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Abstract: Breast cancer is the most prevalent cancer in the female population and is a 

significant cause of global cancer deaths in this group. Obesity increases a woman’s risk of 

developing breast cancer and has a negative impact on prognosis. Metabolic alterations are an 

important part of the process of cancer migration; invasion and proliferation, with lipids being 

a major metabolic substrate for rapid cancer progression, capable of influencing the metabolic 

crosstalk between tumor cells and other cells in the tumor microenvironment. Physical activity-

induced irisin affects the progression of obesity-associated breast cancer and is a new indicator 

for breast cancer diagnosis. Existing evidence suggests a potential inhibitory effect of physical 

activity-induced irisin on the progression of breast cancer. A strong association exists between 

obesity and breast cancer progression and outcomes. This paper discusses how physical 

activity-induced irisin may achieve cancer suppression by affecting lipid metabolic processes 

between breast cancer cells and cancer-associated adipocytes, and elucidates the molecular 

pathways involved in the effects of irisin on cancer lipid reprogramming, thereby helping to 

prevent the metastatic progression of breast cancer, and ultimately improving the survival rate 

of this patient group. 
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1. Introduction 

Breast cancer is a global concern with high mortality and morbidity rates 

worldwide. The latest data indicate that breast cancer has overtaken lung cancer as the 

most commonly diagnosed cancer globally, posing a significant threat to women’s 

health [1]. Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer 

in which the cancer tissue is negative for estrogen receptor (ER), progesterone receptor 

(PR) and human epidermal growth factor receptor 2 (HER-2). It is characterized by 

high aggressiveness, high metastatic potential, high propensity for recurrence and bad 

prognosis [2]. The obese is a recognized hazard element for the incidence and 

recurrence of breast cancer, and the burden of obesity increasingly increases the 

aggressiveness and morbidity of TNBC. Obesity with breast cancer have lower 

disease-free and overall survival rates compared to nonobese women with breast 

cancer, even when obese patients are appropriately treated [3]. Studies have shown 

that excessive adipocyte accumulation results in the secreting of inflammatory factors, 

chemokines and adipokines, which subsequently leads to abnormal metabolism of the 

cancer microenvironment (TME), ultimately stimulating breast cancer invasion, 

progression and progression of metastasis, and impeding anticancer agent reactions 

[4]. Breast cancer cells contribute to lipolysis and phenotypic changes in adipocytes 

in the tumor microenvironment (TME), forming aberrant cancer-associated adipocytes 
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(CAA) at the frontiers of cancer invasion [5]. Together, these two types of cells are 

involved in breast cancer progression and metastasis through cancer lipid 

reprogramming. Therefore, maintaining a normal weight range is important for TNBC 

patients to prevent further cancer development and progression. 

Physical activity as a non-pharmacologic intervention strategy can have a 

positive impact on the lives of breast cancer survivors who are overweight or obese, 

with the advantages of being less invasive, psychologically acceptable and feasible to 

mitigate the associated negative impacts resulting from cancer treatment while 

improving overall quality of life, cardiorespiratory fitness, and muscle strength of 

breast cancer survivors [6]. During physical activity, skeletal muscle can release 

various types of exercise factors from tissues into the bloodstream via endocrine, 

autocrine, and paracrine systems to stimulate skeletal muscle growth, increase body 

energy metabolism, influence lipid, carbohydrate, and protein metabolism, regulate 

inflammation, and influence inter-organ messaging. The newly discovered cytokine 

irisin, which is secreted by motility-induced secretion, has been shown to inhibit a 

number of cancers associated with women, and many studies have shown that it has 

an important effect on the migration, aggression and proliferation of cancer cells. 

Several studies have shown that serum irisin levels are significantly lower in breast 

cancer patients than in healthy women, suggesting that irisin may be associated with 

the risk of breast cancer [7,8]. Irisin, as an exercise-induced release of muscle factor, 

can regulate the metabolic state of fat cells, “browning” white fat, thus increasing 

energy expenditure and reducing fat accumulation [9–11]. This process can help 

reduce the metabolic burden triggered by obesity and reduce the risk of breast cancer 

at its source. Irisin has a positive effect on glucose metabolism and insulin sensitivity. 

Studies have shown that irisin can improve cellular glucose uptake and insulin 

sensitivity by activating the AMPK (adenylate-activated protein kinase) signaling 

pathway, which is potentially therapeutic for the prevention or treatment of obesity-

related metabolic diseases [12]. Irisin may also fight breast cancer by modulating the 

immune system. Obesity usually leads to immune system dysfunction, which 

manifests as a pro-inflammatory state and immunosuppression. Irisin helps to inhibit 

the spread of breast cancer cells through its ability to reduce the secretion of pro-

inflammatory cytokines (such as TNF-alpha and IL-6), which reduces the chronic 

inflammatory response, modulates the function of immune cells, and reduces chronic 

inflammation, thus improving the tumor microenvironment [13–15]. 

Modulation of irisin levels by exercise or drugs may be a potential strategy to 

improve the prognosis of obesity-related breast cancer. Studies have shown that 

regular aerobic exercise can significantly increase the levels of irisin in the body, thus 

indirectly reducing the incidence and recurrence of breast cancer [16]. Although 

corresponding clinical evidence exists regarding the positive impacts of physical 

activity-induced irisin on breast cancer [17,18], the mechanisms of how physical 

activity-induced irisin inhibits or delays the development of obesity-associated breast 

cancer have not yet been clearly established. To this aim, this paper builds on the 

collation of previous studies to illustrate how physical activity-induced irisin can 

inhibit the development of triple-negative breast cancer by modulating the mechanism 

of crosstalk between adipose and cancer. The regulatory mechanisms and triggered 

signaling pathways involved in these processes are being sorted out with a view to 
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better explaining the crosstalk between them and providing new ideas for future breast 

cancer treatments. 

2. Current status of breast cancer and the relationship between 

obesity and the development of breast cancer 

Breast cancer is the highest incidence of malignant tumors among women 

globally and the most frequently occurring cause of cancer death among women in our 

country [19]. The ageing population has put more women in the breast cancer-prone 

age group, and poor lifestyles, such as lack of exercise, unhealthy eating habits and 

high-stress environments, further exacerbate the incidence and mortality rates of breast 

cancer. According to the latest global cancer incidence and mortality estimates from 

the internationally relevant organizations on cancer, female breast cancer has 

overtaken lung cancer as one of the most common types of cancer worldwide, with an 

estimated 2.3 million new cases (11.7%) and more than 685,000 new deaths (6.9%) 

being breast cancer, its incidence and lethality are the highest in most countries [1]. 

The etiology of breast cancer is a complex multifactorial process and are related 

to age, reproduction, environment, genetics, smoking, radiation, alcohol consumption, 

work and rest, physical activity, and hormone levels [20–29]. In recent decades, with 

changes in modern people’s eating habits and lifestyles, the global obese population 

has been growing rapidly, the proportion of women who are overweight and obese has 

been increasing, and more and more research is beginning to focus on the impact of 

obesity on breast cancer rates. Evidence suggests that physical obesity has a significant 

impact on the progression of breast cancer, with women who are obese having a higher 

incidence of breast cancer than nonobese individuals, and that obesity increases the 

risks of poor outcomes, risk of disease recurrence and increased mortality [30,31]. In 

recent years, a growing number of epidemiologic studies have focused on the 

relationship between breast cancer and obesity. These studies have found that the 

impact of obesity on breast cancer varies by menopausal status and breast cancer 

subtype. Most studies have shown that obesity is positively associated with breast 

cancer risk among postmenopausal women, meaning that obese women are more 

likely to develop breast cancer [32–34]. While relatively few studies have been 

conducted on premenopausal women and the findings are inconsistent, and further 

research is needed to validate the effect of obesity on breast cancer risk in 

premenopausal women [35–37]. However, in the case of triple-negative breast cancer 

(TNBC), an overwhelming majority of studies have confirmed that obesity is strongly 

correlated with the risk of breast cancer in premenopausal TNBC patients [38,39]. 

Some studies have shown that obesity has no effect on premenopausal women and 

even decreases their disease incidence, but it still has an important impact on the 

prognosis of breast cancer patients, with obesity increasing the risks of mortality by 

30% compared with breast cancer patients with a normal body mass index (BMI) [20] 

[22]. Although the malignant association of obesity on breast cancer is well 

established, we do not yet have a complete understanding of the biomolecular 

mechanisms that promote carcinogenesis because of the diverse pathways through 

which obesity affects breast cancer development and progression. 
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3. Relationship between cancer-associated adipocytes and breast 

cancer 

Anatomically, breast tissue consists primarily of glandular and adipose tissue. In 

the normal breast, mammary adipocytes and mammary ductal cells are divided by a 

basement membrane that acts as a barrier, limiting direct interaction between mature 

adipocytes and epithelial cells. However, when tumor cells break has crossed the 

basement membrane, they are directly infiltrated in the tumor microenvironment 

(TME) containing adipocytes, which allows the possibility of adipocyte-tumor cell 

interactions [40]. The progression of breast cancer depends not only on the properties 

of the cancer cells themselves, but also on the support and regulation of the tumor 

microenvironment in which they are located. TME is a complex and diverse ecosystem 

composed of infiltrating immune cells, migratory support cells and stroma, which can 

provide necessary nutrients and support for cancer cells, as well as angiogenesis and 

suppression of immune response through various mechanisms [41]. In the TME, 

activities such as metabolism, secretion, and immunity are no longer subject to the 

body’s normal regulation as they are in normal tissues, and are characterized by 

hypoxia, chronic inflammation and immunosuppression. Adipocytes, as a class of 

stromal cells, are one of the important components that make up the TME of breast 

cancer, and adipocytes promote cancer progression by interacting with cancer cells. 

Specifically, in the pre-cancer phase of breast carcinogenesis, cancer cells invade the 

surrounding adipose tissue. During this process, the cancer cells undergo continuous 

dynamic interactions with the adipocytes inducing intracellular metabolic 

reprogramming of the adipocytes, accompanied by phenotypic alterations such as lipid 

reduction, alteration toward fibroblast-like changes, and upregulation of inflammatory 

marker expression, thereby transforming normal adipocytes into a special type of 

adipocyte, i.e., BC cancer-associated adipocytes (CAAs) [42–44]. These experimental 

results have shown that CAAs play an important role in promoting the proliferation of 

BC, stimulating neo-angiogenesis to supply tumors, helping cancer cells to spread, 

invade surrounding tissues, and metastasize further to distant organs [45,46]. 

Sustained interactions between tumor cells and adipocytes lead to metabolic 

competition and symbiosis, driving metabolic reprogramming of breast cancer cells 

and CAAs. TNBC utilizes metabolic reprogramming to meet bioenergetic and 

biosynthetic demands, maintain redox balance and further promote oncogenic 

signaling, cell proliferation and metastasis [47]. CAAs store lipids as triglycerides 

(TGs), which are released as free fatty acids (FFAs) through a lipolytic process of 

triglycerides (TGs) mediated by lipases such as hormone-sensitive triglyceride lipase 

(HSL), adipose triglyceride lipase (ATGL), and monoacylglycerol lipase (MAGL) and 

the subsequent uptake of FFAs into tumor cells in a fatty acid-binding protein 4 

(FABP4)-dependent manner [48]. Once free fatty acids (FFAs) are stored in lipid 

droplets after being transferred to tumor cells, they are lipolyzed by the action of 

enzymes (ATGL, HSL, and MAGL) to form fatty acids (FAs). These fatty acids are 

further metabolized in the cytoplasm and mitochondria of tumor cells. In the 

cytoplasm, fatty acids are oxidized by β-oxidation to produce guttate adenine 

dinucleotide (NADH), flavin adenine dinucleotide (FADH1), and acetyl-coenzyme A 

(Acetyl-CoA). In mitochondria, fatty acids are β-oxidized via the fatty acid oxidation 
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(FAO) pathway regulated by the rate-limiting enzyme carnitine palmitoyl transferase 

1 (CPT1) [49,50]. These metabolic processes generate energy and metabolites that 

provide breast cancer cells with a source of energy required for growth and invasion. 

CAAs enhance the energy production efficiency of breast cancer cells by increasing 

the rate of FAO in BC cells and promoting CPT1 expression, which in turn promotes 

tumor growth and progression. Adipocytes are an important component of breast 

tissue, and obesity is closely related to the role of adipocytes in regulating the behavior 

of breast cancer cells. Obesity, defined as excessive accumulation of adipose tissue, 

causes a noticeable increase in the amount and volume of adipocytes and elevated 

levels of TGs, leading to an increased release of fatty acids (FAs), which provide more 

anabolic substrates for tumor cells. Balaban et al. [51] observed the transfer of 

adipocyte-derived FFAs into breast cancer cells through adipocyte-breast cancer cell 

coculture, and it is noteworthy that “obese” adipocytes have an enhanced ability to 

transfer FFAs to breast cancer cells. This further validates that CAAs in TME promote 

the lipolytic process of TGs, leading to an increased release of FAs and more anabolic 

substrates for tumor cells. 

4. The motility factor irisin is a key molecule in the regulation of 

breast cancer development 

The inducible cytokine of physical activity, irisin, is produced by cleavage of the 

transmembrane protein FNDC-5 (Fibronectin type III repeat sequence protein 5), a 

protein that contains multiple structural domains of fibronectin III. In response to 

exercise stimulation, levels of PPARγ coactivator-1α (PGC-1α) rise in skeleton muscle 

cells, which drives the elevated expression of FNDC5, which is subsequently sheared 

into irisin and released into the circulatory system [52]. Irisin is mainly derived from 

muscle and adipose tissue and plays a key function to induce fat browning as well as 

regulating energetic expenditure [9–11]. Currently, studies have focused on changes 

in serum irisin level of breast cancer survivors, and irisin may serve as a cancer bio-

marker. Pravatopoulou et al. [7] showed that serum irisin levels were lower in breast 

cancer patients than in healthy controls, and it has been theorized that each 1 unit 

increase in irisin levels decreases the probability of developing breast cancer by nearly 

90%. Another observational study found, that among breast cancer patients with spinal 

metastases, serum sample irisin levels were lower in those with spinal metastases than 

in those without spinal metastases, i.e., higher irisin levels may be associated with a 

lower risk of spinal metastases [8]. Serum irisin may be a new target for the prevention 

and treatment of spinal metastases in breast cancer. Gannon et al. [53] found by in 

vitro cellular assays that irisin significantly inhibited the growth and migration of 

malignant breast cancer cells, while producing no side effects on normal cells. 

Specifically, irisin remarkably reduces the number, migration ability and survival of 

malignant MDA-MB-231 cells, while it has no effect on non-malignant MCF-10a 

cells. In addition, irisin enhanced tumor sensitivity to common antitumor drugs by 

potentiating the cytotoxic effects of doxorubicin and reduced malignant cell viability 

by stimulating cysteine asparaginase activity, which leads to apoptotic cell death. 

Immunohistochemical staining of tissue samples from breast cancer patients with 

antibodies to irisin by Kuloglu et al. [54] observed a noticeable increase in irisin 
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staining in breast cancer tissues compared to normal breast tissues. This suggests that 

the high expression of irisin may be closely related to the proliferation, survival and 

migration of breast cancer cells, which suggests that irisin is not only important in the 

development of breast cancer, but may also influence its progression and deterioration. 

Panagiotou et al. [55] conducted an evaluation of irisin levels in women with 

benign/malignant breast tumors versus healthy controls. It was found that irisin levels 

were higher in patients with benign/malignant breast tumors compared to healthy 

controls, and that irisin levels were comparable between tumor types. This suggests 

that irisin levels may play some role in the development of benign/malignant breast 

tumors and that different types of tumors may be similarly affected. Cebulski et al. 

[56] compared the expression and ultrastructural localization of FNDC5/Ir in breast 

cancer cell types and regular breast cancer cell lines. They found that FNDC5/Ir was 

present in the cytoplasm of breast cancer cells and tumor fibroblasts, and that breast 

cancer cell lines had higher levels of FNDC5/Ir expression compared to normal breast 

cancer cell lines. In addition, it was found that serum levels of irisin were not 

associated with the expression levels of FNDC5/Ir in breast cancer tissues, however, 

irisin levels were associated with lymph node metastasis and histologic grading. This 

finding suggests that the expression of FNDC5/Ir in breast cancer cells is associated 

with breast cancer progression, but serum irisin levels may be more reflective of 

metastasis and malignancy of breast cancer. In addition to this, a study measuring 

FNDC5/irisin expression in tumor tissue included 150 postmenopausal women 

diagnosed with breast cancer. The results showed that women with breast cancer and 

obesity exhibited higher levels of irisin expression compared to women with breast 

cancer and normal body mass index. This finding suggests that irisin may be involved 

in the regulation of the tumor microenvironment in obese breast cancer patients [57]. 

Cancer oncogenesis, progression and metastasis are inextricably linked to the 

TME. Adipose tissue accounts for 90% of the histological composition of the breast 

and is an essential part of the breast cancer TME. There are two main types of adipose 

tissue, white adipose tissue (WAT) and brown adipose tissue (BAT), based on their 

structure and function. White adipocytes have more lipid droplets which are mainly 

composed of TGs and their main function is to store energy for the body’s needs. In 

contrast, brown adipocytes contain a large number of mitochondria that are rich in 

brown lipids associated with energy metabolism and whose main function is to convert 

energy from food into heat, thus producing thermoregulatory effects. In brown 

adipocytes, uncoupling protein 1 (UCP1) exists in the mitochondria, which enables 

the energy generated from the breakdown of FAs not to be converted into ATP for 

direct energy supply to the organism, but rather through mediated uncoupling of 

oxidative phosphorylation to generate heat and dissipate energy, thus maintaining the 

energy balance in the body [58–60]. The activity-inducible cytokine irisin, derived 

primarily from muscle and adipose tissue, plays an essential role in inducing fat 

browning and regulating energy expenditure, and promotes the transformation of 

white adipocytes to brown adipocytes, increasing brown fat quantity and metabolic 

activity in the body [61–63]. Earlier studies demonstrated that irisin upregulates UCP1 

expression by mediating phosphorylation of the p38 mitogen-activated protein kinase 

and extracellular signaling-associated kinase signaling pathways to enhance energy 

expenditure and promotes the browning of white adipocytes to brown adipocytes in 
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mice [64,65]. Relevant follow up studies found that muscle-derived irisin induced 

enhanced expression of UCP1 in white adipocytes of obese mice, significantly reduced 

WAT volume and fat fraction, and promoted adipose tissue browning [66]. Meanwhile, 

an increase in white adipocyte volume and a decrease in the extent of exercise-induced 

conversion of white adipose tissue to brown fat were observed in FNDC5 knockout 

mice [67,68]. These findings emphasize the critical role of irisin as an important 

regulator in the regulation of energy metabolism and obesity. In addition to inducing 

fat browning, irisin also promotes adipocyte breakdown. Xiong et al. [69] found that 

overexpression of FNDC5 mediated by lentivirus could reduce obesity symptoms in 

obese mice by increasing the expression of HSL and promoted FAO, a result that 

suggests that overexpression of FNDC5 may contribute to the increase of lipolysis and 

energy metabolism in adipocytes. The same study also showed that irisin upregulated 

the expression of key lipolytic enzymes such as ATGL and HSL, while increasing the 

mRNA levels of FABP4. Together, these regulatory effects promoted glycerol 

secretion and reduced lipid accumulation in adipocytes, ultimately leading to a 

reduction in adipocyte size. These findings further support the important role of irisin 

in lipid metabolism and energy homeostasis [70]. 

5. Irisin may affect breast cancer lipid metabolism by acting on 

cancer-associated adipocytes 

When irisin acts in breast cancer TMEs, binding to CAAs may promote their 

browning and activate thermogenesis. Brown adipose tissue (BAT), which consists of 

traditional brown adipocytes present in specific anatomical locations such as the 

scapular region, and beige adipocytes distributed in white adipose tissue, produces 

heat through metabolic activity (rather than muscle shivering). This non-shivering heat 

production not only plays an important role in cold acclimatization, but also plays a 

key role in energy metabolism and body weight regulation [71]. UCP1 causes the 

electrochemical gradient on both sides of the inner mitochondrial membrane to 

decrease by lowering the proton gradient, at which point the protons no longer 

synthesize ATP from ADP and inorganic phosphate via ATP synthase, but instead 

return to the mitochondrial matrix via UCP1. This process dissipates the energy 

transferred through the respiratory chain, resulting in the release of energy in the form 

of heat rather than for ATP synthesis. In addition, in some cases, UCP1 activity can be 

stimulated by hormonal signals that increase cyclic adenosine monophosphate 

(cAMP) levels via β3-adrenergic receptors, which in turn further promotes UCP1 

expression and activity through activation of protein kinase A, thereby enhancing 

adaptive thermogenesis [52] [72–74]. Irisin plays an essential role in promoting the 

transformation of white adipose tissue to brown adipose tissue by enhancing the 

expression of UCP1 on the inner mitochondrial membrane. In the breast cancer TME, 

irisin may produce localized hyperthermia by increasing UCP1 expression in CAAs. 

This process involves FA as a substrate for BAT thermogenesis, which is produced by 

cAMP-induced lipolysis, and subsequently used as an FFA for FAO processes in 

brown adipocytes [65,67]. Based on this, it can be speculated that in the breast cancer 

TME, irisin may regulate thermogenesis by acting on CAAs and activating their 

thermogenic function, so that more FFAs in CAAs are utilized by mitochondria to 
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participate in FAO processes in adipocytes. This causes a decrease in FFAs in the 

TME, which has conversely minimized the amount of FFAs entering cancer cells, thus 

affecting the cancer development process. 

In addition, serum irisin has an antagonistic effect on FABP 4 [75,76]. FABPs 

play important roles in lipid metabolism, signaling, and regulation of gene expression. 

FABP 4 (also known as aP2), a member of the FABP family, is expressed mainly in 

adipocytes and macrophages, and is a core protein in the mechanism of lipid 

metabolism, which promotes the dissolution and translocation of FFA in adipocytes 

[77,78]. In vitro data from one study showed that co-incubation of adipocytes with 

tumor cells caused an increase in FABP4 expression in the breast cancer TME and was 

highest in the TNBC type. FABP4 plays a key role in the metabolic interactions 

between adipocytes and breast cancer cells, especially in the TME of TNBC. Inhibition 

of FABP4 effectively reduces lipolysis in adipocytes and β-oxidation in breast cancer 

cells, limiting the energy supply to breast cancer cells and thus inhibiting tumor growth 

[79]. Notably, FABP4 was highly expressed in the adipose tissue of obese patients, 

and serum FABP4 levels were positively correlated with body mass index (BMI), 

suggesting that FABP4 plays an important regulatory role in obesity and related 

metabolic disorders, which has been found to be reflected in both mouse models and 

human studies [80–82]. When irisin acts on the breast cancer TME, it can exert its 

inhibitory effect to reduce the expression of FABP4. The reduction of FABP4, which 

is an FFA transport protein, then lipid transfer between CAAs and tumor cells as well 

as β-oxidation in breast cancer cells are also reduced. 

6. Conclusion 

Currently, there are no targeted or specific therapeutic options for women with 

TNBC, and several epidemiological studies have investigated the effect of post 

diagnostic obese status upon the prognosis for breast cancer, with the majority of 

studies finding that obesity is not only linked to the development of breast cancer, but 

also affects the course and prognosis of breast cancer patients, making them more 

likely to recur and leading to higher mortality rates [83–85]. Based on studies related 

to obesity and breast cancer progression, increasing evidence suggests that breast 

cancer development is significantly influenced by xenobiotic interactions between 

cancer cells and CAAs in the TME. Several mechanisms by which CAA drives cancer 

progression have been postulated, including adipokine regulation, metabolic 

reprogramming, extracellular matrix remodeling, and immune cell regulation [86,87]. 

Here, we found that physical activity-induced irisin can act directly on critical function 

cells involved in energetic metabolism and homeostasis in vivo, affecting metabolic 

changes in adipose tissue and leading to increased thermogenesis. Based on this, there 

is a new research idea about the effect of irisin binding to CAAs on the reprogramming 

of lipid metabolism of obesity-associated breast cancer, illustrated in Figure 1: in the 

breast cancer TME, irisin may promote browning and activate the thermogenic 

function of CAAs by acting on CAAs and increasing the expression of UCP1 on their 

inner membranes of mitochondria. During this process, we speculate that more FAs 

produced by TG hydrolysis in CAAs are utilized by mitochondria to participate FAO 

processes in adipocytes to regulate thermogenesis, and a smaller portion enters the 
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TME in the form of FFAs. The FFAs entering the TME need to be assimilated and 

exploited by tumor cells with the help of the transporter function of FABP4, but due 

to the intervention of irisin, the expression of FABP4 is inhibited. We hypothesize that 

the reduced of FABP4 leads to a reduction of lipid transfer between CAAs and breast 

cancer cells, which subsequently would affect the FAO processes in breast cancer 

cells. In summary, we suggest that physical activity-induced irisin inhibits the 

development of TNBC by activating the thermogenic function in CAAs and affecting 

the reprogramming of tumor lipid metabolism. 

 

Figure 1. Mechanism of action of exercise-induced irisin affecting lipid metabolism in obese individuals with breast 

cancer. 

Discovering irisin offers a new potential basis for physical activity therapy, and 

has received widespread attention being a promising therapy target for its action in 

cancer development and prevention. Going forward, we would combine clinical 

specimens and in vivo and ex vivo experiments to determine the function of irisin in 

lipid metabolism and its effect on the adipose tissue surrounding breast cancer tumors, 

to comprehensively elucidate the process and intrinsic mechanism of physical activity-

mediated irisin’s involvement in the regulation of heat production in CAAs and 

reprogramming of lipid metabolism in tumors, and to provide a detailed Experiment 

to the study of the pathological mechanism of TNBC and the design of potential target 

drugs. to study the pathological mechanism of TNBC and potential target drug design, 

and thus to develop more effective clinical treatment protocols. 
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