
Molecular & Cellular Biomechanics 2024, 21(1), 321. 

https://doi.org/10.62617/mcb.v21i1.321 

1 

Article 

Comparative analysis of biomechanical patterns in sprinting: A machine 

learning approach to optimize running performance in track athletes 

Burenbatu 

College of Physical Education, Inner Mongolia Normal University, Hohhot 010022, China; burenbatu1@outlook.com 

Abstract: Athletes’ success in field and track competitions has been reported to be 

determined by their sprinting skills. Therefore, it is crucial to understand what biomechanical 

and physiological factors contribute to the most effective sprinting attributes. The scientific 

research on sprint evaluation has predominantly dealt with discrete metrics simultaneously, 

avoiding the interplay between multiple factors as the sprint progresses. Incorporating all the 

factors that could potentially influence the impact of excellent sprint ability is the primary 

objective of the present study. This research investigates the biomechanics of sprinting using 

a Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) hybrid 

approach, focusing mainly on factors like stride length, ground reaction forces, joint angles, 

and muscle activation patterns. The hybrid Machine Learning (ML) model accurately 

identifies between the two groups, and the results indicate that sprinters performing at the 

national level have more extended movements, higher reaction time to ground forces, and 

improved joint angles. The research project set up a 20-meter track for the race, and 30 

participants, divided 50-50 between two distinct groups that included comparable college-

level and national-level performers, participated. With a 92.4% accuracy, 90.2% precision, 

and 90.9% F1 score, the hybrid approach performed better than standard models in predicting 

optimum sprinting patterns. The higher efficiency is caused by phase-specific changes that 

the model unattended, such as enhanced knee angles and joint accelerated motion in the 

swing phase. In comparison, the SVM model, though respectable, lags behind with an 

accuracy of 85.7% and a lower precision and recall (82.4% and 80.9%, respectively). The RF 

model performed better than SVM with an accuracy of 88.1% and a balanced F1-score of 

86.8% but still fell short of the CNN-LSTM hybrid. The standalone LSTM model performed 

relatively well, with an accuracy of 89.3% and an F1 score of 88.1%, showing its capability 

but still not matching the hybrid model’s performance. 

Keywords: biomechanical patterns; sprinting biomechanics; athletic activity; convolutional 

neural networks; LSTM; precision 

1. Introduction 

The Sprinting is considered one of the primary athletic activities, yet it demands 

a high level of biomechanical efficiency and physiological adaptation [1]. Better 

sprinting ability helps not only athletes but also players from various streams that 

require a high level of speed and agility [2]. There have been many studies that had 

involved understanding the mechanics behind the sprinting ability, but optimizing 

the performance remains to be a significant challenge due to the relationship between 

various biomechanical and physiological factors [3–5]. The approaches in practice 

have considered metrics such as stride length or ground reaction forces but had 

treated them isolated without considering the relationships between different 

variables that contribute to optimal performance in different phases of the sprinting 
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(Figure 1). 

 

Figure 1. Phases of sprinting. 

The sprint phase has sub-phases, such as the stance and swing phase, each with 

its phases, such as initial contact, mid stance, take off instance, and initial swing, mid 

swing, and terminal swing in the swing phase [6]. The methodologies in practice 

have considerable limitations in analyzing the dynamic changes occurring during a 

sprint. They focus on linear relationships or single-phase analysis and have failed to 

account for the continuous and interdependent nature of biomechanical variables 

throughout the sprint cycle. This restriction causes it to be challenging to determine 

the smaller factors that set apart the most successful sprinting athletes. It is essential 

to reduce the gap by using advanced statistical techniques that can identify every 

dimension of sprinting [7–10], which motivates this effort to succeed. 

The proposed Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) hybrid model is commonly used to analyze sprinting 

biomechanical patterns. This framework integrates the beneficial features of both 

CNNs and LSTMs.  

The explanation for why this combination approach works effectively is as 

outlined below: 

(a) Feature extraction with CNN: Spatial FE is a domain where CNNs truly clearly 

distinguish themselves, notably in the biomechanics of sprinting. From complex 

sensor or video frame time-series data, they can FE related to posture and 

motion. They have applications to determine biomechanical features, such as 

joint angles and gait patterns, by sensing both hierarchical and local patterns. 

(b) Temporal dynamics with LSTM: LSTMs can manage to process biomechanical 

data rapidly because of their expertise in dealing with sequential data and 

temporal dependencies. In order for CNNs to understand relationships between 

time, they use feature sequences. Despite maintaining long-term dependencies, 

researchers can analyze biomechanic changes through sprint phases and for 

more extended periods. 

The combination of FE and temporal modelling is the factor that allows CNNs 

and LSTMs highly successful at enhancing biomechanical pattern recognition. 

Activity classification, anomaly detection, and performance prediction 

improvements have been noticed as models collect data and generate predictions 
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about complex patterns. 

Athletes’ stride efficiency, method, and gait can be assessed by applying a 

hybrid model that analyses video, motion recording, and data from wearable sensors. 

For improved performance and avoiding injuries, sprinting athletes may gain from 

real-time feedback systems. A reliable tool for biomechanical analysis in sprinting, 

the CNN-LSTM hybrid model combines spatial and temporal methods for complete 

evaluation. The present investigation proposes a hybrid-model Machine Learning 

(ML) method for researching sprinting biomechanics, employing a combination of 

CNN and LSTM networks. By evaluating the factors determining how they perform, 

the model hypothesizes the spatial and temporal dynamics of sprinting. The research 

project set up a 20-meter track for the race, and 30 participants, divided 50-50 

between two distinct groups that included comparable college and national-level 

performers, participated. The data collected for the research was investigated with a 

selection of data analysis tools, such as the hybrid ML model that was implemented. 

The study was focused on the following objectives. 

(a) Develop an analytical framework that integrates kinematic, kinetic, and 

physiological data to predict optimal sprinting patterns. 

(b) Utilize a hybrid ML-based CNN-LSTM to analyze the spatial and temporal 

dynamics of sprinting performance. 

(c) Identify key biomechanical and physiological variables that differentiate 

between optimal and sub-optimal sprinting performances. 

The paper is organized as follows: Section 2 presents the literature review, 

Section 3 presents the methodology, Section 4 presents the analysis, and Section 5 

concludes the work. 

2. Literature review 

Apte [11] investigated about the ability to estimate the running kinematics 

accurately by employing an Artificial Neural Network (ANN) model. To train the 

model, they used accelerometer variables and anthropometric data sourced through 

GPS devices. They designed a Multilayer Perceptron Neural Network (MPNN) to 

predict the participants’ 3D running kinematics. They showed higher accuracy for 

flexion angles. Ding [12] compared different ML models to estimate the running 

stride temporal variables and peak vertical ground reaction force. The study had 

experimented with the models with data sourced from 100 runners who have run on 

a treadmill wearing an Inertial Measurement Unit (IMU). They compared Linear 

Regression (LR), Support Vector Machine (SVM), and Neural Network (NN) 

models using the collected data. The prediction results have suggested that the LR 

model was performing better compared to the rest. A study to model velocity graphs 

in 100-meter sprinting was done by Boujdi et al. [13]. Using data from international 

track events, the work had compared the performance of Random Forest (RF) and 

NN in predicting the velocity-time curve. The study had analyzed the relationship 

between the velocity, time, and speed duration and identified that there is a negative 

correlation between velocity and time. 

Jose et al. [14] had analyzed the effect of running postures on performance 

enhancement and injury. Using AI and kinematic analysis, they analyzed the 
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runner’s posture technique. They analyzed the postures such as toe-off, maximal 

vertical projection, touch-down, and full-support using RF. Their model had shown 

higher accuracy. Using wearable IMUs, Ma [15] has been involved in analyzing the 

biomechanical factors that influence the performance of athletes. Using different 

combinations of sensors, they collected data and applied algorithms to gain 

interpretable and actionable information. Taber et al. [16] performed a time series 

data analysis on athlete’s performance. They sourced data from 50 athletes who ran 

marathons. The data was collected over 6 months using sensors and trackers, and 

data related to speed, bpm, pulse rate, stride length, and frequency were collected. 

Using LSTM, they analyzed the collected data and proved the accuracy of the 

performance in terms of speed and stride frequency predictions [17,18]. 

Literature review and earlier idea: 

a) Literature basis: Significant in sprinting biomechanics, previous research 

investigations have found variables like GRFs and joint angles to impact 

sprinting performance significantly. The study improves the knowledge of 

sprinting mechanics and depends on research resulting from these results. 

b) Theoretical justification: A framework for studying the relationship and impact 

of several factors on performance can be obtained from theoretical models of 

sprinting biomechanics. For example, relevant factors are selected based on 

models of exertion and transfer during sprinting. To more fully understand the 

basics of sprinting and position the findings in an overall framework, applying 

theoretical models to the decision-making factors is essential. 

If the study’s objectives are clearly defined, the factors selected for 

biomechanical analysis are clearly stated, and the findings are practical and verified 

by technology, the investigation is more reliable. This approach further places the 

findings in context and emphasizes the significance of the factors chosen regarding 

sprinting performance. 

3. Methodology 

It is vital to include complete requirements for selecting participants and criteria 

for national and collegiate groups in the methodology section to ensure the research 

is secure and reliable. To present these details in the correct order, examine the 

points that follow: 

Group definitions and criteria for participant selection: 

A. Guidelines for participant selection 

 General eligibility: 

 Age range: Physical maturity and continual ability to perform were 

ensured by selecting participants between 18 and 30. 

 Health status: Participants needed to prevent any psychological or physical 

issues that could impact their sprinting performance. Everyone who 

intended to participate in part had either obtained a physician’s 

authorization or completed a pre-screening procedure. 

 Experience level: Participation was restricted to those who previously 

participated in sprinting sports. This ensures that everyone is on an 

identical level in terms of previous experience and is comfortable with the 
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challenges of sprinting. 

 Specific criteria for national-level sprinters: 

 Performance Standards: Sprinters are deemed to be participating at the 

national level provided they have completed in the top 5% of the nation for 

their particular age group in the two years prior across all sprinting 

competitions (100 m, 200 m). 

 Competition Experience: One requirement for participation is a national or 

international competition record. The outcome and scores of the official 

events were used for proof. 

 Recognition: A national record in sports activities or several major 

national awards were criteria for selection. 

 Specific criteria for collegiate-level sprinters: 

 Performance Standards: Sprinters performing at colleges and universities 

were classified as those whose times positioned them in the top 10% of 

their particular teams or leagues. 

 Competition Experience: College track and field tournaments at the 

regional or national level were mandatory for everyone who participated, 

whether in the current academic year or the one prior. 

 Academic Status: During the study period, participants were required to be 

registered in a college or university and actively involved with athletic 

competitions. 

B. Group definitions 

 National-level sprinters: 

 Definition: Competitors who consistently finish at the top level of their 

individual national or international athletic events. Those who have proven 

potential to be sprinting elites and who rank significantly in national 

rankings constitute members of this group. 

 Verification: All data used in calculating rankings and performance was 

obtained from government sources such as national athletic groups, 

national databases, and personal top performances. 

 Collegiate-Level Sprinters: 

 Definition: Athletes who participate at the collegiate level experience 

outstanding results while attending college. Athletes with enormous 

potential for future success while still attending college are considered part 

of this class. 

 Verification: Collegiate athletics teams contributed performance data, and 

university athletics departments and official competition results verified 

status. 

3.1. Participant selection 

The study included 30 sprinters, of which 15 were National Level Participants 

(NLP) and 15 were College Level Participants (CLP), and all were under the age 

group of 18 to 25. In the NLP, out of 15 athletes, 11 have competed in national 

championships, and 4 have been ranked within the top 10 sprinters in national-level 

competitions in the last year. As for the sprinting capability, the NLPs have a 100-
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meter dash time range from 10.3 to 10.5 seconds for males and 11.3 to 11.5 seconds 

for females. In CLP, the participants are from college track teams and have 

competed in intercollegiate track events in the previous season. The CLPs have a 

100-meter dash time range from 10.8 to 11.0 seconds for males and 11.8 to 12.0 

seconds for females. In both groups, athletes with recent injuries (within the past 6 

months) or chronic conditions are excluded. The Table 1 provides the characteristics 

of the participants. 

Table 1. Details of the participants. 

Characteristic NLP CLP 

Number of Participants 15 15 

Age Range 20–25 years 18–22 years 

Height Range 
Males: 180 ± 2.5 cm 

Females: 170 ± 2.2 cm 

Males: 175 ± 2.8 cm 

Females: 165 ± 2.3 cm 

Weight Range 
Males: 75 ± 3.6 kg 

Females: 60 ± 2.4 kg 

Males: 70 ± 4.5 kg 

Females: 55 ± 3.7 kg 

Sex Distribution 
Males: 10 

Females: 5 

Males: 8 

Females: 7 

Competition Level National Collegiate 

Background 
11 competed in national championships; 4 ranked in 

top 10 

Competed in at least five intercollegiate track 

events 

Sprinting Capability (100 m dash time) 
Males: 10.4 ± 0.12 s 

Females: 11.4 ± 0.15 s 

Males: 10.9 ± 0.28 s 

Females: 11.9 ± 0.23 s 

Personal Best (100 m dash) 
Males: 10.2 ± 0.14 s 

Females: 11.2 ± 0.16 s 

Males: 10.7 ± 0.25 s 

Females: 11.7 ± 0.20 s 

Season Best (100 m dash) 
Males: 10.3 ± 0.11 s 

Females: 11.3 ± 0.17 s 

Males: 10.8 ± 0.22 s 

Females: 11.8 ± 0.19 s 

Screening Criteria 
Exclusion of athletes with recent injuries or chronic 

conditions 

Exclusion of athletes with recent injuries or 

chronic conditions 

Medical Screening 
Detailed medical history and physical examination 

by a sports medicine professional 

Detailed medical history and physical 

examination by a sports medicine professional 

3.2. Data collection 

Defining the data collection rate in the experimental setup is vital for ensuring 

that the research can be performed when biomechanical analysis of sprinting using a 

CNN-LSTM hybrid model will be investigated. The following is a description of all 

of the different data source types, the standard data collection patterns for each, and 

the importance of each: 

Camera frame rate: Biomechanics high-speed cameras record fast motions with 

higher temporal resolution, employing frame rates ranging from 120 to 1000 frames 

per second (fps). A reliable predictive biomechanical analysis of sprinting involves 

higher frame rates, which record the athlete’s every motion and result in better 

tracking of rapid motions. 

The biomechanical analysis in this study was performed as depicted in Figure 

2. The setup included a Vicon MX T-Series motion capture system that was 

equipped with twelve high-speed infrared cameras. The cameras are placed at an 

average distance of 2 m between each and were positioned at a height of 1.5 m and 
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calibrated to have a field of view wide enough to capture the complete motion range. 

These cameras captured the movement of reflective markers on key anatomical 

landmarks such as the hip, knee, ankle, shoulder, elbow, calf, toe, and wrist joints 

(Figure 3). 

 

Figure 2. Study framework. 

 

Figure 3. Sensor placement positions. 

This recorded kinematic data readings from joint angles, velocities, and 

accelerations. Concurrently the ground reaction forces were measured using AMTI 

force plates that are embedded in the sprint track. These plates recorded the three-

dimensional force data during each foot strike, including the magnitude and direction 

of forces exerted against the ground. In addition to kinematic and kinetic data, the 

physiological measurements of heart rate variability and respiratory rate were taken 

using Polar Team2 wearable sensors. The data acquisition was done through Vicon 

Nexus software that synchronize the video capture with biomechanical data 

collection. The data collected is listed in Table 2. 

An aggregate of four sessions, two each week, comprised the two-week test. 

Before each test, participants were advised not to do anything too physically 

demanding, like an active or intense training session, for a minimum of 24 h. This 

was done to make sure participants were not getting worn out or sore, which could 

impact how they performed. On the day of testing, participants were also told not to 

consume energy drinks or the stimulant caffeine but to maintain their nutrition 
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routine. Every competitor performed a 20-minute predetermined warm-up routine 

when they reported at the testing facility. A pattern of faster and faster sprints, along 

with strengthening exercises and dynamic stretches, is included in this warm-up 

exercise. After the participant had warmed up, they had evidence tags put on at key 

locations on their bodies for visibility. After that, the athlete was guided to the 20-

meter sprint track’s starting line and instructed to sprint with as much effort as 

possible. 

Table 2. Data collected and device used. 

Data Collected Data Type Unit of Measurement Measurement Device 

Joint Angles 

Kinematic Data 

Degrees (°) 

 
Vicon MX T-Series Motion Capture System 

Joint Velocities Meters per second (m/s) 

Joint Accelerations Meters per second squared (m/s2) 

Ground Reaction Forces 

Kinetic Data 

Newtons (N) 

 
AMTI Force Plates 

Force Direction Degrees relative to vertical 

Heart Rate 

Physiological Measurements 

Beats per minute (bpm) 

 
Polar Team2 Wearable Sensors 

Heart Rate Variability Milliseconds (ms) 

Respiratory Rate Breaths per minute 

The start of each sprint was initiated using a starting gun that emitted both an 

audible signal and an electronic trigger. The electronic trigger was synchronized with 

the Vicon Nexus software, marking the exact moment the sprint began in the data 

recordings. Each sprint trial lasted 3–5 s, depending on the athlete’s speed. As the 

athlete sprinted down the track, their movements captured the movement of the 

reflective markers at a high frame rate of 500 fps. Simultaneously, ground reaction 

forces were measured by AMTI force plates that recorded three-dimensional force 

data during each foot strike, capturing both the magnitude and direction of the forces 

applied by the athlete. The physiological responses were continuously recorded 

throughout the entire sprinting trial, typically lasting no more than 10 s per sprint. 

Each athlete completed five sprint trials, with each trial spaced 5 min apart to ensure 

adequate rest and recovery, preventing fatigue from influencing performance. The 

entire testing session, including warm-up, marker placement, sprint trials, and 

cooldown, took approximately 90 min to complete per athlete (Table 3). 

To test the reliability of the measurements, an ICC analysis was conducted, 

focusing on both intra-session (same day) and inter-session (across days) 

consistency. Table 3 shows the findings. Kinematic data, specifically joint angles, 

showed an intra-session reliability coefficient of 0.95 with an SEM of ±0.5° and a 
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confidence interval of 0.93 to 0.97, indicating strong reliability. Kinetic data, 

measured through ground reaction forces, had an ICC of 0.92 and an SEM of ±15 N 

within the same session, with a confidence interval ranging from 0.90 to 0.94. 

Physiological data, particularly heart rate, exhibited the highest intra-session 

reliability with an ICC of 0.98, an SEM of ±2 bpm, and a confidence interval of 0.96 

to 0.99. 

Table 3. Reliability analysis. 

Measurement Type Type of Reliability 
Intraclass Correlation 

Coefficient (ICC) 

Standard Error of 

Measurement (SEM) 

Confidence 

Interval (95%) 

Kinematic Data (Joint Angles) Intra-session (same day) 0.95 ± 0.5° 0.93–0.97 

Kinetic Data (Ground Reaction Forces) Intra-session (same day) 0.92 ± 15 N 0.90–0.94 

Physiological Data (Heart Rate) Intra-session (same day) 0.98 ± 2 bpm 0.96–0.99 

Kinematic Data (Joint Angles) Inter-session (across days) 0.88 ± 0.8° 0.85–0.91 

Kinetic Data (Ground Reaction Forces) Inter-session (across days) 0.85 ± 20 N 0.82–0.88 

Physiological Data (Heart Rate) Inter-session (across days) 0.93 ± 3 bpm 0.90–0.95 

When comparing inter-session reliability across different days, kinematic data 

for joint angles presented an ICC of 0.88 with an SEM of ±0.8° and a confidence 

interval between 0.85 and 0.91. Kinetic data across sessions had an ICC of 0.85 with 

an SEM of ±20 N and a confidence interval from 0.82 to 0.88. Physiological data 

also maintained high reliability across sessions, with a heart rate ICC of 0.93, an 

SEM of ±3 bpm, and a confidence interval of 0.90 to 0.95. 

3.3. Hybrid ML model 

The recommended ML model that was presented initially has the goal of 

performing a review of the biomechanical patterns that have been discovered during 

the sprinting trials in order to identify the primary factors that contribute to optimal 

running efficiency. The intent of the model is to study the spatial and temporal 

dynamics of the motions of the athletes, encompassing joint angles, velocities, 

ground reaction forces, and physiological responses, in order to find patterns that 

distinguish between various types of sprint performance. Within the boundaries of 

the present study, a hybrid ML model was used to study the biomechanical patterns 

of sprinting and enhance its performance. In order to accurately represent the spatial 

and temporal dynamics that can be detected in the biomechanical data of the athletes, 

the model integrates CNN and LSTM networks (Figure 4). Using the CNN layers, 

the hybrid model primarily extracts spatial features from the kinematic, kinetic, and 

physiological variables. Following that, the LSTM layers are used to model the 

temporal links that are present within these features. 

The process begins with the input data 𝑋, which consists of the kinematic and 

kinetic data matrices captured by the Vicon MX T-Series and AMTI force plates, 

along with physiological data from the Polar Team 2 sensors. The input data is 

represented as 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇}, where 𝑥𝑡  denotes the data at time step 𝑡 . The 

CNN component of the hybrid model applies a series of convolutional operations to 

the input data to extract spatial features. Each convolutional layer is defined by a 
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kernel 𝑊 and bias 𝑏, with the convolution operation at a given layer 𝑙 expressed as 

Equation (1). 

𝐹(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝑋 + 𝑏(𝑙)) (1) 

where F(𝑙) represents the feature map, 𝜎 is the activation function (e.g., ReLU), and 

∗ denotes the convolution operation. The feature maps generated by the CNN layers 

are then flattened into a one-dimensional vector and fed into the LSTM layers to 

capture temporal relationships. The LSTM network processes these sequences of 

spatial features to model the dependencies over time. The LSTM’s memory cell is 

updated at each time step 𝑡 according to the following Equations (2)–(6): 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (2) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (3) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (4) 

𝑐𝑡 = 𝑓𝑡 ⊙𝑐𝑡−1 + 𝑖𝑡 ⊙ tanℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (5) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanℎ(𝑐𝑡) (6) 

where 𝑖𝑡 , 𝑓𝑡, 𝑜𝑡  and c𝑡  are the input gate, forget gate, output gate, and cell state, 

respectively. The weight matrices 𝑊,𝑈, and bias terms b are learned during training, 

and ⊙ represents the element-wise multiplication. The output of the LSTM layers is 

then passed through a dense layer that applies a linear activation function, producing 

predictions of optimal performance patterns. The hybrid CNN-LSTM model was 

trained using a Backpropagation Through Time (BPTT) algorithm, optimizing a loss 

function 𝐿(𝜃) where 𝜃 represents all the parameters of the model. The loss function 

was the Mean Squared Error (MSE), defined as Equation (7). 

𝐿(𝜃) =
1

𝑁
∑  

𝑁

𝑖=1

(𝑦𝑖 − �̂�𝑖)
2 (7) 

 

Figure 4. Hybrid CNN-LSTM. 

4. Data analysis 

This proposed research shows that university sprinting athletes have reduced 

GRFs, more brief strides, and less efficient joint angles than their national-level 

colleagues. There were significant variations in muscle activation patterns, which 

indicated differences in biomechanical performance. A CNN-LSTM hybrid model, 
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which we used in our research, is an innovative method to look at biomechanical 

patterns in sprinting; it also helps clarify how various factors collaborate to impact 

performance. 

Contribution to the Field: 

(a) Build emphasis on what the study has shown us about sprinting biomechanics. 

Call emphasizes that this research found relationships between joint angles and 

GRFs that hadn’t been documented before. 

(b) The distinct impact caused by joint angles on GRFs was found in this research, 

which provides light on the biomechanical changes that set apart top sprinters. 

Implications for fitness and performance optimization are feasible, and this 

work strengthens today’s physical knowledge. 

The biomechanical variables, such as kinematic, kinetic, and physiological 

parameters, were examined to understand their impact on sprinting performance. 

Kinematic variables included joint angles, velocities, and accelerations, capturing the 

athletes’ motion dynamics during key sprint phases such as the stance and swing. 

Kinetic variables focused on Ground Reaction Forces (GRF) in three dimensions, 

evaluating the effectiveness of force generation and transfer during foot strikes. 

Physiological variables such as heart rate, heart rate variability, and respiratory rate 

were monitored to assess the athletes’ internal workload and recovery status. 

4.1. Descriptive statistics 

Additionally, a more precise and accurate image of the measurements and 

model predictions can be achieved by introducing confidence intervals into any 

biomechanical data analysis. It is essential to gain knowledge of the predictions’ 

precision, analyze the data’s range and reliability, and verify that the impacts or 

changes detected are statistically relevant. Applying this approach improves the 

reliability of these results and makes possible the reuse of data and the comparison of 

data from various studies. 

The analysis of descriptive statistics is presented in Table 4. For kinematic 

variables (Figure 5a), the hip angle recorded a mean of 45.63 degrees with a SD of 

3.18, reflecting a moderate range of motion. The knee angle demonstrated more 

significant variability, averaging 72.37 degrees with a wider range of motion, which 

shows the effectiveness of leg extension during sprints. Ankle angles were consistent 

among athletes, indicating a uniformity in ankle flexion that is needed for better 

propulsion. Kinetic variables (Figure 5b) revealed substantial differences in ground 

reaction forces, with a mean vertical force of 1896.48 Newtons and a range 

indicating diverse striking impacts. Horizontal and lateral ground reaction forces, 

with means of 321.47 N and 199.84 N, respectively, further illustrate the multi-

directional forces that athletes must optimize for enhanced performance. 

Physiological measures (Figure 5c), such as heart rate and respiratory rate, averaged 

179.63 bpm and 39.87 breaths per minute, respectively, showing the level of 

cardiovascular demand of sprinting. Heart rate variability stood at 34.72 

milliseconds, displaying the athletes’ stress and recovery during high-intensity 

efforts. 
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Table 4. Findings from the descriptive analysis. 

Biomechanical Variable Mean Standard Deviation (SD) Minimum Maximum Range 

Kinematic Variables      

Hip Angle (°) 45.63 3.18 40.14 52.34 12.20 

Knee Angle (°) 72.37 4.12 64.73 81.61 16.88 

Ankle Angle (°) 89.78 2.79 85.21 94.32 9.11 

Joint Velocity (m/s) 5.23 0.57 4.12 6.36 2.24 

Joint Acceleration (m/s2) 12.27 1.43 9.81 14.69 4.88 

Kinetic Variables      

Vertical Ground Reaction Force (N) 1896.48 149.62 1647.32 2201.45 554.13 

Horizontal Ground Reaction Force (N) 321.47 45.31 250.24 410.59 160.35 

Lateral Ground Reaction Force (N) 199.84 29.78 150.23 259.97 109.74 

Rate of Force Development (N/s) 4503.67 348.96 3912.45 5097.36 1184.91 

Force Impulse (Ns) 298.72 24.85 261.48 339.84 78.36 

Physiological Variables      

Heart Rate (bpm) 179.63 11.78 161.45 199.34 37.89 

Heart Rate Variability (ms) 34.72 5.96 25.48 45.13 19.65 

Respiratory Rate (breaths/min) 39.87 5.24 32.14 48.29 16.15 

   
(a) (b) (c) 

Figure 5. Descriptive statistics for. (a) Kinematic variables; (b) kinetic variables; (c) physiological variables. 

4.2. Phase wise analysis 

The study of total sprinting performance involves a comprehensive 

understanding of the variations in biomechanical variables between the stance and 

the swing phase of sprinting. There are distinct biomechanical features associated 

with each sprinting phase, and each phase is integral to the speed and overall 

effectiveness of the sprinting motion. In order to better comprehend these differences 

and how they impact sprinting performance, the following is a detailed discussion: 

A. Stance phase features 



Molecular & Cellular Biomechanics 2024, 21(1), 321.  

13 

 Time: Starting at the moment the foot hits the ground and finishing when 

the foot lifts off the ground is the “stance” phase. On average, it spans 

30%–40% of a sprinter’s cycle. 

 Foot contact: In the stride, the athlete’s foot maintains total contact with 

the ground’s surface, moving from a heel strike (or forefoot strike, based 

on one’s selected speed method). 

 Ground reaction forces: This section requires applying significant force to 

the floor. Efficient movement is contingent on the strength and direction of 

these powers, which can be defined as vertical, horizontal, and lateral. 

 Joint angles: At the moment, significant joint angles like the hip 

flex/extension, knee flexion/extension, and ankle 

dorsiflexion/plantarflexion need to be maintained. In a standard motion, 

for example, the knee is curved upon the initial strike and then relaxed as 

the foot rolls onto the supporting surface. 

 Muscle stimulation: The glutes, calf muscles, hamstrings, and quadriceps 

get a good workout. Certain of its primary functions are shock absorption, 

body stabilization, and motion force generation. 

B. Performance impact on sprinting 

 Force discovery: A high-ground reacting force is directly related to a 

sprinter’s speed. Motion is boosted by a more vital vertical force during 

the stance phase, whereas speed and velocity change by a horizontal force. 

 Impact engagement: Injuries are more inclined, and the effectiveness 

improves when impact forces are appropriately diffused. Joint stress and 

higher ground response forces are possible outcomes from limited impact 

absorption. 

 Stability and balance: Stability and balance improve when skeletal muscles 

are working, and joints are correctly aligned. A more successful movement 

of forces and less energy loss are made possible by appropriate recovery 

during the posture phase. 

C. Swing phase features 

 Duration: The moment the foot improves off the ground and back to the 

surface indicates the start of the swing phase. Roughly 60 to 70% of the 

sprinting phase is allocated to hit. 

 Foot movement: In this phase, the foot moves up, anticipating the 

following impact on the ground’s surface. Leg recovery, knee lift, and foot 

position are some phases the leg cycles through. 

 Joint angles: Hip flexion (leg lift), knee flexion (foot release), and flexing 

the ankle (contact setup) constitute key joint motions. 

 Muscle activation: Several muscles, which include the iliopsoas, 

hamstrings, and tibialis anterior, function in the swing phase. Leg move 

and forward motion are controlled by the iliopsoas and hamstrings, with 

support from the anterior tibialis muscle, which supports and dorsiflex the 

leg’s ankle. 

D. Effects on the performance of sprinting 

 Leg recovery: Maintaining a high stride rate while reducing ground in 

comparison interaction time can be done through quick leg recovery, 
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defined by a high knee lift and quick leg swing. Both aggregate speed and 

stride length are improved by approach. 

 Minimizing drag: Swinging with properly positioned feet and leg 

biomechanics reduces calorie consumption and aerodynamic drag. As an 

outcome, people can move from swing to stance far more rapidly and 

comfortably. 

 Stride length and frequency: Foot length and frequency can be increased 

by the implementation of optimal mechanics during the swing phase. For 

optimal sprinting speed, you must have a more extended stride and 

improve the amount you sprint. 

E. Interactions between phases 

 Seamless Transition: Maintaining speed and accuracy demands a smooth 

move from the stance to the swing phases. Faster energy loss and reduced 

sprinting speed can result from a wrong move. 

 Coordination and Timing: To apply weights effectively and adequately 

position the leg for the next ground contact, the stance and swing phases 

must be integrated and performed correctly. Reaching maximum efficiency 

while avoiding injury requires this level of coordination. 

 Energy Transfer: Minimising tiredness while maintaining high speeds is 

possible by appropriate energy transfer between phases. To maximize 

sprinting performance while maximizing good use of collected flexible 

power, it is essential to train inappropriate biomechanics during both 

phases of running. 

F. Training implications 

 Stance phase training: Plyometrics, strength training, and stability 

exercises are a few examples of physical exercises that may boost 

performance during the stance phase. These activities target boosting 

power production, impact absorption, and balance. 

 Swing phase training: Training exercises that target the mechanics and 

performance of the swing phase comprise high-knee drills, sprint drills, 

and technique training, all of which emphasize the key elements of leg 

speed, knee lift, and foot positioning. 

Running a sprint includes distinct biomechanical factors during the stance and 

swing phases, which impact overall performance. While the swing phase focuses on 

leg recovery, stride length, and frequency, the stance phase is about releasing force, 

absorbing impacts, and being stable. Sprinting performance can be significantly 

enhanced with a recognition of and attention to these phases, as well as with specific 

training programs that are designed to improve speed and efficiency. 

The descriptive statistics of kinematic variables across the sprint phases of 

Stance and Swing are shown in Table 5. During the Stance phase (Figure 6a), the 

hip angle maintains a more consistent posture with a mean of 42.87° and a SD with 

slight variability. As the leg transitions to the Swing phase (Figure 6b), the mean hip 

angle increases to 58.32°, showing a broader range of motion needed for effective 

leg recovery and subsequent forward drive. Similarly, knee angles show variation 

between phases; in Stance, the mean angle is 71.54°, which absorbs the impact of a 

foot strike. This angle increases in the Swing phase to a mean of 128.47°, showing 
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the flexion required for propelling the leg forward and preparing for the next stride. 

Table 5. The mean, SD, and range for each kinematic variable during sprint phases. 

Kinematic Variable Sprint Phase Mean Standard Deviation (SD) Minimum Maximum Range 

Hip Angle (°) 
Stance 42.87 2.91 38.45 47.63 9.18 

Swing 58.32 3.05 53.72 64.21 10.49 

Knee Angle (°) 
Stance 71.54 4.23 65.38 79.12 13.74 

Swing 128.47 4.76 120.34 136.89 16.55 

Ankle Angle (°) 
Stance 88.93 2.58 84.31 93.45 9.14 

Swing 105.76 3.19 100.12 112.84 12.72 

Joint Velocity (m/s) 
Stance 4.83 0.56 3.96 5.67 1.71 

Swing 6.52 0.68 5.39 7.68 2.29 

Joint Acceleration (m/s2) 
Stance 11.73 1.32 9.58 14.25 4.67 

Swing 14.92 1.45 12.54 17.39 4.85 

Ankle angles also adjust significantly between phases, from an average of 

88.93° in Stance to 105.76° in Swing. This increase supports the leg’s clearance 

from the ground and prepares it for the following impact. Joint velocities and 

accelerations highlight the dynamic nature of sprinting. The velocity increases from 

4.83 m/s in Stance to 6.52 m/s in Swing, displaying quicker limb recovery to 

maintain sprint rhythm. Similarly, joint acceleration shows an increase from 11.73 

m/s2 in Stance to 14.92 m/s2 in Swing, highlighting the high level of force 

application needed to achieve peak speeds. 

  
(a) (b) 

Figure 6. Descriptive statistics for Kinematic variables for. (a) Stance phase; (b) swing phase. 
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Table 6. The mean, SD, and range for each kinetic variable during sprint phases. 

Kinetic Variable Sprint Phase Mean SD Minimum Maximum Range 

Vertical Ground Reaction Force (N) 
Stance 1923.45 153.21 1675.34 2198.72 523.38 

Swing 135.78 24.12 102.45 178.65 76.20 

Horizontal Ground Reaction Force (N) 
Stance 330.67 48.76 265.34 415.21 149.87 

Swing 95.24 20.18 72.15 134.82 62.67 

Lateral Ground Reaction Force (N) 
Stance 210.34 29.87 156.43 263.91 107.48 

Swing 67.89 15.42 49.32 102.58 53.26 

Rate of Force Development (N/s) 
Stance 4650.23 359.87 4005.18 5248.34 1243.16 

Swing 312.56 35.67 265.49 398.72 133.23 

Force Impulse (Ns) 
Stance 310.58 27.84 271.24 347.92 76.68 

Swing 58.34 12.36 40.12 83.47 43.35 
 

The kinetic variables measured during the Stance and Swing phases are 

displayed in Table 6. In the Stance phase (Figure 7a), the vertical ground reaction 

force averages 1923.45 N, representing the high impact forces the athletes withstand 

upon ground contact. The SD of 153.21 N indicates variability among athletes in 

how effectively they absorb and utilize these forces. In contrast, during the Swing 

phase (Figure 7b), this force reduces to an average of 135.78 N, which shows the 

minimal ground contact and the primary focus on limb recovery and preparation for 

the next stride. Horizontal ground reaction forces that enable forward propulsion 

show notable phase differences. Averaging 330.67 N in Stance, it underscores the 

athletes’ efforts in generating forward momentum. This force decreases to 95.24 N in 

the Swing phase, showing the reduced need for horizontal propulsion when the foot 

is off the ground. Lateral ground reaction forces needed for side-to-side stability, 

average at 210.34 N during Stance, depict the control athletes maintain during 

powerful ground strikes. This force is significantly lower in the Swing phase at 67.89 

N. The rate of force development is high at 4650.23 N/s during Stance, and it 

decreases substantially to 312.56 N/s during the Swing phase, reflecting the lessened 

emphasis on force production when in the air. Force impulse, which quantifies the 

total force exerted over the contract duration, shows a marked reduction from 310.58 

Ns in Stance to 58.34 Ns in Swing, indicating the transition from active force 

application to passive recovery in the swing phase. 

Table 7. The mean, SD, and range for each physiological variable during sprint phases. 

Physiological Variable Sprint Phase Mean SD Minimum Maximum Range 

Heart Rate (bpm) 
Stance 182.45 11.24 162.78 198.34 35.56 

Swing 175.89 10.62 158.67 192.45 33.78 

Heart Rate Variability (ms) 
Stance 36.72 6.18 26.45 47.89 21.44 

Swing 32.54 5.94 24.12 42.36 18.24 

Respiratory Rate (breaths/min) 
Stance 41.23 4.87 34.89 49.56 14.67 

Swing 39.68 4.52 33.47 47.23 13.76 
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(a) (b) 

Figure 7. Descriptive statistics for Kinetic variables for. (a) Stance phase; (b) swing phase. 

The physiological variables measured during the Stance and Swing phases are 

shown in Table 7. During the Stance phase (Figure 8a), where athletes exert 

maximum force against the track, the heart rate is notably high, averaging 182.45 

beats per min (bpm). This indicates the intense cardiovascular demand placed on the 

body during this forceful activity, with a standard deviation of 11.24 bpm, showing 

significant variability among athletes. In the Swing phase (Figure 8b), the heart rate 

slightly decreases to an average of 175.89 bpm, reflecting a relative reduction in 

cardiovascular stress as the athletes’ feet are airborne and less force is exerted. Heart 

Rate Variability (HRV), which indicates the autonomic nervous system’s regulation 

of the heart rate, also shows interesting trends. In the Stance phase, the mean HRV is 

36.72 milliseconds (ms), suggesting a high level of physiological stress and robust 

autonomic response to maintain cardiovascular stability. The variability decreases 

slightly in the Swing phase to a mean of 32.54 ms as the physical demand 

momentarily reduces, allowing the athletes a brief period of cardiovascular recovery. 

The respiratory rate further underscores the physical demands of each phase. During 

Stance, the rate averages 41.23 bpm, highlighting the increased respiratory effort 

required to meet the oxygen demands of muscle exertion. This rate slightly decreases 

to 39.68 breaths per minute during the Swing phase, indicating a small but 

significant reduction in respiratory load as the body prepares for the next contact 

with the track. 
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(a) (b) 

Figure 8. Descriptive statistics for physiological variables for. (a) Stance phase; (b) Swing phase. 

Table 8. The results for F-statistic (F), p-value (P), and effect size (η2). 

Variable Sprint Phase F-statistic (F) p-value (P) Effect Size (η2) 

Kinematic Variables     

Hip Angle (°) 
Stance 15.32 ± 0.45 < 0.001 ± 0.0001 0.41 ± 0.02 

Swing 18.67 ± 0.54 < 0.001 ± 0.0001 0.47 ± 0.03 

Knee Angle (°) 
Stance 12.89 ± 0.37 0.002 ± 0.0003 0.35 ± 0.02 

Swing 20.45 ± 0.62 < 0.001 ± 0.0001 0.49 ± 0.03 

Ankle Angle (°) 
Stance 22.31 ± 0.67 < 0.001 ± 0.0001 0.52 ± 0.03 

Swing 40.67 ± 1.12 < 0.001 ± 0.0001 0.61 ± 0.04 

Joint Velocity (m/s) 
Stance 32.89 ± 0.89 < 0.001 ± 0.0001 0.57 ± 0.03 

Swing 28.23 ± 0.75 < 0.001 ± 0.0001 0.54 ± 0.03 

Joint Acceleration (m/s2) 
Stance 36.54 ± 0.98 < 0.001 ± 0.0001 0.59 ± 0.03 

Swing 25.18 ± 0.68 < 0.001 ± 0.0001 0.51 ± 0.03 

Kinetic Variables     

Vertical Ground Reaction Force (N) 
Stance 10.76 ± 0.32 0.004 ± 0.0002 0.31 ± 0.02 

Swing 9.32 ± 0.28 0.007 ± 0.0003 0.29 ± 0.02 

Horizontal Ground Reaction Force (N) 
Stance 8.67 ± 0.24 0.009 ± 0.0003 0.27 ± 0.02 

Swing 15.32 ± 0.45 < 0.001 ± 0.0001 0.41 ± 0.02 

Lateral Ground Reaction Force (N) 
Stance 18.67 ± 0.54 < 0.001 ± 0.0001 0.47 ± 0.03 

Swing 12.89 ± 0.37 0.002 ± 0.0003 0.35 ± 0.02 

Rate of Force Development (N/s) 
Stance 20.45 ± 0.62 < 0.001 ± 0.0001 0.49 ± 0.03 

Swing 22.31 ± 0.67 < 0.001 ± 0.0001 0.52 ± 0.03 

Force Impulse (Ns) 
Stance 40.67 ± 1.12 < 0.001 ± 0.0001 0.61 ± 0.04 

Swing 32.89 ± 0.89 < 0.001 ± 0.0001 0.57 ± 0.03 
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Table 8. (Continued). 

Variable Sprint Phase F-statistic (F) p-value (P) Effect Size (η2) 

Physiological Variables     

Heart Rate (bpm) 
Stance 28.23 ± 0.75 < 0.001 ± 0.0001 0.54 ± 0.03 

Swing 36.54 ± 0.98 < 0.001 ± 0.0001 0.59 ± 0.03 

Heart Rate Variability (ms) 
Stance 25.18 ± 0.68 < 0.001 ± 0.0001 0.51 ± 0.03 

Swing 10.76 ± 0.32 0.004 ± 0.0002 0.31 ± 0.02 

Respiratory Rate (breaths/min) 
Stance 9.32 ± 0.28 0.007 ± 0.0003 0.29 ± 0.02 

Swing 8.67 ± 0.24 0.009 ± 0.0003 0.27 ± 0.02 

 

Figure 9. F-statistic (F), p-value (P), and effect size (η2) for kinematic variables. 

The statistical analysis of biomechanical and physiological variables during the 

Stance and Swing phases is shown in Table 8. For kinematic variables (Figure 9), 

the hip angle shows significant statistical differences between phases with F-

statistics of 15.32 in Stance and 18.67 in Swing, both with p-values below 0.001, 

indicating a robust difference in hip movements that are crucial during these phases. 

The effect size also increases from 0.41 to 0.47, emphasizing a more significant 

effect during the Swing phase. The knee angle follows a similar trend with higher 

variability and significance in the Swing phase (F-statistic of 20.45 and effect size of 

0.49) compared to the Stance phase (F-statistic of 12.89 and effect size of 0.35). This 

suggests a critical role of knee dynamics in propelling the body forward during the 

Swing phase. Ankle angles and joint velocities also exhibit significant differences, 

with higher F-statistics in the Stance phase for ankle angles (22.31) and joint 

velocities (32.89), illustrating these critical roles in generating initial ground force 

and maintaining momentum. The joint acceleration shows the highest effect size 

during Stance (0.59), underscoring the importance of rapid force application at this 

stage. For kinetic variables (Figure 10), vertical ground reaction forces have lower 

F-statistics compared to other metrics but still show significant phase-based 

differences, indicating the variable impact forces absorbed and generated by athletes 
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during Stance and Swing. Horizontal and lateral ground reaction forces have higher 

F-statistics in the Swing phase, highlighting the essential role of lateral stability and 

horizontal propulsion when the foot is off the ground. Physiological variables 

(Figure 11) such as heart rate and respiratory rate show statistically significant 

changes, with higher values in the Swing phase (F-statistics of 36.54 for heart rate 

and 8.67 for respiratory rate). This reflects increased cardiovascular and respiratory 

activity as the body recovers and prepares for the next ground contact. 

 

Figure 10. F-statistic (F), p-value (P), and effect size (η2) for kinetic variables. 

 

Figure 11. F-statistic (F), p-value (P), and effect size (η2) for physiological variables. 

The comparative analysis of biomechanical and physiological variables between 

NLP and CLP is shown in Table 9. Kinematic analysis shows that NLP athletes 

exhibit more effective hip, knee, and ankle angles with F-statistics of 14.87, 16.92, 
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and 13.45, respectively, all indicating p-values well below 0.001. These significant 

differences suggest that NLP athletes possess more refined techniques that contribute 

to superior sprint performance, with effect sizes ranging from 0.34 to 0.43, 

highlighting moderate to substantial differences in kinematic efficiency between the 

groups. Further, NLP athletes display superior joint dynamics, with significantly 

higher joint velocities and accelerations (F-statistics of 19.23 and 21.58), reflecting 

their advanced neuromuscular coordination and strength. This capability allows them 

to generate and control motion more effectively during high-speed runs. In terms of 

kinetic variables, NLP athletes show much more effective translation of ground 

contact into forceful propulsion, particularly in vertical ground reaction forces, 

which have an F-statistic of 38.45, the highest among the variables analyzed. 

Horizontal and lateral forces also show significant differences (F-statistics of 30.72 

and 26.34), underscoring the NLP group’s superior ability to manage and utilize 

these forces during sprints. Physiological differences, though less pronounced than 

biomechanical measures, still reveal significant distinctions in cardiovascular 

efficiency and stress management, with F-statistics ranging from 9.45 to 11.67 for 

heart rate, heart rate variability, and respiratory rate. These differences underscore 

better physiological adaptation and efficiency in elite sprinters compared to their 

collegiate counterparts. 

Table 9. Analysis based on participant group. 

Variable Participant Group F-statistic (F) p-value (P) Effect Size (η2) 

Kinematic Variables 

Hip Angle (°) NLP vs. CLP 14.87 ± 0.42 < 0.001 ± 0.0001 0.39 ± 0.02 

Knee Angle (°) NLP vs. CLP 16.92 ± 0.49 < 0.001 ± 0.0001 0.43 ± 0.03 

Ankle Angle (°) NLP vs. CLP 13.45 ± 0.36 0.002 ± 0.0003 0.34 ± 0.02 

Joint Velocity (m/s) NLP vs. CLP 19.23 ± 0.59 < 0.001 ± 0.0001 0.48 ± 0.03 

Joint Acceleration (m/s2) NLP vs. CLP 21.58 ± 0.65 < 0.001 ± 0.0001 0.51 ± 0.03 

Kinetic Variables 

Vertical Ground Reaction Force (N) NLP vs. CLP 38.45 ± 1.05 < 0.001 ± 0.0001 0.60 ± 0.04 

Horizontal Ground Reaction Force (N) NLP vs. CLP 30.72 ± 0.83 < 0.001 ± 0.0001 0.55 ± 0.03 

Lateral Ground Reaction Force (N) NLP vs. CLP 26.34 ± 0.70 < 0.001 ± 0.0001 0.53 ± 0.03 

Rate of Force Development (N/s) NLP vs. CLP 33.98 ± 0.92 < 0.001 ± 0.0001 0.57 ± 0.03 

Force Impulse (Ns) NLP vs. CLP 24.15 ± 0.65 < 0.001 ± 0.0001 0.50 ± 0.03 

Physiological Variables 

Heart Rate (bpm) NLP vs. CLP 11.67 ± 0.35 0.003 ± 0.0002 0.32 ± 0.02 

Heart Rate Variability (ms) NLP vs. CLP 10.12 ± 0.30 0.005 ± 0.0003 0.30 ± 0.02 

Respiratory Rate (breaths/min) NLP vs. CLP 9.45 ± 0.28 0.007 ± 0.0003 0.28 ± 0.02 

The performance analysis of the ML models across several key metrics is 

shown in Table 10 and Figures 12 and 13. With an accuracy of 92.4%, a precision 

of 90.2%, and a recall of 91.7%, this model demonstrates its robustness in correctly 

identifying optimal sprinting patterns. The F1-Score of 90.9% further underscores its 

balanced performance in precision and recall, while an R2 value of 0.89 and an AUC 

of 0.86 highlight its strong predictive power and reliability. The model’s 
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classification results show a True Positive (TP) rate of 85 and a False Positive (FP) 

rate of 10 for optimal performance patterns, with a relatively low False Negative 

(FN) rate of 5 and a True Negative (TN) rate of 100 for sub-optimal patterns. In 

comparison, the SVM model, though respectable, lags behind with an accuracy of 

85.7% and a lower precision and recall (82.4% and 80.9%, respectively). The RF 

model performed better than SVM with an accuracy of 88.1% and a balanced F1-

Score of 86.8% but still fell short of the CNN-LSTM hybrid. The standalone LSTM 

model performed relatively well, with an accuracy of 89.3% and an F1-Score of 

88.1%, showing its capability but still not matching the hybrid model’s performance. 

Table 10. Performance analysis of the ML model. 

Model Acc Prec Recall F1-Score R2 AUC  Opt Sub-opt 

CNN-LSTM (Hybrid) 92.4% 90.2% 91.7% 90.9% 0.89 0.86 
Opt TP = 85 FP = 10 

Sub-opt FN = 5 TN = 100 

SVM 85.7% 82.4% 80.9% 81.6% 0.74 0.81 
Opt TP = 78 FP = 17 

Sub-opt FN = 12 TN = 93 

Random Forest (RF) 88.1% 86.5% 87.2% 86.8% 0.82 0.78 
Opt TP = 80 FP = 15 

Sub-opt FN = 10 TN = 95 

LSTM 89.3% 87.8% 88.5% 88.1% 0.85 0.8 
Opt TP = 82 FP = 13 

Sub-opt FN = 8 TN = 97 

 

Figure 12. ML model performance. 
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Figure 13. ROC for the compared models. 

4.3. Real-world significance of the study’s findings 

1) Performance Promotion Training Approaches 

• Improving the balance of biomechanical variables 

 Length and speed of strides: The research study found that national 

sprinters stride more profoundly and often. Trainers can use this data 

to design stride length and frequency exercises. Train with 

mechanical and speed exercises that focus on fast leg motions. 

 Ground reaction forces (GRF): Professional sprinters’ higher GRFs 

indicate that force output is essential for sprinting performance. 

Resistance training and force-enhancement exercises like sprinting 

against resistance straps or using weighted vests can help athletes 

generate and use more power. 
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• Practice improvement 

 Joint angles: A sprinter’s performance increases when their joint 

angles are optimal. Training exercises that highlight appropriate joint 

alignment and motion patterns can be the primary goal of trainers. 

Athletes may enhance their movement angles, for example, by 

performing method exercises that highlight the importance of a 

correctly caused knee and fully stretched leg. 

 Muscle activation patterns: Athletes may improve from training 

programs adapted to their particular types of muscle activation, 

provided we recognise those patterns. Training schedules may include 

exercises focusing on activating essential muscle groups associated 

with sprinting, like the legs and quads. 

2) Risk Assessment and Safety Measures 

• Biomechanical assessments 

 Monitoring biomechanical patterns: Injuries can be mitigated through 

periodic biomechanical analyses using the CNN-LSTM model to 

detect non-optimal motion patterns. Trainers can avoid injury risks by 

keeping a close eye on these patterns; they’ll identify any possible 

signs of biomechanical imbalances or losses. 

 Predictive analytics: An injury control deployment of the model’s 

performance analysis and prediction powers rooted in biomechanical 

data is possible. For instance, one may employ precautions like 

reducing weights for training or correcting methods if they detect 

patterns contributing to an increased risk of injury, like high reaction 

forces from the ground or improper joint angles. 

• Customized training interventions 

 Personalized training: Based on the model’s findings, athletes may 

gain value from customized training regimens. For example, athletes 

inclined to particular injuries can benefit from personalized training 

regimens that zero in on their particular regions of weakness. 

 Recovery approaches: The findings of the hypothesis can help with 

recovery plans by highlighting particular regions where professional 

athletes might benefit from further support. For instance, if the model 

indicates that an athlete fails to get the most out of their skeletal 

muscles, specific physical therapy exercises can be added to help 

people rehabilitate while minimizing future problems. 

3) Application in training schedules 

• Compatibility with current resources 

 Integrating with pre-existing metrics: An in-depth analysis of an 

athlete’s performance and biomechanics can be done using the CNN-

LSTM model with multiple additional performance metrics and tools 

on the marketplace. Training and injury prevention measures can be 

done with greater accuracy owing to this adopted strategy. 

 Real-time feedback: An approach to improve training efficiency is to 

apply the model’s predictions in real-time feedback programs. For 

instance, trainers and trainees can benefit from real-time feedback and 
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biomechanical data collection with wearable devices during training. 

By integrating the features of CNNs in spatial FE with the advantages of 

LSTMs in temporal modelling, the CNN-LSTM hybrid model provides a reliable 

and adaptable method for investigating biomechanical patterns during sprinting. 

These features improve performance accuracy, address challenging and multimodal 

data, and provide real-time feedback when used together. The CNN-LSTM hybrid 

model is superior to others because it demands less manual feature engineering, 

captures al and temporal dynamics, and is more accurate. 

5. Conclusion 

This paper implements a hybrid ML model that integrates Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) networks to provide a 

comprehensive analysis of sprinting biomechanics. In order to determine the key 

factors that contribute to optimum sprint performance, the model addressed the 

complex relationship between kinetic, kinematic, and psychological factors. The 

findings indicate the significance of ground reaction forces, cardiovascular 

responses, and joint velocities for optimal performance. Higher knee angles and joint 

accelerations during the swing phase imply that professional sprinting athletes 

demonstrate more developed biomechanical patterns, which results in improved 

efficiency of motion and force application, based on the research investigation. 

Conventional ML models performed better than the CNN-LSTM hybrid model, 

which provided higher precision and predictive power. In light of these results, it 

was evident that there is an essential need for an integrated approach to training and 

performance review, one that takes into consideration the dynamic interactions of 

multiple variables over the whole sprinting cycle of operation. 

In conclusion, sprinters’ training and performance optimization can benefit 

significantly from the knowledge extracted from this ML method. Improved 

sprinting efficiency and decreased risk of injury can be achieved by using targeted 

interventions, customized opinions, and improved exercises made feasible by the 

thorough biomechanical analysis provided by the CNN-LSTM hybrid model. This 

approach helps in technique refinement and helps athletes reach their highest 

potential using data-driven conclusions and data-validated strategies 

Recognizing the limitations of the present investigation and highlighting 

possible directions for future research can be achieved by expanding the drawbacks 

section. Gain an improved understanding of sprinting biomechanics and guide future 

research toward correcting gaps and expanding upon current findings by addressing 

sample size, data collecting methods, and generalisability and recommending novel 

avenues of research. 

Implications for future research: 

(a) Based on the findings and how they compare to previous investigations, novel 

subjects for further research should be proposed. 

(b) Future researchers might investigate how exercises affect sprinters’ joint angles 

and GRFs over the long term or how stress impacts biomechanical patterns at 

different performance levels. 
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