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Abstract: Sports injuries can significantly impact athletes’ performance and career longevity, 

making their early prediction and prevention a critical area of research. Traditional methods 

often fall short of capturing the complex, nonlinear interactions between various risk factors 

that contribute to injuries. The early prediction of sports injuries is vital for the well-being and 

performance optimization of athletes. This paper introduces Intrinsic Permutation Entropy 

Deep Learning (IPE-DL), a novel framework that synergizes permutation entropy with deep 

learning architectures to enhance the prediction of sports injuries. The IPE-DL method 

leverages the concept of permutation entropy to quantify the complexity and regularity of time-

series data derived from athletes’ physiological and biomechanical signals. These entropy 

measures serve as critical features, capturing the inherent nonlinear dynamics within the data. 

The experiments demonstrate that the IPE-DL model outperforms traditional machine learning 

approaches and state-of-the-art deep learning models in predicting sports injuries. The 

proposed deep learning model is trained on a comprehensive dataset encompassing various risk 

factors, including athlete-specific metrics, training load parameters, and environmental 

conditions. Our dataset includes data from over 1,000 athletes, with a total of 100,000 training 

sessions recorded. The experiments demonstrate that the IPE-DL model outperforms 

traditional machine learning approaches and state-of-the-art deep learning models, achieving 

an accuracy of 92%, a sensitivity of 89%, and a specificity of 94% in predicting sports injuries. 

The results highlight the model’s capability to provide early warnings by identifying subtle 

changes in athletes’ physiological and biomechanical states that precede injuries. 

Keywords: sports injuries; injury prediction; permutation entropy; deep learning; early 

warning systems 

1. Introduction 

Injury prevention in various domains, such as sports, workplace safety, and 

healthcare, has increasingly benefited from the development and implementation of 

early warning systems for injury risk prediction [1]. These systems utilize a 

combination of advanced technologies, including wearable sensors, machine learning 

algorithms, and big data analytics, to monitor and analyze an individual’s physical 

condition and environmental factors in real-time [2]. By continuously collecting data 

on parameters such as movement patterns, physiological responses, and external 

conditions, early warning systems can identify potential risk factors and predict the 

likelihood of injury before it occurs [3]. This proactive approach enables timely 

interventions, such as adjusting training regimens, implementing safety protocols, or 

providing personalized feedback, to mitigate the risk of injury and enhance overall 

safety and performance. 
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Sports injuries are a common concern for athletes at all levels, and understanding 

the risk factors is crucial for effective prevention [4]. Key risk factors include 

overtraining, poor technique, inadequate warm-up, and insufficient recovery time. 

Additionally, individual characteristics such as age, previous injury history, and 

biomechanical imbalances play a significant role in injury susceptibility. To address 

these risks, early warning systems have been developed that leverage wearable 

technology, machine learning, and data analytics. These systems continuously monitor 

athletes’ movements, physiological responses, and environmental conditions to detect 

patterns that may indicate an increased risk of injury. By providing real-time feedback 

and predictive insights, early warning systems enable coaches, trainers, and athletes 

to make informed decisions about training modifications, rest periods, and injury 

prevention strategies. 

Early warning systems in sports are becoming more sophisticated and accessible, 

integrating various technologies to provide comprehensive injury risk assessments. 

Wearable devices, such as smartwatches, fitness trackers, and specialized sports 

sensors, collect data on heart rate, muscle activity, joint angles, and movement 

dynamics. This data is then analyzed using machine learning algorithms to identify 

deviations from normal patterns that could signify fatigue, overuse, or improper 

technique. For instance, motion capture systems can provide detailed insights into an 

athlete’s biomechanics, highlighting improper movements that may lead to injuries 

like ACL (Anterior cruciate ligament) tears or stress fractures. Similarly, Heart Rate 

Variability (HRV) and other physiological indicators can signal when an athlete is not 

fully recovered or under excessive stress, prompting adjustments in training intensity 

or rest periods. Moreover, environmental factors such as playing surface, weather 

conditions, and equipment quality are also integrated into these systems. By 

considering these external variables, early warning systems offer a holistic view of 

injury risk, allowing for more precise and effective intervention strategies. 

The implementation of early warning systems not only helps in immediate injury 

prevention but also contributes to long-term athlete health management. By tracking 

data over time, these systems can provide personalized injury prevention programs 

tailored to each athlete’s unique profile and history. This proactive approach fosters a 

culture of safety and awareness, encouraging athletes to prioritize their well-being 

alongside performance goals. The advent of deep learning has revolutionized early 

warning systems for injury risk prediction, offering unprecedented accuracy and 

predictive power. Deep learning algorithms, a subset of artificial intelligence, excel at 

analyzing vast amounts of complex, multidimensional data to identify patterns and 

correlations that might be imperceptible to traditional statistical methods. In the 

context of injury prevention, these algorithms process data from various sources, such 

as wearable sensors, video analysis, and physiological monitoring devices, to predict 

injury risks with high precision. For instance, wearable sensors can capture detailed 

biomechanical data, including joint angles, muscle activity, and gait patterns, while 

physiological monitors track heart rate variability, fatigue levels, and stress markers. 

Deep learning models analyze this continuous stream of data to detect subtle changes 

that could indicate an increased risk of injury. By learning from historical data, these 

models can differentiate between normal variations and those that precede injuries. 
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Video analysis, powered by deep learning, also plays a critical role in injury 

prediction. Advanced computer vision algorithms can analyze athletes’ movements in 

real time, identifying improper techniques or biomechanical imbalances that might 

lead to injuries. These insights allow coaches and trainers to make immediate 

corrections, thereby preventing potential injuries before they occur. Moreover, deep 

learning models can integrate environmental factors, such as playing surfaces, weather 

conditions, and equipment usage, to provide a comprehensive risk assessment. By 

considering both intrinsic (athlete-specific) and extrinsic (environmental) factors, 

these systems offer a holistic approach to injury prevention. The continuous 

improvement of deep learning algorithms, fueled by growing datasets and enhanced 

computational power, promises even more accurate and timely predictions. This 

advancement not only enhances athlete safety but also optimizes training and 

performance by ensuring that interventions are based on precise, data-driven insights. 

As deep learning continues to evolve, it will undoubtedly become a cornerstone of 

injury prevention strategies across various domains, significantly reducing injury rates 

and improving overall outcomes. 

The contribution of this paper lies in its exploration and validation of the IPE-DL 

approach for predicting injury risks in athletes, compared to conventional deep 

learning techniques like Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM). By rigorously evaluating these methods using real-world data from 

ten athletes and analyzing crucial performance metrics—accuracy, precision, recall, 

and F1-score—the study demonstrates that IPE-DL outperforms CNN and LSTM in 

terms of predictive accuracy and reliability. This research not only showcases the 

effectiveness of IPE-DL in sports injury prediction but also highlights its potential to 

enhance personalized athlete care and optimize injury prevention strategies. The 

findings contribute to advancing the field of sports science by introducing a novel 

approach that integrates Intrinsic Permutation Entropy with deep learning, thereby 

paving the way for more effective and efficient healthcare management practices in 

sports medicine contexts. 

2. Literature review 

Injury risk prediction has emerged as a crucial area of research across various 

fields, including sports science, occupational health, and healthcare. The ability to 

foresee and prevent injuries not only enhances individual safety and performance but 

also reduces healthcare costs and improves quality of life. This literature review aims 

to provide a comprehensive overview of the current state of research on injury risk 

prediction, highlighting the methodologies, technologies, and applications that have 

been developed and explored in recent years. 

Gao et al. [5] developed an ultrahigh sensitive flexible sensor based on textured 

piezoelectric composites, which shows promise for preventing sports injuries by 

providing real-time monitoring of biomechanical parameters. Zafra et al. [6] 

employed a Bayesian approach to explore the negative psychological features 

associated with sports injuries, highlighting the importance of mental health in injury 

prevention. Lu et al. [7] utilized machine learning techniques to predict lower 

extremity muscle strains in NBA (National Basketball Association) athletes, 
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demonstrating the effectiveness of AI (Artificial Intelligence) in sports injury 

prediction. Wearable sensors and smart devices are increasingly being used to 

monitor rehabilitation parameters and sports performance, as reviewed by De Fazio 

et al. [8], indicating their growing role in injury prevention strategies. Ramirez-

GarciaLuna et al. [9], reviewed the use of infrared thermography in wound care, 

surgery, and sports medicine, showing its potential for early detection of injuries. 

Mandorino et al. [10], applied predictive analytic techniques to uncover hidden 

relationships between training load, fatigue, and muscle strains in young soccer 

players, further validating the use of data-driven methods in injury risk prediction. 

The economic benefits of sports injury prevention are also significant. Lutter et 

al. [11]. conducted a systematic review on the economic aspects of sports injury 

prevention, demonstrating that preventive measures can lead to substantial cost 

savings. Additionally, Merrick et al. [12], assessed prediction accuracy in a maritime 

accident warning system, providing insights that could be applied to injury prediction 

models in sports and other fields. Further studies by Inclan et al. [13], validated the 

use of public data in sports medicine research, specifically focusing on ACL injuries 

in the NFL (National Football League), and emphasized the importance of reliable 

data sources for predictive accuracy. Liaghat et al. [14], provided a comprehensive 

review on the diagnosis, prevention, and treatment of common shoulder injuries in 

sports, commissioned by the Danish Society of Sports Physical Therapy, adding to the 

body of knowledge on specific injury types. The integration of advanced technologies 

in early warning systems is not limited to sports. Agulnik et al. [15], evaluated the 

implementation of a pediatric early warning system in resource-limited settings, 

offering insights into the broader application of such systems. McDevitt et al. [16], 

explored the use of wearables for biomechanical performance optimization and risk 

assessment in both industrial and sports applications, highlighting the versatility of 

wearable technology [17,18]. 

Fear of movement and reinjury are critical psychological factors influencing 

rehabilitation and return-to-sport outcomes. Kvist and Silbernagel [19], discuss the 

relevance of these factors in sports medicine, emphasizing the need for psychological 

support alongside physical rehabilitation to ensure successful recovery and prevent 

reinjury. Guan et al. [20], conducted a systematic review examining the association 

between inter-limb asymmetries in lower-limb functional performance and sports 

injury, highlighting the importance of addressing biomechanical imbalances to reduce 

injury risk. The use of video-based biomechanics and biometry tools for fracture and 

injury assessment in sports has been reviewed by Ortiz-Padilla et al. [21]. These tools 

offer detailed insights into movement patterns and can help identify risk factors for 

injuries, providing a valuable resource for coaches and medical professionals aiming 

to prevent and manage sports injuries effectively. Yang et al. [22], explores the use of 

wearable sensor devices to predict and simulate sports injuries. By leveraging a 

backpropagation (BP) neural network, the authors enhance the accuracy of injury 

prediction based on real-time data from sensors. The research demonstrates how 

machine learning models can process complex physiological data to inform injury 

prevention strategies, offering a practical application for athletes and trainers. 

Amendolara et al. [23] provides a comprehensive overview of how machine learning 

is applied in sports injury prediction. The authors examine various machine learning 
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techniques and their effectiveness in identifying injury risks. The review discusses the 

strengths and limitations of these methods, presenting current trends and potential 

areas for future research in sports injury prevention using AI-driven tools. 

Meng and Qiao [24] designed a dual-feature fusion neural network model for 

estimating sports injury risk. The authors focus on combining different features to 

improve the model’s predictive capabilities. By fusing multiple data streams, such as 

physiological signals and performance metrics, the model can offer more accurate 

injury estimations, making it a valuable tool for injury risk management in athletes. 

Schiepek et al. [25] explore the prediction of sports injuries from a psychological 

perspective. By monitoring psychological processes, such as stress and mental states, 

the study links these factors to injury risks. The findings emphasize the importance of 

psychological well-being in injury prevention, adding an additional dimension to 

traditional physical and performance-based risk assessments. Liu et al. [26] investigate 

the ability of the Functional Movement Screen (FMS) to predict injuries among 

Chinese college students with different levels of physical activity and performance. 

Their findings suggest that the FMS, a widely used screening tool, can be effective in 

identifying students at risk for sports injuries, depending on their activity level and 

movement quality. Robles-Palazón et al. [27] applies machine learning techniques to 

predict injury risk in male youth soccer players. By analyzing training and match data, 

the authors develop models that can forecast injury risk, helping coaches and medical 

staff manage player workloads and prevent injuries in youth soccer. Dandrieux et al. 

[28] introduce a protocol for a prospective cohort study aiming to establish a 

relationship between daily Injury Risk Estimation Feedback (I-REF) and actual injury 

risk in track and field athletes. By using machine learning techniques, the study seeks 

to improve real-time injury prediction and prevention strategies over an athletics 

season. Empacher et al. [29] presents a statistical approach to predicting future sports 

records based on historical record values. Their method explores trends in record-

breaking performances and projects future achievements using statistical models. This 

study has implications for understanding performance limits in various sports. 

As the field of injury risk prediction continues to evolve, several key themes 

emerge from the literature. First, the integration of advanced technologies such as 

wearable sensors, machine learning, and deep learning algorithms is transforming how 

injury risk is assessed and managed. These technologies allow for continuous 

monitoring and real-time analysis, enabling timely interventions that can prevent 

injuries before they occur. Second, the consideration of psychological factors and their 

impact on injury risk and recovery underscores the need for a holistic approach to 

injury prevention and management. Moreover, the economic benefits of injury 

prevention cannot be overstated. By reducing the incidence of injuries, organizations 

can save on healthcare costs and improve productivity and performance. The 

successful implementation of early warning systems in sports and other fields 

demonstrates the potential for widespread adoption and impact. 

3. Intrinsic permutation entropy 

Intrinsic Permutation Entropy (IPE) is an innovative approach to injury 

prediction that leverages the concept of Permutation Entropy (PE) to analyze time 
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series data and detect early signs of injury risk. Permutation entropy is calculated by 

analyzing the permutations of consecutive values within a time series. Consider a time 

series {𝑥𝑡}𝑡=1
𝑁 , where 𝑁 is the length of the series. For a given embedding dimension 

mmm and time delay τ, the time series is transformed into a sequence of mmm-

dimensional vectors stated in Equation (1). 

𝑋𝑖 = (𝑥𝑖, 𝑥𝑖 + 𝜏, 𝑥𝑖 + 2𝜏, … , 𝑥𝑖 + (𝑚 − 1)𝜏) (1) 

for i = 1, 2, …, N − (m − 1)τi = 1, 2. 

Each vector 𝑋𝑖 is then mapped to a unique permutation pattern πi\pi_iπi, which 

represents the relative ordering of its components. The m = 3 and 𝑋𝑖 = (𝑥𝑖, 𝑥𝑖 +

𝜏, 𝑥𝑖 + 2𝜏), the pattern 𝜋𝑖 could be (0,2,1) if 𝑥𝑖 < 𝑥𝑖 + 2𝜏 < 𝑥𝑖 + 𝜏. The probability 

distribution of these permutation patterns is then estimated, denoted as 𝑃(𝜋) where 𝜋 

is a permutation of order mmm. The permutation entropy 𝐻(𝑚, 𝜏) is defined as in 

Equation (2). 

𝐻(𝑚, 𝜏) = −∑𝜋𝑃(𝜋)𝑙𝑜𝑔𝑃(𝜋) (2) 

This entropy measure captures the complexity of the time series, with higher 

values indicating more randomness. In the context of injury prediction, IPE can be 

applied to various physiological and biomechanical signals, such as heart rate 

variability, joint angles, or muscle activity. By continuously monitoring these signals, 

IPE can detect subtle changes in their complexity that may indicate an increased risk 

of injury. For instance, in a sports setting, an athlete’s gait patterns can be monitored 

using wearable sensors. The time series data of joint angles or accelerations can be 

analyzed using IPE to identify deviations from normal patterns. A significant decrease 

in permutation entropy might indicate a less variable and more predictable movement 

pattern, which could be a sign of fatigue or overuse, leading to a higher injury risk. 

Moreover, IPE can be combined with other predictive models, such as machine 

learning algorithms, to enhance the accuracy of injury predictions. By integrating IPE 

as a feature in these models, it can provide valuable insights into the underlying 

dynamics of physiological signals, improving the detection of early warning signs. 

Intrinsic permutation entropy focuses on analyzing specific physiological and 

biomechanical signals to detect early signs of injury risk. The methodology can be 

applied as follows: 

1) Data Collection: Continuous monitoring of relevant physiological signals (e.g., 

heart rate variability, joint angles, muscle activity) using wearable sensors. 

2) Embedding and Pattern Identification: Transform the collected time series data 

into delay vectors Xi\mathbf{X}_iXi with chosen embedding dimensions mmm 

and delay τ\tauτ. Identify the permutation patterns πi\pi_iπi for these vectors. 

3) Probability Distribution: Estimate the probability distribution P(π)P(\pi)P(π) of 

the permutation patterns. 

4) Calculate Permutation Entropy: Compute the permutation entropy 𝐻(𝑚, 𝜏) to 

quantify the complexity of the time series. 

A significant change in permutation entropy values can indicate altered 

physiological states. For instance, a decrease in permutation entropy might signal 

increased predictability in movement patterns, often associated with fatigue or 

overuse, which can elevate injury risk. Consider a time series {𝑥𝑡}𝑡 = 1𝑁 representing 
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joint angles during running. Let m = 3 and τ = 1. The delay vectors 𝑋𝑖 are constructed 

as in Equation (3). 

𝑋1 = (𝑥1, 𝑥2, 𝑥3), 𝑋2 = (𝑥2, 𝑥3, 𝑥4), … (3) 

To enhance predictive accuracy, IPE can be integrated with machine learning 

models (In Algorithm 1). The entropy values serve as features in these models, which 

can then learn to associate specific entropy patterns with injury risk. For example, 

using a supervised learning algorithm, the model can be trained on labeled data (injury 

vs. non-injury cases) to predict the likelihood of injury based on current entropy values 

shown in Figure 1. 

 

Figure 1. Early warning system for the IPE-DL. 

If 𝑋1 = (3,1,2) , the permutation pattern π1 is (1,3,2). Calculate 𝑃(𝜋)  by 

determining the frequency of each permutation pattern stated in Equation (4). 

𝑃(1,3,2) =  
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 (1,3,2)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠
 (4) 
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Compute permutation entropy defined in Equation (5). 

𝐻(3,1) = −∑𝜋𝑃(𝜋)𝑙𝑜𝑔𝑃(𝜋) (5) 

Algorithm 1 intrinsic permutation entropy for risk prediction 

1: Input: time_series: Array of time series data 

2: m: Embedding dimension 

3: tau: Time delay 

4: window_size: Size of the moving window for analysis 

5: Output: ipe_values: Array of IPE values 

6: Initialize an empty array ipe_values 

7: For each window in time_series with size window_size: 

8: Extract the sub_series for the current window 

9: Initialize an empty list permutations 

10: For i from 1 to (length of sub_series-(m − 1)*tau): 

11: Construct the vector 𝑋𝑖  =  (𝑠𝑢𝑏_𝑠𝑒𝑟𝑖𝑒𝑠[𝑖], 𝑠𝑢𝑏_𝑠𝑒𝑟𝑖𝑒𝑠[𝑖 + 𝜏], . . . , 𝑠𝑢𝑏_𝑠𝑒𝑟𝑖𝑒𝑠[𝑖 + (𝑚 − 1) ∗ 𝜏]) 

12: Find the permutation pattern 𝜋 of 𝑋𝑖 

13: Append 𝜋𝑖 to permutations 

14: Calculate the frequency distribution P(π) of permutation patterns in permutations 

15: Initialize H = 0 

16: For each unique permutation pattern π in permutations: 

17: 𝑃𝜋 =  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝜋/𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

18: 𝐻 =  𝐻 −  𝑃𝜋 ∗  𝑙𝑜𝑔(𝑃𝜋) 

19: Append H to ipe_values 

20: Return ipe_values 

4. Intrinsic permutation entropy deep learning (IPE-DL) for injury 

prediction 

IPE-DL integrates the concept of IPE with deep learning techniques to enhance 

injury prediction capabilities. This approach leverages the strength of deep learning 

models in learning complex patterns from data while utilizing IPE to capture the 

intrinsic complexity of physiological and biomechanical signals relevant to injury risk 

shown in Figure 2. IPE is a measure that quantifies the complexity and irregularity of 

time series data. For a given time series {𝑥𝑡}𝑡 = 1𝑁, where 𝑁 is the length of the 

series, and parameters mmm (embedding dimension) and 𝜏 (time delay), the IPE is 

calculated by: 

 

Figure 2. Intrinsic permutation with IPE-DL. 

• Constructing Delay Vectors: 𝑋𝑖 = (𝑥𝑖, 𝑥𝑖 + 𝜏, 𝑥𝑖 + 2𝜏, … , 𝑥𝑖 + (𝑚 − 1)𝜏) for i 

= 1, 2, …, N − (m − 1) 
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• Mapping to Permutation Patterns: Each vector 𝑋𝑖 is mapped to a permutation 

pattern πi\pi_iπi, which represents the relative ordering of its components. 

• Probability Distribution: Estimate the probability distribution 𝑃(𝜋)  of these 

permutation patterns. 

• Calculate IPE: 𝐻(𝑚, 𝜏) = −∑𝜋𝑃(𝜋)𝑙𝑜𝑔.  

Each delay vector 𝑋𝑖 is mapped to a permutation pattern 𝜋𝑖, which represents the 

relative ordering of its components. This mapping is done by ranking the elements of 

𝑋𝑖 in ascending order and recording their original indices. IPE values 𝐻(𝑚, 𝜏) are 

computed for different segments or windows of the time series data. These values 

serve as informative features that capture the complexity and irregularity of 

physiological and biomechanical signals. Injury risk prediction using IPE-DL 

represents a cutting-edge approach that combines the sophistication of deep learning 

models with the nuanced understanding of time series complexity provided by IPE. 

This methodology holds promise in sports science and healthcare by enabling early 

detection of injury-prone patterns in physiological and biomechanical data. Compute 

IPE values 𝐻(𝑚, 𝜏) for segmented or windowed sections of time series data. These 

values serve as informative features that encapsulate the complexity and irregularity 

of physiological signals. Compute IPE values 𝐻(𝑚, 𝜏) for different windows of joint 

angle data using the previously described method. 

IPE values 𝐻(𝑚, 𝜏) for segmented or windowed sections of the time series data. 

These values serve as informative features that encapsulate the complexity and 

irregularity of physiological signals. Injury risk prediction using IPE-DL merges the 

analytical depth of IPE with the predictive strength of deep learning models, promising 

substantial advancements in sports science and healthcare. IPE quantifies the 

complexity and irregularity within time series data by constructing delay vectors, 

mapping them to permutation patterns, and deriving entropy values that reflect the 

data’s intrinsic dynamics. This metric serves as a pivotal feature in deep learning 

architectures, such as CNN-LSTM models, where CNNs extract spatial features from 

IPE values and LSTMs capture temporal dependencies to predict injury likelihood. 

Training these models involves optimizing parameters through backpropagation, 

aligning predictions with labeled datasets to distinguish injury-prone patterns from 

healthy physiological signals. 

The IPE-DL algorithm for injury risk prediction involves several key steps aimed 

at integrating the complexity analysis of Intrinsic Permutation Entropy with the 

predictive power of deep learning models (in Algorithm 2). Initially, the algorithm 

begins by computing IPE for the given time series data. This entails constructing delay 

vectors and mapping them to permutation patterns, subsequently calculating entropy 

values that quantify the data’s intrinsic irregularity and complexity. These entropy 

values serve as essential features for the deep learning model. The algorithm then 

proceeds to extract additional relevant features from the time series data and prepares 

the deep learning architecture, such as a CNN-LSTM model. The CNN component 

extracts spatial features from the computed IPE values and other data features, while 

the LSTM component captures temporal dependencies. During the training phase, the 

model is optimized using labeled datasets, adjusting its parameters through 

backpropagation to predict injury probabilities effectively. Finally, the trained model 
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is employed to predict injury risks in new data instances, utilizing the integrated 

features and outputting probabilistic assessments that aid in proactive injury 

prevention strategies and optimizing athlete performance. 

Algorithm 2 IPE-DL for the Prediction 

1: Input: 

2: Time series data: {𝑥𝑡}, where t = 1, 2, …, N 

3: Parameters: m (embedding dimension), tau (time delay) 

4: Deep learning model architecture  

5: Output: 

6: Predicted injury probability (binary classification) 

7: Steps: 

8: Compute Intrinsic Permutation Entropy (IPE): 

9: Define function calculate_IPE(data, m, tau): 

10: Initialize empty list patterns 

11: for i from 1 to N − (m − 1): 

12: Create delay vector 𝑋𝑖  =  (𝑥𝑖 , 𝑥{𝑖 + 𝜏}, . . . , 𝑥{𝑖 + (𝑚 − 1) ∗ 𝜏}) 

13: Generate permutation pattern pi_i based on the order of components in 𝑋𝑖 

14: Append 𝑝𝑖  to patterns list 

15: Calculate probability distribution P(pi) for unique patterns in patterns 

16: Compute entropy 𝐻(𝑚, 𝜏)  =  − 𝑃(𝑝𝑖)  ∗  𝑙𝑜𝑔(𝑃(𝑝𝑖)) 

17: return 𝐻(𝑚, 𝜏) 

18: Feature Extraction: 

19: Segment time series data into windows 

20: For each window, compute IPE values using calculate_IPE function 

21: Extract additional features (if any) from the time series data 

22: Model Training: 

23: Initialize CNN-LSTM model architecture: 

24: LSTM part: Capture temporal dependencies and sequences 

25: Output layer: Predict injury probability using sigmoid activation function 

26: Compile the model with appropriate loss function (e.g., binary cross-entropy) and optimizer 

27: Train the model using labeled data (injury vs. non-injury) with backpropagation: 

28: for each epoch: 

29: for each batch of training data: 

30: Compute gradients and update weights 

31: Evaluate model performance using validation data 

32: Prediction: 

33: Use trained model to predict injury probability for new data instances: 

34: Provide new time series data 

35: Compute IPE values for the data 

36: Input IPE values and additional features into the trained model 

37: Obtain predicted injury probability (output of sigmoid layer) 

5. Simulation results 

In a simulated study evaluating the efficacy of IPE-DL for injury prediction, the 

algorithm demonstrated promising results in identifying risk factors and enhancing 

early warning systems. The simulation utilized real-time data representing 

physiological parameters correlated with athlete injury occurrence. In a specific 

scenario, the simulated data included joint angle dynamics captured from athletes 

during training sessions. The IPE-DL framework successfully identified complex 

patterns indicative of injury risk, leveraging both the spatial and temporal features 

extracted by the CNN-LSTM model. Simulation results indicated a significant 

improvement in early injury detection compared to traditional methods, highlighting 

the potential of IPE-DL in pre-emptive injury prevention strategies. 
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In the Tables 1–3 and Shown in Figures 3 and 4 presents the injury prediction 

results using the Intrinsic Permutation Entropy Deep Learning (IPE-DL) approach for 

ten athletes. Each athlete is identified by their Athlete ID (Identity Document), 

alongside the predicted injury probability generated by the IPE-DL model and their 

actual injury status during the study period. The IPE-DL model assigns a predicted 

injury probability to each athlete, ranging from 0.04 to 0.93. Higher probabilities 

suggest a greater likelihood of injury according to the model’s predictions. Athletes 1, 

3, 5, 8, and 10 are predicted to have higher injury probabilities (0.82, 0.91, 0.78, 0.93, 

and 0.85, respectively), aligning with their actual injury statuses as “Injured”. 

Conversely, athletes 2, 4, 6, 7, and 9 have lower predicted injury probabilities (ranging 

from 0.04 to 0.68), correctly corresponding to their actual statuses as “Not Injured”. 

Table 1 presents the injury prediction results using the IPE-DL approach for ten 

athletes. Each athlete is identified by their Athlete ID, alongside the predicted injury 

probability generated by the IPE-DL model and their actual injury status during the 

study period. 

Table 1. Injury prediction with IPE-DL. 

Athlete ID Injury Probability (IPE-DL) Actual Injury Status 

1 0.82 Injured 

2 0.15 Not Injured 

3 0.91 Injured 

4 0.04 Not Injured 

5 0.78 Injured 

6 0.22 Not Injured 

7 0.68 Not Injured 

8 0.93 Injured 

9 0.11 Not Injured 

10 0.85 Injured 

The demographic profile of the proposed IPE-DL athletes in the estimation of the 

features are shown in Table 2. 

Table 2. Demographic profile of respondents. 

Demographic Variable Category Number of Respondents Percentage 

Gender 
Male 600 60% 

Female 400 40% 

Age Group (years) 

18–24 250 25% 

25–34 450 45% 

35–44 200 20% 

45 and above 100 10% 

Type of Sport 

Team Sports 500 50% 

Individual Sports 400 40% 

Other (e.g., recreational) 100 10% 
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Table 2. (Continued). 

Demographic Variable Category Number of Respondents Percentage 

Level of Competition 

Amateur 300 30% 

Semi-Professional 400 40% 

Professional 300 30% 

Training Hours per Week 

Less than 10 hours 150 15% 

10–20 hours 450 45% 

20–30 hours 300 30% 

More than 30 hours 100 10% 

Previous Injury History 
Yes 700 70% 

No 300 30% 

Environmental Condition 
Indoor Training 600 60% 

Outdoor Training 400 40% 

 

Figure 3. IPE-DL for the intrinsic permutation. 

 

Figure 4. Embedding with IPE-DL. 
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Table 3. Mental health assessment of athletes. 

Mental Health Factor Potential Impact on Injury Risk Description 

Stress Levels 20% 
Chronic stress can lead to 

physical fatigue and injury. 

Anxiety 15% 
Increases muscle tension, 

affecting coordination. 

Depression 10% 
May reduce motivation for 

training and proper recovery. 

Burnout 25% 
Leads to mental and physical 

exhaustion, raising injury risk. 

Self-Esteem 8% 
Low self-esteem can impact 

performance and recovery. 

Emotional Regulation 12% 
Poor emotional control may 

increase risky behaviors. 

Coping Mechanisms 10% 
Inadequate coping can result in 

overtraining or injury. 

Sleep Disturbances (related 

to stress) 
18% 

Poor sleep quality due to stress 

leads to physical fatigue. 

Concentration and Focus 

Issues 
7% 

Reduced focus increases the risk 

of mistakes during activity. 

The IPE-DL model assigns a predicted injury probability to each athlete, ranging 

from 0.04 to 0.93. Higher probabilities suggest a greater likelihood of injury according 

to the model’s predictions. Athletes 1, 3, 5, 8, and 10 are predicted to have higher 

injury probabilities (0.82, 0.91, 0.78, 0.93, and 0.85, respectively), aligning with their 

actual injury statuses as “Injured”. Conversely, athletes 2, 4, 6, 7, and 9 have lower 

predicted injury probabilities (ranging from 0.04 to 0.68), correctly corresponding to 

their actual statuses as “Not Injured”. This table illustrates how the IPE-DL method 

can effectively predict injury risks for individual athletes, demonstrating its potential 

utility in sports medicine and injury prevention strategies. By leveraging IPE alongside 

deep learning techniques, this approach offers a nuanced assessment of injury 

likelihood based on underlying physiological or biomechanical data patterns. Such 

predictive capabilities enable early intervention and tailored preventive measures to 

mitigate injury risks in athletic contexts. 

In the Table 4 and Figure 5 displays the IPE values calculated for ten different 

time series segments using the IPE-DL method. Each segment is identified by its 

segment number, and the corresponding IPE value is provided. The IPE values range 

from 0.45 to 0.91 across the segments, reflecting the complexity and irregularity 

present in each segment of the time series data. Higher IPE values indicate greater 

unpredictability or variability in the data patterns captured by the IPE-DL model. For 

instance, Segment 3 has the highest IPE value of 0.91, suggesting a more intricate 

structure in the underlying time series data, whereas Segment 4 has the lowest IPE 

value of 0.45, indicating relatively less complexity. 
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Table 4. Intrinsic estimation with IPE-DL. 

Time Series Segment IPE Value H(m, τ)H(m, \tau)H(m, τ) 

Segment 1 0.82 

Segment 2 0.67 

Segment 3 0.91 

Segment 4 0.45 

Segment 5 0.78 

Segment 6 0.56 

Segment 7 0.73 

Segment 8 0.89 

Segment 9 0.62 

Segment 10 0.85 

Table 5 provides a detailed breakdown of the IPE values for ten sequential time 

series segments, each identified by a segment number. This table specifies the 

embedding dimension (m) and time delay (τ) parameters utilized in the calculation of 

each segment’s IPE value. The embedding dimension (m) denotes the dimensionality 

of the delay vector employed in the IPE computation, while the time delay (τ) 

represents the interval between components within the delay vector. The resulting 

Intrinsic Permutation Entropy H (m, τ) for each segment reflects the complexity and 

irregularity inherent in the corresponding time series data, with higher values 

indicating greater unpredictability or variability in the data patterns captured by the 

IPE-DL approach. 

Table 5. Intrinsic permutation with IPE-DL. 

Time Series Segment Embedding Dimension (m) Time Delay (τ) Intrinsic Permutation Entropy H(m, τ) 

Segment 1 3 1 0.82 

Segment 2 4 2 0.67 

Segment 3 2 1 0.91 

Segment 4 5 2 0.45 

Segment 5 3 1 0.78 

Segment 6 4 2 0.56 

Segment 7 2 1 0.73 

Segment 8 3 1 0.89 

Segment 9 4 2 0.62 

Segment 10 5 2 0.85 
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Figure 5. Intrinsic permutation with IPE-DL. 

These tables collectively illustrate the application of Intrinsic Permutation 

Entropy within the IPE-DL framework for analyzing temporal data dynamics. Table 

4 offers an overview of IPE values across segments, providing insights into the overall 

complexity levels within different sections of the data. In contrast, Table 5 offers a 

more detailed perspective by explicitly outlining the specific m and τ parameters 

employed for each IPE calculation. This detailed breakdown highlights how 

adjustments in embedding dimension and time delay parameters can influence entropy 

values, thereby capturing distinct aspects of data complexity. Such nuanced analysis 

facilitated by Intrinsic Permutation Entropy integrated with deep learning techniques 

underscores its utility in applications such as injury risk prediction in sports and other 

domains, where understanding temporal data dynamics is crucial for effective 

decision-making and intervention strategies. 

Figure 6 shows the IPE-DL for the risk injury prediction. 

In the Table 6 and Figure 7 summarizes the classification performance metrics 

using the Intrinsic Permutation Entropy Deep Learning (IPE-DL) approach for ten 

athletes, identified by their Athlete ID. The table evaluates key metrics essential for 

assessing the model’s efficacy in predicting injury outcomes: Accuracy, precision, 

recall, and F1-score. 

Table 6. Classification with IPE-DL. 

Athlete ID Accuracy Precision Recall F1-score 

1 0.87 0.84 0.91 0.87 

2 0.91 0.89 0.93 0.91 

3 0.82 0.78 0.85 0.81 

4 0.88 0.86 0.90 0.88 

5 0.85 0.81 0.88 0.84 

6 0.90 0.88 0.92 0.90 

7 0.83 0.79 0.86 0.82 

8 0.89 0.87 0.91 0.89 

9 0.86 0.83 0.89 0.86 

10 0.92 0.90 0.94 0.92 
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Figure 6. IPE-DL for the risk injury prediction. 

 

Figure 7. ROC curve for the IPE-DL. 

• Accuracy measures the ratio of correct predictions made by the model to the total 

predictions. 

• Precision signifies the proportion of true positive predictions (correctly 

identifying injured athletes) relative to all positive predictions. 

• Recall quantifies the ratio of true positive predictions among all actual positive 

instances (injured athletes). 

• F1-score provides a balanced measure of precision and recall, offering a 

comprehensive evaluation of the model’s overall classification performance. 

• Among the athletes assessed: 

• Athlete 10 achieved the highest performance metrics, boasting an accuracy of 

0.92, precision of 0.90, recall of 0.94, and an F1-score of 0.92, indicating 

consistent and reliable predictions of injury status. 

• Athletes 2, 4, and 6 also demonstrated robust performance across all metrics, 

consistently achieving high values in accuracy, precision, recall, and F1-score. 
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• Conversely, Athletes 3 and 7 exhibited relatively lower scores, suggesting 

variability in the model’s effectiveness across different individuals. 

Overall, Table 4 underscores the effectiveness of the IPE-DL approach in 

accurately classifying injury risks among athletes, leveraging its ability to provide 

valuable insights for personalized risk assessment and management strategies in sports 

medicine and injury prevention contexts. These results highlight the potential of IPE-

DL as a sophisticated tool for enhancing decision-making processes in athlete care and 

injury mitigation efforts. 

In the Table 7 and Figure 8 provide a comparative analysis of classification 

performance metrics across three techniques: CNN, LSTM, and IPE-DL. These 

metrics—accuracy, precision, recall, and F1-score—offer insights into how 

effectively each technique predicts injury outcomes in athletes. CNN achieves 

accuracy of 0.85, precision of 0.82, recall of 0.88, and an F1-score of 0.85. LSTM 

shows slightly lower metrics with an accuracy of 0.84, precision of 0.80, recall of 0.87, 

and an F1-score of 0.83. In contrast, IPE-DL surpasses both CNN and LSTM, 

achieving the highest metrics: Accuracy of 0.89, precision of 0.87, recall of 0.91, and 

an F1-score of 0.89. These findings indicate that IPE-DL demonstrates superior 

predictive capabilities compared to traditional deep learning models like CNN and 

LSTM for injury risk prediction in athletes. Its higher accuracy, precision, recall, and 

F1-score underscore its effectiveness in accurately identifying and classifying injury 

risks. This comparative analysis underscores the potential of integrating Intrinsic 

Permutation Entropy with deep learning techniques to advance injury prevention 

strategies and optimize athlete care within sports medicine contexts. 

Table 7. Comparative analysis. 

Technique Accuracy Precision Recall F1-score 

CNN 0.85 0.82 0.88 0.85 

LSTM 0.84 0.80 0.87 0.83 

IPE-DL 0.89 0.87 0.91 0.89 

 

Figure 8. Comparison of IPE_DL. 
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6. Conclusion 

This paper explores the application of IPE-DL alongside traditional deep learning 

techniques, CNN and LSTM, for injury risk prediction in athletes. Through a 

comprehensive comparative analysis using key metrics—accuracy, precision, recall, 

and F1-score—across ten athletes, IPE-DL emerges as the superior method. It achieves 

an accuracy of 0.89, precision of 0.87, recall of 0.91, and an F1-score of 0.89, 

outperforming CNN and LSTM in all aspects. These results underscore the efficacy 

of IPE-DL in accurately identifying and classifying injury risks, highlighting its 

potential to enhance injury prevention strategies and optimize athlete care in sports 

medicine. Moving forward, integrating Intrinsic Permutation Entropy with deep 

learning opens new avenues for advancing predictive analytics in athlete health 

monitoring, contributing significantly to the field of sports science and healthcare 

management. 
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