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Abstract: In recent years, sports injury rehabilitation has developed into a specialized field 

that has forced the combination of an orthopedic surgeon, sports physiotherapist, and sports 

physician. Determining the appropriate time for an injured athlete to resume practice or 

competition is regarded as sports rehabilitation. Discovering the best solutions to avoid 

injuries, maximize recovery, and enhance performance is crucial for sports activities. The 

study introduced an intelligent rehabilitation assistant (IRA) that leverages advanced deep 

learning (DL) methods to enhance sports injury recovery. In this study, the IRA incorporates 

redefined prairie dog optimized bidirectional long-short-term memory (RPDO-Bi-LSTM) to 

enhance accuracy, predicting sports injury recovery. The study collected data on the state of 

rehabilitation, physiological parameters, and general health using wearable sensors and 

movement patterns. The data was preprocessed using a median filter to remove noise from 

sensor data. Region-based segmentation using segmented images from preprocessed data. 

Convolutional neural networks (CNN) using extracted features from obtained data. The IRA 

provides personalized recovery plans and real-time feedback. The framework consists of the 

components, suggested models to create quality scores for motions, measurements to quantify 

motion performance, and scoring of performance measurement elements into numerical 

quality scores. The proposed method is implemented using Python software. RPDO-Bi-

LSTM presentation is evaluated by various metrics, such as accuracy 94.2% recall 98.2%, 

precision 96.5%, and specificity 95.2%, f1 score 95.6%, he planned technique attained good 

performance and improved the accuracy of sports injury recovery. 

Keywords: intelligent rehabilitation assistant (IRA); sports injury recovery; redefined prairie 

dog optimized bidirectional long short-term memory (RPDO-BiLSTM) 

1. Introduction 

Athletic injury recovery plays a vital role in ensuring sportspersons can 

maintain optimal performance and overall well-being. Injuries, whether they are 

acute or chronic, can severely impact an athlete’s physical abilities and emotional 

state, creating significant barriers to returning to their peak condition [1]. 

Traditionally, recovery has involved a structured combination of medical 

intervention, rehabilitation exercises, and physical therapy designed to rebuild 

strength, flexibility, and endurance [2]. Sports injury recovery is not just about 

bodily curative; it is a complete-process that comprises emotional and emotional 

support [3]. Being sidelined due to injury often has a significant mental toll on 

athletes, leading to stress, anxiety, or even depression. Recovery incorporates mental 

health support alongside physical therapy [4]. Elements like psychological flexibility 

training and psycho-social interferences have assumed critical roles as key 

contemporary strategies of reintegration. These practices assist the sport people to 
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make sense of this pressure and maintain concentration on the recovery objectives 

[5]. Incorporation of mental and physical rehabilitation in the recovery programs 

ensures that a holistic recovery approach is taken to address the entire athlete [6]. 

The integration of such sophisticated technology with the focus on emotional and 

psychological support creates a more holistic approach to recovery [7]. The process 

not only assists athletes in recovering but also protects their wellbeing, hence 

facilitating a healthier and safer return to the field of play [8]. The progress made 

over recent decades has been dramatic, especially with the appearance of deep 

learning and AI in injury rehabilitation. The use of AI which is deep learning has 

made new opportunities in the working out of sports injury rehabilitation [9]. These 

technologies utilize large amounts of data; including biomechanics, movement 

patterns, and even the patient’s injury history, to enable a tailor-made rehabilitation 

process [10]. In this case, therefore, AI outperforms conventional approaches that 

depend on fixed recovery procedures for the athletes. In doing so, it allows for a 

better prognosis of how long the recovery process will take, helps identify potential 

issues such as re-injury, and adapts the rehabilitation schedule based on actual 

progress [11]. Automated data analysis through deep learning algorithms can provide 

large and diverse patient datasets where accurate interpretations are completed 

within seconds, far surpassing human time and capacity. For instance, AI is capable 

of tracking an athlete’s healing process after biomechanical shifts during a program 

involving rehabilitation exercises and modifying the program’s intensity and method 

according to the performance data. This modified method allows rehabilitation to be 

more adaptive, catering to the unique physiological needs of each individual [12]. 

MRI is an essential diagnostic technique for sports’ muscle injuries. It facilitates 

discerning the phases of healing that involve demolition, restoration, and 

reconstruction. 

Organization of the Study: To develop an intelligent rehabilitation assistant 

(IRA) that utilizes advanced deep learning methods, specifically RPDO-Bi-LSTM, 

to enhance sports injury recovery by providing personalized recovery plans and real-

time feedback for athletes. 

Key contributions: 

⚫ The dataset enables 480 players’ personalized rehabilitation by using wearable 

sensors and deep learning to monitor sports injuries, optimizing recovery 

protocols based on real-time injury severity and progression. 

⚫ The study used a median filter to remove noise from wearable sensor data, 

ensuring cleaner input for further analysis. 

⚫ Preprocessed data was segmented using region-based techniques to identify key 

areas for investigation, crucial for exact motion tracking. 

⚫ Feature extraction using Convolutional neural networks (CNN) remained 

employed to excerpt relevant structures from the segmented data, aiding in 

accurate performance evaluation. 

⚫ The RPDO-Bi-LSTM model approach for enhancing the accuracy of sports 

injury recovery prediction. This method integrates advanced deep learning 

methods with real-time personalized rehabilitation feedback, improving 

rehabilitation outcomes. 
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Organization of the study: Part 2 related work, the methodology is established 

in Part 3, the performance evaluation is displayed in Part 4 and the conclusion is 

illustrated in Part 5. 

2. Related work 

Rommers et al. [13] addressed the chances of an incident in young football 

players who are at the top level utilizing artificial intelligence (AI). In general, the 

system performs acute and overused injury distinction fairly accurately by relying on 

anthropometric measurements, motor skills, and athletic ability to predict injury. 

Ramkumar et al. [14] also described how knowledge of these risks might be useful in 

developing strategies for managing the threats of getting hurt. As possibilities in 

image interpretation, predicting accidents, assessing the patient’s outcome, and 

improving the client’s opportunities. Namiri et al. [15] proposed an AI package to 

revolutionize surgery and athletic medicine. It means that gaining receptiveness and 

market acceptance of the value proposition of AI-based solutions remains a distant 

goal. To understand how AI can benefit the healthcare of athletes and patients being 

treated for sports medicine; the professionals require knowledge of the benefits, 

drawbacks, and application of the technology. Gautam et al. [16] explored the 

datasets of the 14 leading volleyball players across the 2018 global season employed 

in the study under actual machine learning (ML). According to the training carried 

out by the markers and their general health, they were in a position to obtain groups 

of days that had a higher probability of resulting in an injury [17]. Assessed studies 

focused on daily check-ins, interactions between training intensity and wellbeing 

measures, and a specific approach to assist in finding out how overuse injuries 

develop and advance. Other elements were also postulated to be closely linked to 

overuse problems included the training load and well-being factors. Rapp et al. [18] 

proposed the two convolutional neural networks (CNNs) were applied, and their 

diagnostic performance in terms of grading of anterior cruciate ligament (ACL) 

injury was evaluated. Significantly, the sensitivity and specificity measured in both 

2D and 3D CNNs support the potential of utilizing to aid non-experts when grading 

ACL injuries. Nwachukwu et al. [19] suggested a transfer-learning Long-term 

Recurrent Convolution Network (LRCN) for predicting knee joint angles and 

categorizing lesser limb actions. The average classification accuracy after training 

the model for predicting knee joint angles was 92% among participants without knee 

disease. 4% for knee arthroscopy with 98% for those with knee pathology. Yu et al. 

[20] suggested an Internet of Things (IoT) technology for tracking the health data of 

athletes using the medical devices that are worn and utilized to identify health 

markers and machine learning models. The system inertial information and deep 

learning show that cancer, heart disease, and tumors in the brain can be diagnosed 

successfully as well as predict lower extremity joint angle with more precision even 

without the use of magnetometer measurement. Richter et al. [21] found the reduced 

errors by retraining deep artificial neural networks on artificial gyroscope data, 

obtaining some improvements in the estimate of gait kinematics in real-world 

conditions. Regarding 2 years after hip arthroscopy, they employed the ML-based 

model of pre-treatment predictors. As a result, the training showed by Khalid et al. 
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[22] originated the indicators associated with the failure in the achievement of 

Minimal Clinically Important Difference (MCID) appearing as depression or 

anxiety, the duration of the illness, and body weight. In patients with acute stroke, 

when they first arrived with a Magnetic Resonance Imaging (MRI), a deep learning 

(DL) model was tested to assess their final infarct lesions. In their systemic study, Di 

Paolo et al. [23] found a median area under a DSC of 0.53, curve of 0.92 and a 

capacity fault of 10 ML achieved by the model. Using a wearable sensor device and 

a marker-based photonic scheme, the correctness was equivalent to or higher than 

the current clinical approach in populations that had minor or significant reperfusion 

measured the combined kinematics of 34 well sports persons to measure their 

reappearance to struggle and treatment next an anterior cruciate ligament (ACL) 

injury. Desai [24] offered sagittal level kinematics of the knee and hip, while the 

frontal and transverse plane kinematics. During complex gestures, the body-wide 

linked device demonstrated fair-to-excellent simultaneous cogency in evaluating 

specific combination parameters. Isern-Kebschull et al. [10] analyzing 310 magnetic 

resonance imaging (MRI) MRI scans of 128 athletes who had suffered muscle rips, 

the authors suggest a categorization scheme based on signal intensity and shape. 

Phases can overlap, and a small fusiform thickening of connective tissue 

characterizes the ultimate healed stage. A follow-up MRI should evaluate warning 

signals and any changes in muscular edema. Wille et al. [25] suggested hamstring 

strain injuries (HSI) are a prevalent problem with few predictive markers and a high 

recurrence rate. Risk reduction and expectation management can be aided by the 

evaluation of injury characteristics at the time of injury (TOI). The predictive utility 

of MRI for soft tissue injuries was a topic of contention, despite its use in injury 

management. Shiguang [26] investigated the use of fiber optic sensors and ML 

algorithms in a sports injury prevention and rehabilitation monitoring system. The 

sensors gather information on possible injuries while tracking the movement of 

players’ joints and muscles. These data are analyzed by machine learning algorithms 

to find risk variables. Cui et al. [27] examined bodily healing and injury prevention, 

and the use of wearable technology in physical education instruction. They employ 

methods such as time series analysis, ML algorithms, and artificial neural networks 

to gather real-time data from students’ exercise records in order to forecast the 

likelihood of physical recovery and damage. 

3. Methodology 

Initially, sports injury data is collected and pre-processed using median filters 

and region-based segmentation techniques to clean and organize the data. Feature 

extraction is performed using Convolutional Neural Networks (CNNs) to capture 

relevant patterns. The RPDO-Bi-LSTM model is applied to this processed data, 

combining RPDO-Bi-LSTM for enhanced prediction accuracy. This approach 

ensures effective monitoring and recovery management. Figure 1 illustrates the 

proposed methodology. 



Molecular & Cellular Biomechanics 2024, 21(2), 384.  

5 

 

Figure 1. Methodology flow. 

3.1. Dataset 

The dataset was a collection of 480 sports players, gathered to monitor and 

analyze injuries during and after play sessions, as well as throughout rehabilitation. 

The sensors track injured areas and collect data on the severity and progression of 

injuries. Using deep learning methods, this data is analyzed to create personalized 

rehabilitation exercises aimed at healing specific injuries. The dataset features 

various wearable sensors, such as accelerometers, gyroscopes, and 

Electromyography (EMG) sensors, positioned on critical body parts like knees, 

ankles, elbows, and shoulders. Data was recorded during gameplay throughout the 

recovery process to optimize rehabilitation protocols. Table 1 and Figure 2 illustrate 

the dataset. 

Table 1. Dataset. 

Sensor Type 
Wearable 

Device 

Wearable 

Location 
Frequency Sample Volunteers 

Placement of 

the Sensor 
Types of Activities Exercise 

Accelerometer Smart Band 
Wrist, 

Ankles 
100 Hz 

Raw 

Acceleration 
100 

Integrated into 

the band 

Impact and 

movement analysis 

Squats, Running, 

Jumping 

Gyroscope Smart Shoes Feet 100 Hz 
Rotational 

Data 
100 

Built into the 

soles of shoes 

Rotational 

movement and 

stability 

Running, Twisting 

Movements 

EMG Sensor 
EMG Arm 

Band 

Forearms, 

Calves 
1000 Hz 

Muscle 

Activity 
100 

Wrapped 

around the 

forearms and 

calves 

Muscle strain and 

performance 

Strength Training, 

Resistance 

Exercises 

Heart Rate 

Monitor 

Smart Watch 

or Chest 

Strap 

Chest, 

Wrist 
1 Hz 

Heart Rate 

Data 
100 

Around the 

chest or wrist 

Cardiovascular 

response and 

recovery 

Cardiovascular 

Exercises, 

Running 

Inertial 

Measurement 

Unit (IMU) 

Smart 

Glasses 
Head 100 Hz Motion Data 100 

Mounted in the 

frame of 

glasses 

Dynamic 

movement analysis 

Agility Drills, 

Sprinting 
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3.2. Data preprocessing using median filter 

Intelligent Rehabilitation Assistant for sports injury recovery, the median filter 

is employed as a non-linear filtering technique to improve image quality by 

removing noise, particularly salt-and-pepper noise, from medical images like MRI or 

X-rays. The filter works by computing the median of the pixel set within a defined 

𝑁 × 𝑀 district, replacing each pixel with this median value. This method is robust 

against outliers and preserves critical high-frequency details without offering 

unrealistic pixel values, thus maintaining image sharpness and preventing edge 

blurring. As the window size increases, the noise elimination effect of the median 

filter recovers, enabling clearer visualization of injury expenses for more precise 

diagnosis and treatment planning. Evaluated in the Equation 

(1) 𝑀 × 𝑀 neighborhood. 

𝑒(𝑤, 𝑧) = median(𝑡,𝑠)∈Twz{ℎ(𝑡, 𝑠)} (1) 

where 𝑇𝑤𝑧 are the organizes of the image opening of size 𝑀 × 𝑁. 

3.3. Region-based image segmentation 

It plays a critical role by assemblage and patterning pixels corresponding to 

specific injury areas. This subdivision relies on principles such as value comparison, 

which includes gray value alterations and variance, and three-dimensional nearness, 

defined by Euclidean distance and region compactness. By accurately segmenting 

injury regions, this method enhances the effectiveness of deep learning models in 

identifying injury patterns and assessing tissue damage. Appropriate thresholding 

techniques are crucial for refining segmentation, and ensuring precise localization of 

injuries. This facilitates the creation of customized recovery protocols, optimizing 

rehabilitation outcomes and accelerating the recovery process for athletes. Presuming 

that image are gathered in pixel 𝐽 and that equality is achieved Q, now let’s split the 

image 𝐽 into a set of n areas 𝑄𝑗, if Equations (2)–(4) clasps, then all pixels of slightly 

assumed region content the homogeneity established𝑈. Also, any two-together areas 

cannot be compounded into a single area. 

⋃ 𝑄𝑗 = True

𝑚

𝑗=1

 (2) 

∀𝐽, 𝑂(𝑄𝑗) = True (3) 

𝑂(𝑄𝑗 ⋃ 𝑄𝑖) = False (4) 

3.4. Feature extraction using convolutional neural network (CNN) 

The Intelligent Rehabilitation Assistant for sports injury recovery, CNN to 

extract diverse topographies employs from medicinal images, such as echography 

scans recognized as the pioneering architecture for convolutional neural networks, 

generates multiple feature maps at each layer, allowing for a comprehensive capture 

of visual patterns compared to conventional methods. This characteristic makes it 
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highly effective for segmenting and analyzing regions of interest in injury sites. 

While it is traditionally used for classification tasks, in the approach; it is solely 

utilized for feature extraction, capturing intricate details of the injury. For the 

classification stage, an ensemble learning framework integrates that surpasses 

ordinary neural networks with fully connected layers. This combination enhances the 

accuracy of detecting and characterizing sports injuries, ultimately leading to more 

personalized and operative rehabilitation strategies by precisely identifying injury 

types and monitoring recovery progress. First, a difficulty coating with six 5 × 5 

screens and a stride of 1 is applied to an image by 32 × 32 × 1, producing an output 

matrix of 28 × 28 × 6. When the stride is set to 1 and no padding is used, the 

characteristic map shrinks from 32 × 32 × 28 × 28. Then, utilizing a characteristic 

assembling with a strainer thickness of two and a stride of two, the measurement is 

reduced by an influence of two, resulting in 14 × 14 × 6. Moreover, an additional 

convolution layer consisting of 16 of 5 × 5 strainers is employed, resulting in a 

production medium measuring 10 × 10 × 16. Subsequently, an additional assembling 

layer is employed, culminating in a final matrix measuring 5 × 5 × 16. Consequently, 

extracted sixteen 5 × 5 characteristic maps of the single image, and single 

characteristic map (5 × 5), together with Figure 2, demonstrate the CNN 

architecture. 

 

Figure 2. Convolutional neural network architecture. 

3.5. Predicting sports injury recovery using redefined prairie dog 

optimized bidirectional long-short-term memory (RPDO-Bi-LSTM) 

Intelligent Rehabilitation Assistant for sports injury recovery enhances 

performance by integrating Bi-LSTM networks with Redefined Prairie Dog 

Optimization (RPDO). Bi-LSTM processes medical data to capture temporal 

dependencies in recovery patterns. RPDO, inspired by prairie dog signaling, 

optimizes Bi-LSTM parameters to manage noise and computational demands. This 

hybrid approach delivers personalized recovery plans, monitors progress, and 

improves athlete outcomes by combining deep learning with bio-inspired 

optimization for accurate, efficient injury recovery forecasting. The optimization 

strategy lies in the exploration and manipulation of parameters through the 

optimization of signal strength. When applied in an injury recovery context, RPDO 

further optimizes the Bi-LSTM network parameters for accurately identifying. 
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Bidirectional long short-term memory 

An intelligent rehabilitation assistant that is specifically built for sports injury 

rehabilitation. It is a crucial component of the system since it can handle sports data 

bilaterally. Unlike conservative LSTM networks, which process data in a forward 

way, the Bi-LSTM network captures hidden features and patterns that might be 

overlooked. This dual-directional processing allows the model to better understand 

the temporal dependencies in injury-related data, such as patient movement or 

muscle activity over time. By accurately identifying underlying patterns, Bi-LSTM 

enhances the precision of injury calculation and recovery monitoring, allowing more 

personalized rehabilitation strategies and improving the efficiency of therapeutic 

interventions for athletes. Figure 3 illustrates the Bi-LSTM architecture. 

 

Figure 3. Bi-LSTM architecture. 

The advancing concealed sheet ′𝐾𝑒′the regressive hidden layer ′𝐾𝑎′and output 

arrangement ′𝐺𝐻𝐼𝑝(𝑠)′appraise the network. The network apprises iteratively in 

retrograde, i.e., from ‘s’ to ‘1’ and forward direction, i.e., ‘1’ to ‘𝑠’. The updated 

parameters of the network can be uttered mathematically in Equations (5)–(7). 

𝐾𝑒 = 𝜎(𝑥1GHI𝑗(𝑠) + 𝑥2𝐾𝑒−1 + 𝑎𝐾𝑒
) (5) 

𝐾𝑎 = 𝜎(𝑥3GHI𝑗(𝑠) + 𝑥5𝐾𝑎−1 + 𝑎𝐾𝑎
) (6) 

GHI𝑝 = 𝑥4𝐾𝑒 + 𝑥6𝐾 + 𝑎GHI𝑝
 (7) 

where, “𝐾𝑒”, “𝐾𝑎” & “GHIo(t)” are onward pass regressive pass, and final output 

layers respectively. ‘W’ is the weight constant and 𝑎𝐾𝑒
, 𝑎𝐾𝑒

& 𝑎𝐺𝐻𝐼𝑝
are the 

prejudices. 

3.6. Redefined prairie dog optimization (RPDO) 

Optimization techniques like Prairie Dog Optimization (PDO) can boost Bi-

LSTM performance by efficiently tuning hyperparameters, reducing computational 

costs, and preventing overfitting. RPDO relates to prairie dog foraging, which 

optimizes the convergence rate and accuracy confronting Bi-LSTM networks while 

working with real-time applications and noisy data. But in the domain of sports 
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injury recovery, the idea of frequency wave coordination in communication of the 

prairie dogs can create new viewpoints towards better rehabilitation strategies 

through deep learning. In the same way that prairie dogs use different sounds to 

communicate about food or threats to the entire population, deep learning algorithms 

can be programmed to change the degree and style of restoration activities, given 

input from patients, and then the feedback signs produced by the system are much 

stronger and motivate the patient to stay in the same performance. If the system 

observes that the patient appears weak or overworking, “low intensity” feedback 

could quickly modify the exercises so as not to worsen strain or re-injury. Moreover, 

as prairie dogs change their behavior depending on the perceived threat, the 

intelligent rehabilitation assistant should be able to propose different care plans 

depending on the degree of an injury or the stage of recovery. By applying this 

frequency-based strategy, the optimization performance of the deep learning 

algorithm is enhanced which is important to more real wound retrieval and 

deterrence. This analogy bridges the gap between nature-inspired strategies and 

advanced deep learning techniques for enhancing rehabilitation outcomes. 

The frequency wave strategy’s sound factor, 𝐵, is characterized as changing at 

random in response to shifts in the locations of natural adversaries or food sources. 

The complete basic area is clear as area, while the separation between the prairie dog 

and food remains specified as 𝑐 are using Equations (8)–(10). 

𝐵 = 2 × rand (8) 

𝑐 = Pos − PD (9) 

area = (abs(Pos2 − PD𝑗,𝑖
2 ))

0.2
 (10) 

The audio wave length variation among 0 and 1 brought on through haphazard 

shifts in location food is denoted by the term “rand” in the calculations above. Food 

is found in Pos (natural enemies). The following is the precise frequency wave 

strategy updating evaluated in Equation (11). 

𝑤new = 𝑃𝐷𝑗,𝑖 − 𝐵 × 𝑐 × Levy   𝐵 < 1

𝑤new = 𝑃𝐷𝑗,𝑖 + 𝑞 × 𝐵 × Area   else
 (11) 

where, between −1 and 1, 𝑃 is a random integer 𝑤new and is the prairie dog’s new 

location. 

3.6.1. Initialization of tent chaos 

Intelligent Rehabilitation Assistant: Application of Bi-LSTM in sports injury 

recovery use of a tent chaotic initialization method can be beneficial for improving 

rehabilitation strategies. Similar to how the tent chaotic initialization in the RPDO 

algorithm ensures randomness and diversity in population delivery, applying this 

approach in rehabilitation could improve the adaptability and customization of 

recovery plans. By ensuring a more diverse and balanced initialization of treatment 

protocols, the algorithm can expand the search space for optimal recovery paths, 

allowing for more personalized and actual injury recovery solutions while 

maintaining flexibility and diversity in patient care and evaluated in Equation (12). 
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𝑤𝑗+1 = {

𝑤𝑗

0.7
 𝑤𝑗 < 0.7

10

3
(1 − 𝑤𝑗) 𝑤𝑗 ≥ 0.7

 (12) 

3.6.2. Opposition-based learning approach using lenses 

Conventional opposition-based learning generates the present answer in the 

opposite direction in an attempt to broaden the search space. The opposing solution 

is provided and fixed, which makes it difficult for the algorithm to locate a better 

location. Using simplistic inter planetary as a sample, the organizing axis [𝑣𝑎, 𝑘𝑎] 

signifies the search variety, and the axis signifies the convex lens, which is based on 

the optical concept of convex lens imagination. In the event where 𝑚people exist and 

their height is 𝐺, then 𝑊is the reflection on the organized axis. The lens system𝑦 

refracts light to create the image.𝑛′, which has a height of 𝐺′. 𝑊′ represents the 

projection of 𝑛′on the organized axis. The opposing single 𝑊′produced. 

(𝑣𝑎 + 𝑘𝑎)/2 − 𝑊

𝑊′ − (𝑣𝑎 + 𝑘𝑎)/2
=

𝐺

𝐺
 (13) 

𝐺/𝐺′ = 𝑙, 𝑙 added l to Equation (13) and used it as the grading feature to 

understand the goal mechanism for the antagonist response 𝑊′: 

𝑊′ =
𝑣𝑎 + 𝑘𝑎

2
+

𝑣𝑎 + 𝑘𝑎

2𝑙
−

𝑊

𝑙
 (14) 

Equation (14) represents the conventional opposition-based learning approach 

when 𝑙  = 1. The location of producing the antagonism explanation in the D-

dimensional area is haphazard, the geographic searching possibility is progressively 

increased, and altering the scaling factor k’s value has no effect on the population. 

Sports injury recovery and the foraging and burrowing behaviors of prairie dogs can 

provide an analogy for optimizing rehabilitation through deep learning. Just as 

prairie dogs must balance the need for nourishment with the constant threat of 

predators, patients in rehabilitation must navigate between pushing their physical 

limits and avoiding re-injury. Prairie dogs have evolved a sophisticated 

communication system using different audio signals to respond to threats, much like 

how an intelligent rehabilitation system could use real-time data to adjust the 

intensity of exercises. A “faster” signal, representing higher urgency, could prompt 

more cautious movements when the patient is at risk of overexertion or re-injury, 

whereas a “slower” signal could encourage the patient to continue if they are 

progressing well. By using chaotic initialization techniques, the rehabilitation system 

could ensure a diverse range of recovery strategies, improving patient outcomes. 

Opposition-based learning could expand the search space for optimal recovery 

methods, similar to how prairie dogs expand their search for food while staying alert 

to threats. The application of these audio signal factors in rehabilitation allows for 

more adaptive and personalized care, helping patients recover efficiently while 

avoiding setbacks, much like how prairie dogs balance survival and foraging, 

Algorithm 1 represents the modified Prairie Dog optimization and Figure 3 displays 

the RPDO algorithm flowchart. 
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Algorithm 1 Redefine prairie dog optimization algorithm pseudo-code 

1: Consuming the Equation (12) for the populace starting 

2: Analyze suitability value 

3: While 𝑠 ≤ 𝑆 

4: Implement lens opposition-based knowledge approach over Equation (14) 

5: Analyze the sound frequency issue B using Equation (8) 

6:                  Calculate the distance c using Equation (9) 

7:                   If 𝑠 < 𝑆/4 

8: 𝑂𝐶𝑗+1,𝑖+1 = HBest𝑗,𝑖 × 𝑞𝑂𝐶 × 𝐶𝑇 × Levy(𝑚)                             (15) 

9:                  Else if 𝑆/4 ≤ 𝑠 < 𝑆/2 

10: 𝑂𝐶𝑗+1,𝑖+1 = HBest𝑗,𝑖 × 𝑂𝐹 × rand                                          (16) 

11:                 Else if 𝑆/2 ≤ 𝑠 < (3 × 𝑆)/4 

12: 𝑂𝐶𝑗+1,𝑖+1 = HBest𝑗,𝑖 − 𝑓𝐷Best𝑗,𝑖 × 𝜀 − DOC𝑗,𝑖 × rand           (17) 

13:                  Else if (3 × 𝑆)/4 ≤ 𝑠 

14: 𝑂𝐶𝑗+1,𝑖+1 = HBest𝑗,𝑖 × 𝑓𝐷Best𝑗,𝑖 × 𝜌 − DOC𝑗,𝑖 × Levy(𝑚)   (18) 

15:                  End 

16: Analyze the range using Equation (10) 

17:                  If 𝐵 < 1 

18: 
𝑤𝑛𝑒𝑤 = 𝑃𝐷𝑗,𝑖 − 𝐵 × 𝑐 × Levy   𝐵 < 1

𝑤𝑛𝑒𝑤 = 𝑃𝐷𝑗,𝑖 + 𝑞 × 𝐵 × Area   else
                                          (19) 

19:                  Else 

20: 
𝑤𝑛𝑒𝑤 = 𝑃𝐷𝑗,𝑖 − 𝐵 × 𝑐 × Levy   𝐵 < 1

𝑤𝑛𝑒𝑤 = 𝑃𝐷𝑗,𝑖 + 𝑞 × 𝐵 × Area   else
                                          (20) 

21:                  End 

22: 𝑠 = 𝑠 + 1 

23: End 

3.7. Redefined prairie dog optimized bidirectional long-short-term 

memory (RPDO-Bi-LSTM) 

Intelligent Rehabilitation Assistant for sports injury recovery, the integration of 

Bi-LSTM networks with RPDO considerably improves the performance of the 

system. Medical data, like muscle activity or the progression of an injury, is fed into 

the Bi-LSTM network, which can traverse the data forward and backward to capture 

essential temporal dependencies to understand how individuals recover. The Bi-

LSTM networks can be computationally inhomogeneous and sensitive to missing or 

noisy data in general. To cope with these challenges, RPDO is incorporated and used 

as an optimization tool. Considering the features of prairie dog’s signaling, RPDO 

imitates the reaction to the changes in environment using the frequency-modulated 

signals. The optimization strategy lies in the exploration and manipulation of 

parameters through the optimization of signal strength. When applied in an injury 

recovery context, RPDO further optimizes the Bi-LSTM network parameters for 

accurately identifying and forecasting the current and potential injury patterns with 

few computational demands and overfitting. This hybrid approach ensures that the 

rehabilitation assistant can provide highly personalized recovery plans, monitor 

progress effectively, and improve outcomes for athletes by leveraging the strengths 

of deep learning and bio-inspired optimization methods. Algorithm 2 shows the 

RPDO-Bi-LSTM. 
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Algorithm 2 RPDO-Bi-LSTM 

1: 1. Initialize BiLSTM parameters Equations (21)–(23) 

2: 𝐾𝑒 = 𝜎(𝑥1𝐺𝐻𝐼𝑗(𝑠) + 𝑥2𝐾𝑒−1 + 𝑎𝐾𝑒
)                    (21) 

3: 𝐾𝑎 = 𝜎(𝑥3𝐺𝐻𝐼𝑗(𝑠) + 𝑥5𝐾𝑎−1 + 𝑎𝐾𝑎
)                   (22) 

4: 𝐺𝐻𝐼𝑝 = 𝑥4𝐾𝑒 + 𝑥6𝐾 + 𝑎𝐺𝐻𝐼𝑝                                  (23) 

5: 2. Set Population size M, search space dim, and iterations S 

6: 3. Apply Tent Chaos Initialization for Bi-LSTM hyperparameters 

7: 𝑤𝑗+1 = {

𝑤𝑗

0.7
𝑤𝑗 < 0.7

10

3
(1 − 𝑤𝑗)𝑤𝑗 ≥ 0.7

                                  (24) 

8: For each patient (i = 1 to M) 

9: a. Evaluate fitness (rehabilitation progress) using Bi-LSTM 

10: Calculate audio signal factor BB = 2 × rand    (25) 

11: b. Calculate distance c = Pos − PD … (9) 

12: c. Update prairie dog positions using Equation (11) 

13: d. If B < 1, Update using w_ new = PD − B × C × Levy 

14: e. If recovery Progress improves, stores HB set and update fitness 

15: 4. Apply opposition-based learning via lens strategy using Equation (14) 

16: 5. Recalculate the area using Equation (20) 

17: 6. Update frequency wave strategy if necessary (Equation (11)) 

18: 7. End loop if max iterations S reached or recovery archived 

4. Evaluation metrics 

Accuracy: The capacity of the system to accurately forecast or categorize 

rehabilitation outcomes, such as the state of an injury or the rate of recovery, based 

on patient data is referred to as sports injury recovery accuracy. High accuracy 

guarantees personalized recovery plans, efficient treatment suggestions, and 

trustworthy performance tracking throughout the rehabilitation process, as assessed 

by Equation (26). 

Accuracy =
TP + TN

TP + TN + FP + FN
 (26) 

Precision: Sports injury precision is the ability of the organization to correctly 

categorize cases that are truly positive for injury status or recovery without adding 

false positives. High accuracy ensures that suggested courses of action are focused 

and pertinent to the real-world circumstances of patients (Equation (27)). 

Precision =
TP

TP + FP
 (27) 

Recall: The organizational capacity to categorize all recoveries or injuries that 

are truly positive, reducing the number of incorrect diagnoses. Reduced likelihood of 

injuries being unnoticed: a high recall guarantees the system accurately identifies all 

patients in need of assistance examined in Equation (28). 

Recall =
TP

TP = FN
 (28) 

F-1 score: The exactness and recall of the F1-score stability point to a single 

measure that can be used to evaluate the system’s performance in injury recovery 

prediction. When false positives and false negatives have different significances as 

determined by Equation (29), it is very valuable. 
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𝐹1 = 2 ∙
Precision ∙ Recall

Precision + Rcall
 (29) 

Specificity: The system’s ability to precisely detect genuine negative instances, 

guaranteeing that statuses other than injury or non-recovery are appropriately 

identified. Elevated specificity diminishes false positives, augmenting the 

dependability of the system in differentiating between various ailments indicated in 

Equation (30). 

specifity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (30) 

5. Performance analysis 

Windows 13 and an Intel® Core i9 workplace with 8.00 GB of RAM were 

mutual with the Python framework to allow rapid admission to the data. Sports 

Injury Recovery is the approach achieved significant advancements through data 

preprocessing with a media filter, region-based segmentation, and CNN-based 

feature extraction. The integration of RPDO-Bi-LSTM further enhanced classical 

accuracy by optimizing hyperparameters and capturing complex patterns in injury 

data. The provided Receiver Operating Characteristic (ROC) arc validate 

representation the planned RPDO-Bi-LSTM model in sports injury retrieval 

calculation. An area below the curve (AUC) of 0.94 is seen after the true positive 

rate (sensitivity) is plotted against a negative rate. The representation’s strong 

capability to distinguish between negative and positive instances, as well as its 

appealing injury organization accuracy, as shown by this in height AUC. Figure 4 

displays the result of ROV. 

 

Figure 4. Result of ROC. 

Accuracy: The numerical outcomes demonstrate that the proposed RPDO-Bi-

LSTM method achieved an accuracy of 94.2 %, surpassing CNN-LSTM with 93.0 % 

and XGBoost with 90.0%. This development underlines the improved presentation 

of RPDO-Bi-LSTM in exactly predicting and handling sports injuries. Table 2 

indicates the performance analysis of the study. Figure 5 graphical representations 
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of model accuracy metrics. 

Table 2. Performance analysis. 

Methods Accuracy Precision F-1 score Recall Specificity 

XGBOOST [25] 90.0 92.0 94.7 97.6 - 

CNN-LSTM [26] 93.0 95.0 92.0 - 93.0 

RPDO-BiLSTM [Proposed] 94.2 96.5 95.6 98.2 94.2 

 

Figure 5. Graphical representation of model accuracy metrics. 

Precision: The mathematical significance display that the coming RPDO-

BiLSTM technique attained an accuracy of 96.5 %, outdoing CNN-LSTM with 95.0 

% and XG Boost with 92.0 %. The precision of RPDO-BiLSTM in identifying 

relevant features for sports injury prediction, reducing false positives compared to 

another approach. Figure 6 denotes the precision of sports injury. 

 

Figure 6. Outcomes of precision. 

Recall: The RPDO-BiLSTM model presented a recall rate of 98.2% exceeding 

that of XG Boost, thus demonstrating its better ability in identifying sports injuries 

correctly. Such high recall level suggests that RPDO-BiLSTM is good at those true 

positive cases, i.e., it is able to identify a higher fraction of its actual target class of 
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injuries. The superior performance is caused by the fact that the model has a bi-

directional structure which is capable of understanding the complex temporal 

dynamics of the data. Moreover, the inclusion of RPDO optimization strategies also 

enables the above model to further enhance the detection performance. Below 

Figure 7 provides a comparison graph of the values of recall depicting the benefits 

of RPDO-BiLSTM over XG Boost. 

 

Figure 7. Comparison of recall. 

F-1 Score: The F-1 score of the suggested RPDO-BiLSTM procedure was 

recorded at 95.6% which was higher than the F-1 score of CNN-LSTM which stood 

at 92.0% and XG Boost which stood at 94.7%. This finding points out the efficiency 

of RPDO-BiLSTM in detecting the sports injuries without compromising on the 

recall and precision levels. The high F-1 score achieved in the study demonstrates 

the model’s ability to control both types of errors effectively. Such equilibrium is 

also important in a clinical environment because it is possible that injury status may 

have an effect on treatment decisions. These F-1 scores are depicted in Figure 8 

below that compares the models’ performances visually. 

 

Figure 8. Bar chart of F-1 scores. 

Specificity: The RPDO-Bi-LSTM method scored 94.2% in terms of specificity, 

which was much higher than that of the CNN-LSTM model that had a specificity of 

93.0%. This shows once again that RPDO-Bi-LSTM can be applied more effectively 
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to minimize the occurrence of false positives in determination of negative cases in 

detection of sports injuries. This is evident as the enhanced specificity results from 

the ability of the model to attend to both the past and the present temporal dynamics 

of the data. In addition to that, the prairie dog optimization method ascertains that the 

proper features are used for feature selection which ensures the classification is done 

using the best features. To sum up, these enhancements have the best impact when it 

comes to differentiating between the injured and non-injured athletes in Figure 9. 

 

Figure 9. Graphical representation of specificity. 

6. Conclusion 

Intelligent Rehabilitation Assistant is a system that uses deep-learning decision-

making mechanisms to analyze data and generate individual rehabilitation plans and 

strategies for people suffering from sports injuries to maximize the results of their 

recovery. With the help of RPDO, the hyperparameters were subject to nature-

inspired optimization while deepening the Bi-LSTM, which enabled both forward 

and backward analyses of the data. This innovative approach yielded its best in terms 

of accuracy achieving 94.2%, F-1 score of 95.6%, Recall 98.2%, Precision 96.5% 

and specificity 94.2 %. Accordingly, the study’s findings demonstrate that RPDO-

Bi-LSTM’s capabilities for sports injury prediction and management are more 

accurate and advanced than those of conventional techniques. Further research may 

target the improvement of the RPDO-BiLSTM model in the context of various and 

actual injury data by feeding the model with various datasets and real-time 

monitoring input data. Furthermore, exploring integration with wearable technology 

and extending its applicability to other forms of sports may also enhance 

performance and recovery from injuries as well. 
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