

shown in Figure 3, and the exercise physiological parameter abnormality warning 

algorithm mainly contains three stages. The first is the preprocessing stage, which 

converts the raw accelerometer data to values in g, then determines the time of peak 

combined velocity, i.e., the moment of abnormal exercise physiological parameters, 

and finally intercepts a 1.5s data window as an input based on the moment and the 

lead time. Second, the training stage, the preprocessed data segments are used to 

extract deep features through a bidirectional LSTM neural network and return 

carefully adjusted gradient information to the model. Third, the testing phase, the test 

set is passed into the trained model for classification via a sigmoid classifier, which 

outputs a probability value of 0–1, and a probability value greater than 0.5 is 

recognized as abnormalities of the exercise physiological parameters, otherwise it is 

recognized as ADLs. 
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Raw accelerometer data

Layer 1 Layer 2 Layer 3 Loss

Pass back the 

gradient

Anomalous data

ADLs

Capture Data window
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physiological parameters

Pretreatment

Training

Test

 

Figure 3. Early warning architecture for abnormal exercise physiological parameters. 

4.4. Network training 

In this experiment, the deep learning framework Tensorflow2.3.0 is used to 

build an abnormal early warning model of exercise physiological parameters, and the 

hardware configuration includes Intel(R)Core(TM)i7-7500UCPU@2.90GHz, with 

12.0 GB of RAM, the operating system is 64-bit Windows 10, and the code running 

environment is Python3.8. loss. Function is calculated as follows: 

( ) ( ) ( )2 2

1

1
log 1 log 1

N

i i i i

i

Loss y p y y p y
N =

= −  + −  −        (16) 

During training, the dropout term is used to improve the model generalization 

ability, a regularization term applied to the output is used to prevent model 

overfitting, and the loss function uses binary cross entropy to evaluate the binary 

exercise physiological parameter abnormality warning model. where 𝑁 is the number 

of samples, 𝑦𝑖 denotes the label 0 or 1, and 𝑃(𝑦𝑖) denotes the probability that the 

output is 𝑦𝑖 . To ensure the convergence speed and accuracy of the model, the 

experiments use the Adam algorithm with adaptive learning rate to optimize the 

network. At the same time, it is stipulated that the iteration is stopped when the loss 

value of the validation set does not decrease accordingly within 5 consecutive 

iterations to prevent overfitting, and finally the trained model is transformed into 

TFLite format. 

4.5. Injury prevention methodology process 

To clearly illustrate the proposed method, Figure 4 shows the motion state 

recognition and injury prevention flow, which summarizes the whole process from 

data collection to injury prevention The method combines deep learning techniques, 

especially CNN and LSTM, with personalized health monitoring strategies, aiming 

to achieve high-precision, real-time motion state recognition and injury prevention 

through wearable devices. 

Wearable devices are first used to collect data from users’ accelerometers, 

gyroscopes, and physiological sensors such as heart rate monitors and blood pressure 

monitors. The collected raw data is cleaned to remove noise and outliers. The raw 

motion data is processed using convolutional neural networks to automatically 

extract local spatial features from it. These features reflect the unique morphology 
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and variations of the motion patterns. The features extracted by the CNN are passed 

to the long and short-term memory network, and the LSTM is used to capture the 

long-term dependence of these features on the time series, and further capture the 

long-term dependence of these features on the time series, so as to realize the 

comprehensive recognition of the motion states. Based on the recognized motion 

states, a motion example parameter set is constructed, including key indicators such 

as training load, motion intensity, duration and so on. Bidirectional long and short-

term memory networks are used to model the exercise example parameters, which 

are used to predict abnormal changes in physiological indicators during exercise, 

such as excessive heart rate, sudden rise in blood pressure, etc. Bi-LSTM takes into 

account both forward and reverse time dependencies to improve the accuracy and 

robustness of the prediction. Based on the output of the prediction model, 

personalized injury prevention strategies are developed by combining the patient’s 

historical data and real-time physiological feedback. This includes adjusting the 

training program, such as reducing training intensity, increasing rest time, and 

providing health guidance and advice. It can achieve accurate monitoring of the 

user’s exercise status and timely warning of injury risk, providing strong support for 

personalized health management. 

Start

Collects motion data from accelerometers, gyroscopes, 

etc. of wearable devices

CNN layer for automatic extraction of local spatial features from 

motion data

Pass the CNN extracted features to the LSTM layer

LSTM layer captures long-term temporal correlations to 

generate motion state recognition results

Bi-LSTM network predicts abnormalities in 

exercise physiological indices

Personalized Injury Prevention Strategies

Suggested output:Adjustment of training 

program, health guidance

End

Time series analysis

 

Figure 4. Motion state recognition and injury prevention process. 
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5. Empirical results and actual campaign performance 

5.1. Real-time monitoring and assessment of patient cardiorespiratory 

function 

To validate the accuracy of the 2CNN-LSTM deep fusion learning motion state 

recognition proposed in this paper, the patient’s motion and physiological data were 

monitored and recorded during the 6-MWT, and key physiological parameters were 

extracted and quantitatively analyzed to assess the quantitative capability of the 

method. The Empatica E4 wearable device was selected to monitor patient 

physiological data. This device was selected because it provided highly accurate 

real-time monitoring of ECG, respiratory, oximetry, and pulse data, and had a more 

intuitive user interface and more powerful data export and analysis capabilities than 

other similar devices. Meet the need for comprehensive physiologic monitoring of 

patients during the 6-minute walk test. One hundred and five patients with 

cardiopulmonary diseases were selected to perform the 6-MWT test, and 

comprehensive ECG, respiratory, oximetry, pulse, body position/movement, and 

blood pressure data were collected during the test. To ensure the quality and 

consistency of the data, the collected data were filtered, denoised, and etc. to 

minimize the effect of noise on the model performance. The preprocessed data were 

input into a 2CNN-LSTM deep fusion learning model, which subsequently 

performed motion state recognition and extraction of motion physiological 

parameters on these data. 

Figure 5 shows the physiological parameter changes during the six-minute 

walk test. The method in this paper is able to monitor and record the patient’s 

exercise and physiological data during the 6-MWT for quantitative analysis, which 

can extract parameters such as the slope of heart rate increase, 1-minute heart rate 

recovery value, area of decrease in blood oxygen, and 1-minute recovery value of 

oxygen saturation, as well as to visualize the changes in cardiorespiratory 

physiological parameters during the 6-MWT. Regarding heart rate HR, the slope of 

heart rate increase was 118 at 221/s, the maximum heart rate HRMax was 128.2/bpm 

at 419 s, the heart rate recovery value at 1 min was 126.1/bpm, and the 75% ΔHR, 

i.e., the value of the heart rate when it recovered to 75% of the maximum heart rate, 

was 123/bpm. i.e., the time required from the beginning to the maximal heart rate 

was between 120 and 240, or 120 s. The heart rate at 1 min after the end, i.e., the 

value of heart rate at 1 min after the end of the test was 126.1/bpm.In terms of 

oxygen saturation SpO2, the method in this paper was able to accurately extract the 

key parameters, including the time of decrease of SpO2 in the range of 120/s–150/s 

i.e., the time required from the beginning of the test to the beginning of the decrease 

of oxygen saturation, the maximum decrease in the ΔSpO2 oxygen saturation was 

87.4%–92.3%, and 75% ΔSpO2 oxygen saturation recovery was 91.8%. The average 

oxygen saturation SpO2 recovery value 1 min after the end of the session was 92.5. 

In addition, the patient’s horizontal activity could also be monitored in real time, 

with the patient’s activity level at 1.46 at the start time point, around 130 s, and at 

480 s after the end time point, which provided accurate information for the 

comprehensive assessment of the patient’s cardiopulmonary function. 
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Figure 5. Changes in physiological parameters during the six-minute walk test. 

5.2. Validation of early warning for exercise physiological parameters 

The performance of different algorithms in physiological parameter abnormality 

warning is trained and tested by the same physiological parameter abnormality 

dataset, so as to evaluate the effectiveness of each algorithm in preventing sports 

injuries. The comparison algorithms include CNN-SVM, which combines the spatial 

feature extraction ability of CNN and the classification ability of SVM.LSTM-RF is 

LSTM processing time series and then uses Random Forest for classification or 

regression.3D CNN is suitable for processing 3D spatial data such as motion capture 

data, which can capture both temporal and spatial features simultaneously. 

Transformer based on the self-attention mechanism is suitable for dealing with long 

distance dependent problems. Model, which is suitable for dealing with long-

distance dependency problems.GaitGAN Generative Adversarial Network GAN for 

gait recognition, which accomplishes cross-view gait recognition. The F1 score is 

also used as the main evaluation metric, which is the reconciled average of precision 

and recall, and can comprehensively evaluate the performance of the model. 

Figure 6 shows the exercise physiological parameter abnormality early warning 

F1 score, and the method proposed in this paper achieved a significant advantage in 

the exercise physiological parameter abnormality early warning F1 score. On the test 

dataset, at week 22, the early warning F1 score of this paper’s method reaches 0.78%, 

showing its strong ability in capturing complex movement patterns and subtle 

physiological parameter variations. 3D CNN method early warning F1 score is 

0.69%, and the effectiveness of Convolutional Neural Networks in dealing with 

spatially structured data. In contrast, the CNN-SVM. LSTM-RF and GaitGAN, 

Transforme methods, although they also showed some early warning ability, had 

relatively low accuracy rates of 0.46%, 0.35% and 0.30% and 0.33%, respectively. It 

indicates that it is difficult to adequately capture the complex changes in exercise 

physiological parameters. This paper’s method achieved the best performance on the 

task of early warning of abnormal physiological parameters in patients, which was 
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significantly better than the other compared methods. This result not only validates 

the effectiveness of this paper’s method in capturing complex movement patterns 

and subtle physiological parameter changes, but also provides assistance for its 

application in practical exercise training and health management. 

 

Figure 6. Early warning F1 score for abnormal exercise physiological parameters. 

The wearable device health warning false alarm rates are shown in Table 2, 

which shows that during the experimental process of this index, for different 

wearable devices KCD-01 to KCD-10, the health warning methods proposed in this 

paper are significantly lower than several other methods in terms of false alarm rates. 

Specifically, the false alarm rates of all the methods in this paper remain below 

2.55%, and the false alarm rate is only 1.98% in KCD-10 wearable device serial no, 

while the average false alarm rates of CNN-SVM, LSTM-RF, 3D CNN, Transformer, 

and GaitGAN wearable device health warning are 8.83%, 8.25%, 10.39%, 9.87%, 

and 11.45%, which are significantly higher than the method of this paper. It indicates 

that the false alarm rate of this paper’s method on all wearable devices is 

significantly lower than other methods, which can more effectively reduce 

unnecessary health warnings and improve patient user experience. 

Table 2. False alarm rates (%) for wearable device health warnings. 

Wearable 

Device Serial 

Number 

This article Health 

Alert Methods 
CNN-SVM LSTM-RF 3D CNN Transformer GaitGAN 

KCD-01 2.55 8.03 7.22 10.36 10.02 11.35 

KCD-02 2.12 9.96 9.01 10.56 9.66 11.09 

KCD-03 2.01 8.59 8.54 10.21 9.37 11.64 

KCD-04 2.26 9.46 7.21 10.15 10.14 11.63 

KCD-05 2.32 8.67 7.82 10.59 9.69 11.09 

KCD-06 2.13 9.15 9.16 10.76 10.01 11.48 

KCD-07 2.06 9.44 8.04 10.24 9.98 11.59 

KCD-08 2.14 8.22 8.09 10.61 9.94 11.78 

KCD-09 2.34 9.52 8.96 10.19 10.12 11.52 

KCD-10 1.98 8.84 7.19 10.08 9.22 11.65 
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5.3. Application of wearable technology based sports performance 

optimization 

Using the method in this paper after identifying the exercise state and detecting 

abnormal physiological parameters, this paper will develop corresponding 

optimization strategies to enhance exercise performance based on these key 

indicators. For example, for patients with poor breathing patterns, the algorithm in 

this paper can provide personalized breathing training suggestions. If the patient’s 

breathing is too shallow, a series of deep breathing exercises are designed to help 

him or her increase lung capacity and improve oxygen utilization efficiency. For 

patients with irregular breathing rhythm, audio or visual cues can be used to help 

establish a stable breathing rhythm to better match the exercise rhythm. Provide 

personalized heart rate training suggestions when the patient’s heart rate is detected 

to be too high. Reduce the load on the heart and prevent overexertion by reducing the 

intensity of exercise or changing the exercise pattern. Take appropriate breaks, 

perform relaxing stretches, or provide some relaxing music to help patients lower 

their heart rate. Provide personalized oxygen saturation training recommendations 

for patients with poor oxygen saturation. Reduce the duration of high-intensity 

training or increase the proportion of recovery training. Also, if the environment is 

hypoxic move to a more oxygenated environment. Recommend training methods 

that improve blood oxygenation capacity, such as intermittent hypoxic training. 

Figure 7 shows the wearable technology training effect of a patient with 

elevated abdominal respiratory contribution ratio and reduced respiratory rate during 

training after exercise status and detected abnormal physiological parameters. 

Respiratory, ECG, and oximetry data during respiratory training were effectively 

captured, and some of the data records matched the patient’s relevant clinical data. It 

can be seen that before the training, the patient may have relied more on a 

combination of thoracic and abdominal breathing, which may lead to inefficient 

respiration during high-intensity exercise and affect oxygen uptake. After specialized 

respiratory training, the percentage of abdominal breathing increased, with the 

abdominal breathing signal completely overriding the thoracic breathing signal 

during the training period, with a maximum signal of 2499. At the same time, the 

contribution ratio of abdominal breathing increased by 27%. This indicates that the 

patient is now predominantly ventilating in abdominal breathing and can utilize the 

abdominal muscles for deep breathing to strengthen lung capacity and oxygen 

exchange efficiency. Before training, the patient’s average respiratory rate was 19 

breaths/min bpm. And after training it could be reduced to 8 breaths/min, which is 

beneficial to the patient’s endurance and recovery ability. The patient’s heart rate 

also decreased by 8.5 bpm compared to before training. After training the heart rate 

was at 75.3, and the decrease in heart rate is a direct reflection of the improved 

fitness and cardiorespiratory fitness. This indicates that the patient’s cardiovascular 

efficiency has improved and the patient’s heart is now able to pump blood more 

efficiently to provide more oxygen and nutrients to the muscles. The increase in 

oxygen saturation SpO2% means that the blood is able to carry more oxygen, and 

although the oxygen saturation is only increased by 2.4%, it still provides more 

energy to the muscles, which is critical to the patient’s performance during high 
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intensity exercise. This patient made significant progress with respiratory training, 

not only optimizing breathing patterns, but also improving cardiorespiratory fitness 

and exercise efficiency, suggesting that the methods in this paper have a significant 

effect on positive physiological changes in patients. 

 

Figure 7. Wearable technology training effects. 

6. Conclusion 

In this paper, we explore a method to optimize sports performance and prevent 

injuries based on wearable technology, using a combination of CNN and LSTM, 

which is able to capture both spatial features and temporal correlation of sports data, 

and complete the accurate recognition of sports status. On this basis, a lightweight 

physiological indicator early warning model based on bi-directional long and short-

term memory is proposed, end automatically extracting deep features for prediction, 

and network training is carried out to realize the description of the patient’s training 

load and the timely warning of potential injury risk. The conclusions are as follows: 

(1) The method in this paper can monitor and evaluate the patient’s 

cardiopulmonary function in real time by means of wearable technology, and the 

examination data shows that the heart rate at 1 min after the end of the test, that is, 

the heart rate value at 1 min after the end of the test, is 126.1/bpm. The average 

oxygen saturation SpO2 recovery value at 1 min after the end was 92.5. At the 22nd 

week, the F1 score of exercise physiological parameter warning reached 0.78%, 

which could fully capture the data of complex movement patterns and subtle 

physiological parameter changes. 

(2) The contribution ratio of abdominal breathing increased by 27% after 

training, and the patients’ heart rate decreased by 8.5 bpm and oxygen saturation 

improved by 2.4% compared with the pre-training period. It can help the medical 

field to more accurately assess the exercise status and training load of people’s 

patients. 
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Future research needs to review the maintenance of wearable technology in 

real-world sports and school environments, optimize adherence, modify workloads 

for other benefits and evaluate rule changes in other sports. 

Ethical approval: Not applicable. Informed consent was obtained from all subjects 

involved in the study. 
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