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Abstract: Over the past years, virtual reality (VR) has become much more popular. VR 

combines several technologies to provide an immersive digital environment. This environment 

allows users to engage and react to their actions, creating a virtual world where users feel more 

present. In biomechanical analysis, researchers analyze the physical characteristics of 

biological tissues and model the relationship between tissue form and function. Utilizing VR 

headsets, motion-tracking apparatus, and realistic virtual worlds that simulate actual sports 

situations are all part of virtual sports training. VR lacks realism, which can be related to the 

absence of sensory input, making it unsuitable for training fine motor skills. The research aims 

to perform biomechanical analysis and optimize sports action training inside a VR setting. A 

mountain gazelle optimizer fine-tuned adjustable convolution neural network (MGO-ACNN) 

is proposed to examine the joint angle selections utilized by sports action. In this study, human 

motion image data are utilized to capture various angles of the training action. The data was 

preprocessed using a Wiener Filter (WF) for the obtained data. Analyzing spatial frequency 

and orientation in images for feature extraction is accomplished using the Gabor Filter (GF). 

This approach incorporates VR simulations to provide a more regulated and immersive setting 

for joint angle analysis during sports training. The proposed method is implemented using 

Python software. The result demonstrated by the proposed method significantly outperforms 

the existing algorithms. The performance parameters for accuracy (99.73%), precision 

(99.75%), recall (99.73%), and F1-score (99.72%) are assessed in this study. The VR 

experiments indicate that optimal sports preparation involves a sports action while maintaining 

a batting speed consistent with the joint to lower the center of gravity. This research highlights 

the more effective, personalized sports training system, leveraging VR to simulate real-world 

conditions while providing detailed biomechanical insights. 

Keywords: biomechanical analysis; sports action; virtual reality (VR); mountain gazelle 

optimizer fine-tuned adjustable convolution neural network (MGO-ACNN) 

1. Introduction 

Virtual reality (VR) has shown to be a very helpful tool not only for entertainment 

but also for a variety of other applications, including training [1], rehabilitation [2], 

researching human behavior [3], and visualizing [4]. VR is used in various fields to 

give users a very immersive and entertaining environment in which to observe and 

interact with the information. Many real-world experiences are being transformed into 

virtual ones and delivered into peoples’ living rooms, attributable to the growing 

popularity of VR devices and accessories. For certain individuals, using VR for fitness 

might even have tangible advantages. In particular, people may increase their physical 

health and fitness while having entertainment by playing and working out at the same 

time [5]. The musculoskeletal system has a biomechanical load-response pathway that 

produces mechanobiological tissue reactions in the articular cartilage, bones, tendons, 
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ligaments, and muscles in reaction to frequent, strong treatment. An increasing body 

of research suggests that tracking the physiological and biomechanical stresses 

independently can help to provide comprehensive knowledge of the several systems 

of adaptation that ultimately define a person’s degree of performance and physical 

fitness [6]. The majority of sports action available on the market, whether it’s on video 

or online, shows the sport’s movements mechanically and is unable to direct or correct 

viewers’ actual actions. It is generally up to the trainees to truly grasp the fundamentals 

of tennis because even the occasionally offered on-site training programs by some 

sports coaches essentially rely on the coach’s intuitive experience without imparting 

sufficient professional knowledge and techniques. Thus, from the standpoint of 

biomechanics, the process of training athletes has given rise to a contentious debate 

[7]. Although other sports action training motion sequences like attacking, leaping, 

and blocking have been studied, the overhead pass motion has not yet been studied, 

hence the methods used to teach it are not always based on evidence. Players might 

benefit from theoretical background knowledge that would help them acquire this 

skillful move if the process of an overhead pass was thoroughly explained [8]. 

Accurate motion capture and real-time feedback are crucial and limited by the 

precision of VR sensors and tracking systems. Simulating the physical interaction with 

the ball’s realistic force feedback remains difficult, often affecting player coordination 

and skill transfer [9]. 

Moreover, virtual environments lack the fidelity necessary to mimic the spatial 

dynamics of the real world, leading to discrepancies in movement patterning [10]. 

Some of the obstacles in the development include user fatigue, hardware limits, and 

complexity in transcribing 3D biomechanics into a real environment for training. The 

study aims to improve sports action training in the VR environment and biomechanical 

analysis is to be carried out. In particular, the study examines the MGO-ACNN study 

model of preference in play action ring selection ahead in sports action. In the attempt 

to create a more controlled environment, the research exercise uses data from human 

motion images and VR simulations to explore and enhance aspects of the joint in 

sports activities and, consequently, efficiency in the practice of sports. 

Contribution of the study 

The following are the study’s significant contributions. 

1) The study introduces a novel method called the mountain gazelle optimizer 

micro-adjustable convolutional neural network (MGO-ACNN), specifically for 

analyzing joint angle selection during VR training in sports performance. 

2) The study leverages VR tools to provide a more controlled and immersive 

environment for biomechanical analysis, enhancing the efficiency of sports 

action training. 

3) Preprocessing approach using WF to optimize human motion image data, 

improving the accuracy of joint angle analysis. 

4) The research demonstrates that VR simulations combined with the proposed 

method provide personalized sports training, offering detailed biomechanical 

insights for optimized athletic performance. 
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A summary of the related work is provided in section 2. The dataset, preprocessed 

data, feature extraction, and classification model are described in section 3. Section 4 

presents the instances of experimental setup, comparative study, and overview of study 

discussion. Section 5 implements the conclusion with limitations and future work. 

2. Related work 

This section demonstrates the previous research on biomechanical analysis and 

optimization of sports action training in a VR environment. 

An AVR-based rehabilitation system that enhanced patient participation in 

rehabilitation training by combining upper limb rehabilitation technology with a VR 

physical training monitoring environment for precise interaction. The system made 

use of the Convolutional Pose Machine (CPM), a deep learning (DL) motion 

recognition model that employed a stacked hourglass network [11]. The system was 

employed in real-time applications because it had an average reaction time of 23 𝑚𝑠. 

To recognize a sportsperson’s activities and motivate someone to become more 

proficient in sports, a Bio-inspired algorithm (BIA) with long short-term memory 

networks (LSTM) framework was developed [12]. Comparing the suggested method 

to other approaches, the experimental findings demonstrated that it was very accurate 

in assessing athletes’ real actions. The primary problem of sports game identification 

was accurately tracking athletes’ actions. 

Technology that was used to observe and interact with virtual environments was 

combined to create VR [13]. The 3D space that the atmosphere depicts was imagined, 

tiny, or macroscopic, and it could be based on real-world or made-up dynamical rules. 

The study examined the future tendencies of VR in the domains of sports, education, 

and the military after summarizing the advancements in the technology. It has created 

a technique for action recognition known as Hierarchical Feature Reduction-Deep 

Learning (HFR-DL) [14]. Utilizing the UCF101 dataset, which was extensively 

utilized by action recognition researchers, as a benchmark, they assessed the suggested 

approach. Comparing the experimental findings with eight approaches, a considerable 

increase was observed in terms of accuracy and speed. 

A machine learning (ML) and image feature extraction approach for basketball 

shooting gesture identification [15]. To accurately determine the athletic posture of 

basketball players and enhance their training impact. The evaluation of the shooting 

action recognition effect and the real case analysis demonstrate the excellence of 

developed basketball shooting action recognition technology. With the help of a CNN, 

the human action recognition (HAR) model was created [16] and recognized the 

present action state by analyzing task action data from collected videos. A HAR 

algorithm was used to analyze players’ sports psychology and pinpoint the psychology 

of athletes in their motions. The work used an enhanced convolutional three-

dimensional network (C3D) HAR model with an image loss of 5.6 and 80% 

recognition accuracy. Moreover, there was a 33% decrease in temporal complexity. 

To further create a tool to assist athletes’ and trainers’ activities, the current effort 

attempted to establish the optimal model for screening elite and rookie fencers [17]. It 

gathered anthropometric and biomechanical data from expert and beginner fencers in 

a cross-sectional study that was carried out at a fencing club. Biomechanical data was 
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gathered using wearable sensors, such as four surface electromyographic (sEMG) 

probes and a wireless inertial system. Multilayer Perceptron (MLP) was the best ML 

method, for class novice (0), its forecasts revealed 90% accuracy, recall, 93% 

precision, and F1-score, and for class élite (1). The study used every bibliometric 

approach [18], doing statistical analysis on the state of sports research and the growth 

pattern of master’s including doctorate dissertations. It intended to comprehend the 

most recent advancements in Chinese sports biomechanics research on martial arts 

routines. The recall rate was 75.8%, the accuracy of the initial report was only 77.1%, 

and the F value was 76.3% when using the Naive Bayes (NB) technique. 

The Ensemble Neural Network (ENN), a novel model for recognizing sporting 

events, was created by fusing many networks [19]. The accuracy was at CNN’s level 

of 94.81, above and over 95% of ENN. The measuring system and data collecting 

platform prototype that was suggested to recognize sports activities were emphasized 

as having a lot of promise for the privacy-training sports system. The study looks for 

indicators of muscle injury in professional soccer players by combining biomechanical 

studies and ML approaches [20]. Advanced models for injury detection and prediction 

were becoming more and more necessary to help physicians diagnose or identify 

injuries earlier and more accurately. Among the 35 methods used, extreme gradient 

boosting (XGBoost) produced an accuracy of up to 78%. 

The work was an attempt to achieve similar results by using a single optical 

sensor to implement several different technologies [21]. The creation and application 

of a pipeline for extracting monocular features was required to improve the state of 

the art in sports biomechanics analysis. It would examine the techniques offered and 

discuss how it has integrated these strategies into the framework. To determine the 

mechanistic origins of musculoskeletal tissue damage and degeneration, the research 

investigated the use of biomechanics [22]. It evaluated the application of biomechanics 

in the creation of training curricula to preserve or regain tissue health. 

These innovative methods made 3D body forms, anthropometrics, and 

kinematics more accessible and useful for a variety of applications by enabling their 

estimate from as basic as a single-camera image. The system presented [23] in the 

work combined these approaches with conventional musculoskeletal modeling to 

allow for the entire investigation of spinal biomechanics during intricate tasks using a 

single camera. 

Research gap 

The difficulty addressed in the above research is every challenge of optimizing 

sports action training within VR environments, particularly for fine motor skills and 

biomechanical analysis. Traditional VR systems, while providing immersive 

experiences, often lack the sensory realism required for precise training of sports 

actions. The limitation affects the effectiveness of VR in simulating real-world sports 

scenarios and optimizing training methods. The objective is to improve the 

effectiveness and realism of VR-based sports training with the aid of the integration 

of biomechanical analysis and sophisticated simulations inside a VR environment. 

This study specifically addresses the need for a more authentic method for analyzing 

and optimizing sports actions with MGO-ANN, the novel method. This method 
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involves human motion image data and preprocessing techniques that provide very 

detailed information on the joint angles as well as movement patterns. The study aims 

to demonstrate how including these methods in VR results in more personalized and 

efficient sports training systems and eventually leads to the improvement of 

athleticism, which is further enhanced by better biomechanical analysis. 

3. Methodology 

In this section, biomechanical analysis and how to improve sports action training 

within a VR environment have been clearly explained. Figure 1 outlines the flow of 

the proposed methodology framework. At first, human motion image data is collected 

to serve as the dataset. The data is then preprocessed using a WF to enhance quality. 

For classification, an MGO-ACNN is employed. The findings are evaluated through 

simulations, offering a controlled and immersive sitting for joint angle analysis during 

sports action training. 

 

Figure 1. Proposed model. 

3.1. Virtual reality 

High-resolution cameras or motion-tracking sensors are used to capture images 

of sports performing action training. It includes recording parts and moves to ensure 

detailed data is included. By creating simulated environments that closely mimic real 

situations, including VR, athletes can improve their skills in a safe and fun 

environment. It improves the training by making it an engaging and enjoyable 

experience, enhancing the accuracy it offers in comparison to traditional methods. VR 

enables gamers to visualize and understand complex patterns of movement in 3D 

space. This type of visualization can help to analyze body mechanics, improve 

technique, and make adjustments based on real-time feedback. The VR immersive 

experience (VIVE) is made possible by tracker, a stand-alone headset called Oculus 

Quest 2 that features a variety of sports training apps and virtual replicas that 

incorporate this movement into a virtual reality training program. With its precise 

motion tracking and high-resolution graphics, the high-tech computer corporation 

(HTC VIVE Pro) is a great choice for comprehensive sports training regimens. Custom 
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VR training simulations are made with the Unity game development engine. The 

stereolabs (ZED) stereo camera enhances depth perception and spatial awareness, 

facilitating movement analysis and skill development, as depicted in Figure 2. Figure 

2 illustrates a framework for sports action training within a VR system. The image 

depicts two individuals engaged in different sports activities: one playing tennis and 

the other practicing soccer, both wearing VR headsets. This representation emphasizes 

the immersive and interactive nature of VR technology in enhancing sports training 

experiences by simulating real-game scenarios. 

 

Figure 2. Framework of spots action training for VR system. 

3.2. Dataset 

The data was collected from Kaggle [24]. A collection of 1160 films that are 

divided into 11 different action classes is called the YouTube Action Dataset (UCF11). 

The dataset is purposefully designed to be difficult due to the wide range of variations 

in camera motions, object pose and appearance, object scale, perspective, cluttered 

backdrops, and lighting conditions included in the video clips. 

3.3. Data preprocessing using a wiener filter (WF) 

The input image 𝐽(𝑚, 𝑛) is placed through a WF process, which creates the 

estimate as the result by filtering a known image that is comparable to the input. The 

goal of this procedure is to construct a statistical estimate of an unknown image. The 

Gaussian-type additive noise and the blurring are promptly reversed in the WF. To 

obtain the optimal mean square error (MSE) outcomes, the WF lowers the total mean 

square error (MSE) during the inverse filtering and noise smoothing procedures. 

Following Equation (1) preprocessing, every obtained image moves on to the next 

phase, which involves feature extraction. It is described theoretically as 𝐽(𝑚, 𝑛) that 

transforms into 𝐵(𝑣, 𝑢) using the Discrete Fourier Transform (DFT). Calculating the 

product of 𝐵(𝑣, 𝑢)and 𝐻(𝑣, 𝑢) yields an approximated original spectrum. Equation (1) 

contains the WF is 𝐻(𝑣, 𝑢), where 𝐺(𝑣, 𝑢) denotes the point spread function’s Fourier 

transform (FT),𝑜𝑡(𝑣, 𝑢)is the signal process’s power spectrum, and𝑂𝑚(𝑣, 𝑢)is the 

noise process’s spectrum. 

𝐻(𝑣, 𝑢) =
𝐺 × (𝑣, 𝑢)𝑜𝑡(𝑣, 𝑢)

|𝐺(𝑣, 𝑢)|2𝑜𝑡(𝑣, 𝑢) + 𝑂𝑚(𝑣, 𝑢)
 (1) 
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3.4. Feature extraction using gabor filter (GF) 

The features of GFs, sometimes called Gabor wavelets, are comparable to those 

of the human visual system, especially in terms of representations of frequency and 

direction. These are appropriate for discriminating and representing textures. GFs use 

statistical data on character structures to directly extract features from grayscale 

images. However, an adaptive sigmoid function is used for the GF outputs to enhance 

performance on low-quality images. A 2D GF has a spatial response and frequency 

determined by Equations (2)–(3). It is a complex modulated sinusoidal function of a 

Gaussian kernel. 

𝑔(𝑤, 𝑧; 𝜆, 𝜙, 𝜎, 𝜎) =
1

2𝜋𝜎𝑤𝜎𝑧
exp {−

1

2
[
𝑄1
2

𝜎𝑤
2
+
𝑄1
2

𝜎𝑧
2
]} × exp [𝑗.

2𝜋𝑄1
𝜆

] (2) 

where, 

𝑄1 = 𝑤 𝑐𝑜𝑠𝜙 + 𝑧 𝑠𝑖𝑛𝜙 

𝑄2 = −𝑤 𝑠𝑖𝑛𝜙 + 𝑧 𝑐𝑜𝑠𝜙 

𝐺(𝑣, 𝑣; 𝜆, 𝜙, 𝜎𝑤 , 𝜎𝑧) = 𝑒𝑥𝑝 {−2𝜋
2 (𝜎𝑤

2 (𝐸1 −
1

𝜆
)
2

+ 𝜎𝑧
2(𝐸2)

2)} × 𝐷 (3) 

where, 

𝐸1 = 𝑣 𝑐𝑜𝑠𝜙 + 𝑢 𝑠𝑖𝑛𝜙 

𝐸2 = −𝑤 𝑠𝑖𝑛𝜙 + 𝑧 𝑐𝑜𝑠𝜙
′, 𝐷 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

where, A and B represent the GF’s spatial localization, which is calculated using 

spatial width as shown in Equation (4). 

(∆𝑤)2 =
∫ 𝑔𝑔×(𝑄1)

2𝑐(𝑄1)
+∞

−∞

∫ 𝑔𝑔×𝑐
+∞

−∞
(𝑄1)

 (4) 

3.5. Classification using mountain gazelle optimizer fine-tuned adjustable 

convolution neural network (MGO-ACNN) 

To adjust the search strategy provided, MGO-ACNN utilizes sophisticated 

techniques for performance improvement. The acronym MGO describes the adaptive 

feeding behavior of gazelles or the optimization of the hyperparameter of ACNN to 

gain better accuracy in the classification of entities. Optimizing simple parameters 

such as the learning rate and filter sizes significantly enhances the ability of ACNN to 

detect complex patterns in data. The changeable part of ACNN dynamically adjusts 

its structure according to the optimization result to extract features and classify them 

accurately. Therefore, MGO and ACNN put together a very robust and efficient 

classification algorithm that can be used to classify complex datasets with accuracy 

and efficiency. 

3.5.1. Adjustable convolution neural network (ACNN) 

Sport function training using ACNN is to increase the accuracy and adaptability 

of movement assessment by adjusting the amount of variables in intensity to capture 
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the objective of improving performance outcomes through information on the delivery 

of authentic and personalized delivery to enhance the quality of training programs. 

The ACNN model’s convolution layer, which is the first layer, pulls characteristics 

like edges and textures from the input image of sports action. This layer moves the 

extracted output to the next layer inside the model after applying a convolution 

operation on the input sports action image. To get an output in the form of a feature 

map, the convolutional layer receives a three-dimensional input in terms of height, 

width, and channel count. Additionally, the rectifier linear unit (ReLU) is included in 

the activation function (AF) of the convolutional layer. As a result, the ACNN model 

gains non-linearity and the convolution layer can keep only positive input. Feature 

maps are the input of a pooling layer, a down-sampling layer that is often applied after 

the convolution layer. Applying pooling layers is mostly done to reduce the feature 

maps’ spatial resolution. By gradually shrinking the spatial size of the feature maps, 

max pooling was used to lower the network’s computation and parameter count, as 

shown in Figure 3. 

 

Figure 3. Architecture of ACNN. 

To extract features, several flattened layers and convolutional pooling layers are 

used in conjunction. The rationale and feature representations are deduced by the thick 

layer that follows these layers. An activation function called Softmax is utilized in 

ACNN’s output layer. ACNN’s output layer uses Softmax because it offers the 

probability distribution across the classes needed to classify the input image, while the 

fully connected layer is free to employ any kind of activation function. The Softmax 

function outputs a vector with a list of possible outcomes that match the probability 

distribution. The input vector is denoted by 𝑧𝑗 in Equation (5), 𝑇 is softmax, and 𝑓𝑧𝑗 

is a conventional exponential function of an input function. 

𝑇(𝑧𝑗) =
𝑓𝑧𝑗

∑ 𝑓𝑧𝑗𝑖
 (5) 

For every image, there are exactly as many neurons in an output layer as there 

are classes that need to be identified for sports action. With the image belonging to the 
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class with a high likelihood, each neuron in the output layer displays the probability 

distribution of the image for each class. 

3.5.2. Mountain gazelle optimizer (MGO) 

MGO exists to enhance athletic performance by optimizing training techniques 

and strategies through advanced algorithmic models. MGO optimizes training 

simulations to improve overall performance, speed, and efficiency. The MGO is a 

recently developed meta-heuristic algorithm that predicts how mountain deer behave 

in groups and their natural environments. Four main facets of mountain gazelle life 

serve as the foundation for the optimization operations of the MGO algorithm, such as 

maternity herds (MH), migration-quest of food (MSF), bachelor male herds (BMH), 

and territorial solitary males (TSM). Figure 4 gives an illustration of the techniques 

used by MGO to carry out optimization operations, and the following sections provide 

a mathematical description of those strategies. 

 

Figure 4. Framework of MGO algorithm. 

TSM 

When male gazelles mature and become capable of self-defense through physical 

means, individuals keep separate, highly secure territories that are easily identifiable 

by distance. To gain possession of the female’s territory, adult male gazelles engage 

in combat with one another. The goal of mature males is to defend their environment, 

whereas teenage males want to take control of the female area. The domain of an adult 

man is depicted in Equations (6)–(10). 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − |𝛽1 × 𝐴𝐺 − 𝛽2 ×𝑊(𝑠) × 𝐸| × 𝐶𝑜𝑓𝑞 (6) 

𝐴𝐺 = 𝑊𝑞𝑏 × [𝑞1] + 𝑁𝑜𝑞 × [𝑞2], 𝑞𝑏 = {[
𝑀

3
]…𝑀} (7) 

𝐸 = 𝑀1(𝐶) × 𝑒𝑥𝑝(2 − 𝑗𝑠 × (
2

𝑀𝑎𝑥𝑖𝑡
)) (8) 



Molecular & Cellular Biomechanics 2024, 21(4), 394. 
 

10 

𝐶𝑜𝑓𝑞 =

{
 

 
(𝑏 + 1) + 𝑞3
𝑏 ×𝑀2(𝐶)
𝑞4(𝐶)

𝑀3(𝐶) × 𝑀4(𝐶)
2 × 𝑐𝑜𝑠(2𝑞)4𝑀3(𝐶)

 (9) 

𝑏 = 1 + 𝑗𝑠 ×
−1

𝑀𝑎𝑥𝑖𝑡
 (10) 

where 𝑚𝑎𝑙𝑒 𝑔𝑎𝑧𝑒𝑙𝑙𝑒 stands for the best adult male position vector. 𝑊(𝑠) is the gazelle 

‘s starting position. The random integers 𝛽1 and 𝛽2 have values of either 1 or 2. The 

young male herd’s coefficient vector is designated as 𝐴𝐺 . To increase the search 

region’s efficacy, 𝐶𝑜𝑓𝑞 is an additional randomly produced coefficient vector that is 

modified after each iteration. 𝑊𝑞𝑏 is a young boy within the range of 𝑁𝑜𝑞, and 𝑞𝑏 is 

the standard number of populations [
𝑀

3
] that were chosen at arbitrary. 𝑀 represents the 

whole population of gazelles, whereas the designations 𝑞1, 𝑞2, 𝑞3, and 𝑞4 are arbitrary 

numbers between 0 and 1. 𝑀1 denotes the random number selected from the normal 

distribution. 𝑀2 , 𝑀3 , and 𝑀4  describe the issue’s dimensions and the arbitrary 

integers in the normal range. The exponential function is represented by 𝑒𝑥𝑝, whereas 

the cosine function is represented by 𝑐𝑜𝑠. Lastly, 𝑀𝑎𝑥𝑖𝑡 and 𝑗𝑠 represent the current 

generation and the maximum number of generations, respectively. 

MH 

The production of healthy male offspring is an essential aspect of the life cycle 

of maternity-herd-dependent mountain gazelle species. Male gazelles have been 

known to assist in gazelle birthing besides aiding young males who are attempting to 

lust for women. This behavior is described by Equation (11). 

𝑁𝐺 = (𝐴𝐺 + 𝐶𝑜𝑓1,𝑞) + (𝛽3 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝛽4 × 𝑤𝑟𝑎𝑛𝑑) × 𝐶𝑜𝑓2,𝑞 (11) 

where arbitrary integers 1 or 2 are indicated by 𝛽3 and 𝛽4. The entire population is 

chosen at random to include one gazelle, and 𝑤𝑟𝑎𝑛𝑑 represents its vector location. The 

randomly selected coefficient vectors are 𝐶𝑜𝑓1,𝑞, and 𝐶𝑜𝑓2,𝑞. 

BMH 

To grow older, male gazelles typically establish territories and demonstrate their 

dominance over females. Currently, older males and young male gazelles are battling 

for control over females, perhaps leading to violent altercations. Equations (12) and 

(13) provide a mathematical expression for this phenomenon. 

𝐵𝑀𝐻 = (𝑊(𝑠) − 𝐶) + (𝛽5 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝛽6 × 𝐴𝐺)𝐶𝑜𝑓𝑞 (12) 

𝐶 = (|𝑊(𝑠)| + |𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒|) × (2 × 𝑞6 − 1) (13) 

The symbol 𝑊(𝑠) represents the current iteration’s gazelle’s vector position. The 

random numbers, 𝛽5 and 𝛽6, are selected between 1 and 2. The random number, which 

goes from 0 to 1, is 𝑞6. 
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MSF 

When seeking food, mountains, and gazelles cover a lot of ground and never stop 

searching for fresh supplies. Conversely, mountain gazelles possess a strong bounce 

force and a swift gait. When looking for food and migrating, mountain gazelles often 

travel great distances. The following Equation (14) provides a mathematical 

expression for this phenomenon. 

𝑀𝑆𝐹 = 𝐿 + (𝑈 − 𝐿) × 𝑟7 (14) 

where an arbitrary integer between 0 and 1 is implied by 𝑟7. The upper and lower 

boundaries are shown by 𝑈 and 𝐿, respectively. Algorithm 1 depicts the classification 

model of MGO-ACNN. 

Algorithm 1 Mountain gazelle optimizer fine-tuned adjustable convolution neural network (MGO-ACNN) 

1: Input: Initialize parameters 

2: Step 1: Function evaluateACNN(gazelle_position): 

3: ACNNParameters(𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
4: TrainACNN()  

5:     accuracy = TestACNN() 

6: return accuracy 

7: Step 2: For iteration from 1 to Maxit: 

8: 𝑇𝑆𝑀_𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑆𝑀(𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
9: 𝑀𝐻_𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝐻(𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
10: 𝐵𝑀𝐻_𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑀𝐻(𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
11: 𝑀𝑆𝐹_𝑢𝑝𝑑𝑎𝑡𝑒 =  𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑆𝐹(𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
12: Step 3: Compute new position 

13: 𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑇𝑆𝑀_𝑢𝑝𝑑𝑎𝑡𝑒 +  𝑀𝐻_𝑢𝑝𝑑𝑎𝑡𝑒 +  𝐵𝑀𝐻_𝑢𝑝𝑑𝑎𝑡𝑒 +  𝑀𝑆𝐹_𝑢𝑝𝑑𝑎𝑡𝑒 

14: Step 4: Evaluate new ACNN configuration 

15: 𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐴𝐶𝑁𝑁(𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
16: Step 5: Update gazelle position if new accuracy is better 

17: if𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 >  𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦: 
18: 𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑛𝑒𝑤_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

19: 𝑔𝑎𝑧𝑒𝑙𝑙𝑒. 𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑔𝑎𝑧𝑒𝑙𝑙𝑒_𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

20: Step 6: Output the best configuration and performance 

21: 𝑏𝑒𝑠𝑡_𝑔𝑎𝑧𝑒𝑙𝑙𝑒 =  𝐹𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝐺𝑎𝑧𝑒𝑙𝑙𝑒() 
22: Print("Best ACNN Configuration: ", best_gazelle.position) 

23: Print(Best Accuracy:best_gazelle.best_accuracy) 

24: Step 7: Function UpdateTSM(position): 

25:     Implementation based on equations (1-5) 

26: return 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

27: Step 8: Function UpdateMH(position): 

28:     Implementation based on equation (6) 

29: return𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

30: Step 9: Function UpdateBMH(position): 

31:     Implementation based on equations (7-8) 

32: return𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

33: Step 10: Function UpdateMSF(position): 

34:     Implementation based on equation (9) 

35: return 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

36: end 

4. Result and discussion 

In this section, the initial phase provides setting up and configuring the techniques 

to ensure the components are properly integrated and functioning according to the 

specifications. It is crucial to establish a solid foundation for accurate and reliable 
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results. Next, the following system configuration is to conduct a thorough comparative 

analysis. This involves evaluating and contrasting the performance, effectiveness, and 

other relevant metrics of different systems of methodologies. 

4.1. System configuration 

The experimental environment is configured with a Windows 7 operating system, 

an Intel i7-7700 CPU, a GeForce GTX 960 GPU, 16 GB of RAM, and 512 GB of 

storage. The receiver devices used are HUAWEI WATCH 1 and HUAWEI Nexus 6P. 

Software used included Python libraries such as OpenCV, TensorFlow, and Keras to 

implement keypoint detection and pose estimation algorithms. These libraries offer 

graphics services and deep learning tools that are integrated into VR training programs. 

Ensure that the keypoint detection system is properly integrated with the VR 

environment to enable real-time tracking and analysis during training. 

4.2. Comparative analysis 

With the use of reconstructed key point attributes, compare the effectiveness of 

the proposed MGO-ACNN approach with the existing algorithms such as the Dynamic 

Bayesian mixture model (DBMM) [25], and CNN-Weighted Error-correcting output 

codes (CNN-WECOC) [26]. Assess metrics such as recall, accuracy, precision, F1-

score, and the effectiveness of joint angle optimization. 

Accuracy: It is a quantifiable measure of prediction correctness in sports action. 

The total number of correct predictions a model makes is determined using the 

evaluation metric known as accuracy. A model’s accuracy is a statistic that expresses 

how frequently it predicts an outcome accurately of sports action, as following 

Equation (15). 

Accuracy =
TP + TN

TP + FP + TN+ FN
 (15) 

True positives are represented by TP, false positives by FP, true negatives by TN, 

and false negatives by FN, and are stated in Equations (15)–(18). 

TP: In terms of forecasts made correctly, TP stands for positive predictions. 

FP: FP stands for the wrongly predicted class’s negative predictions. 

TN: TN is a representation of a successfully predicted class’s negative predictions. 

FN: The positive expectations of an improperly predicted class are represented 

by FN. 

Table 1 shows the accuracy of existing and proposed methods for motion 

recognition. The DBMM method achieved an accuracy of 96.47%, while the 

CNN+WECOC approach performed better, with 99.71% accuracy. The suggested 

model slightly outperforms MGO-ACNN, achieving the highest accuracy of 99.73%. 

This slight but significant improvement highlights the usefulness of the suggested 

method in contrast to alternative approaches and highlights its potential for increased 

task accuracy. Overall, the findings show that the suggested approach offers little 

improvement over the current model. Figure 5 gives the graphical representation of 

the accuracy result of the proposed model compared with the existing techniques. 
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Figure 5. Comparative analysis of accuracy. 

Table 1. Numerical outcomes of accuracy. 

Methods Accuracy (%) 

DBMM [25] 96.47 

CNN+WECOC [26] 99.71 

MGO-ACNN [Proposed] 99.73 

Precision: A classifier’s precision is measured by sports action by calculating the 

percentage of positively labeled tuples that are truly positive. Precision is utilized to 

ascertain the proportion of characteristics of a given class that were correctly and 

mistakenly assigned, while measurements with a wide variety of applications, such as 

recall and F1-score, are also used, as following Equation (16). 

Precision =
TP

TP + FP
 (16) 

Table 2 shows the precision rates of the existing and proposed methods. DBMM 

achieved a lower precision of 77.70%, indicating a relatively high false-positive rate, 

likely due to its challenges in handling complex sports actions. The CNN+WECOC 

method performed significantly better, achieving a precision of 99.72%, which shows 

its ability to correctly classify true positives with fewer false positives. The proposed 

MGO-ACNN model reached a precision of 99.75%, marking a marginal but critical 

improvement, highlighting its more refined classification process, thanks to the 

integration of the optimization technique. This comparison is also represented 

graphically in Figure 6. 

 

Figure 6. Comparison of precision. 
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Table 2. Outcomes of existing and proposed approach. 

Methods Precision (%) 

DBMM [25] 77.70 

CNN+WECOC [26] 99.72 

MGO-ACNN [Proposed] 99.75 

Recall: Conversely, recall quantifies completeness and shows the proportion of 

accurately labeled true positive pairs. For unbalanced datasets, accuracy by itself is 

not a suitable criterion for evaluation. It’s the ratio of accurately anticipated positives 

to the total number of positive observations, as following Equation (17). 

Recall =
TP

TP + FN
 (17) 

Table 3 and Figure 7 show the recall percentages of existing and proposed 

methods. The DBMM method achieved a recall of 84.12%, indicating s fair capability 

to detect true positives but missing a notable percentage. The CNN+WECOC method 

significantly improved recall to 99.71%, showcasing a high level of accuracy in 

capturing the true positives. The proposed method achieved a recall of 99.73%, 

slightly higher than CNN+WECOC, showing that it further improved the 

completeness of positive case identification, particularly in dynamic, real-time VR-

sports action analysis. 

 

Figure 7. Comparison of recall. 

Table 3. Numerical outcomes of existing and proposed approach. 

Methods Recall (%) 

DBMM [25] 84.12 

CNN+WECOC [26] 99.71 

MGO-ACNN [Proposed] 99.73 

F1-score: It is the harmonic average of recall and accuracy, that is useful in these 

circumstances. To consider the model’s recall and precision, it applies statistical 

analysis to get a score between 1 and 0. 

F1 score = 2 ×
precision. recall

precision + recall
 (18) 
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Table 4 and Figure 8 demonstrate the F1 scores which is crucial for 

understanding the model’s overall effectiveness in classification. DBMM scored 80.54% 

showing moderate performance due to its lower precision and recall. The 

CNN+WECOC method showed a significantly higher F1-score of 99.70%, reflecting 

its superior ability to accurately classify data. The proposed method slightly 

outperformed, achieving an F1-score of 99.72%, emphasizing its superior balance of 

accuracy, precision, and recall. This improvement, while slight, is significant in high-

performance applications like VR-sports training. 

 

Figure 8. Comparative analysis of F1-score. 

Table 4. Numerical outcomes of existing and proposed model. 

Methods F1-score (%) 

DBMM [25] 80.54 

CNN+WECOC [26] 99.70 

MGO-ACNN [Proposed] 99.72 

4.3. Study discussion 

In this study, the performance of the proposed MGO-ACNN method is evaluated 

against established algorithms, DBMM and CNN-WECOC. The results detailed in 

Tables 2–4 and Figures 4–7 demonstrate the MGO-ACNN consistently outperforms 

the other methods across various metrics. A scientific approach called biomechanical 

analysis examines how people move in sports to enhance performance and lower 

injury risk. To comprehend how the body reacts to outside influences entails 

examining the motion, forces, and equipment interactions of the body. When 

attempting to differentiate between several classes in images, when differences and 

similarities among them might make it difficult, WECOC has been utilized extensively. 

The problems of employing CNNs include object identification, picture categorization, 

object location, and image annotation. The primary drawbacks of CNNs are that they 

take a lot of training information and computer resources to train, and are typically 

difficult to align. The existing methods exhibit several limitations in the context of 

sports action training in VR. CNN-WECOC suffers from issues related to overfitting 

lower generalization when handling complex motion data, as it struggles to accurately 

capture the fine variations in joint angles during dynamic sports activities. 
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Additionally, CNN-WECOC’s classification performance is limited in high-variable 

training scenarios due to its static nature in adapting to diverse movement patterns. 

DBMM, while effective in probabilistic motion prediction tends to be computationally 

intensive and lacks real-time adaptability, making it less suitable for real-time VR 

training environments. In assessment, the proposed approach addresses those 

shortcomings by incorporating a more adaptive optimization mechanism that 

complements joint perspective evaluation. The MGO allows for exceptional tuning of 

the network, improving its capability to deal with complicated spatial versions and 

dynamic motion. Furthermore, the combination of Gabor filtering for spatial 

frequency analysis complements characteristic extraction resulting in superior 

performance. The outcomes show that the MGO-ACNN approach affords small 

improvement however is significant to the prevailing version. It offers excessive 

accuracy and an F1 score. Sports biomechanics is the complete study of sports 

activities moves to reduce the hazard of damage and improve athletic overall 

performance. Human kinematics is a scientific area involved with the biomechanics 

of sports and exercise. It improves typical health, reduces the risk of injury, and 

improves sports activities’ overall performance. Biomechanical analysis may 

additionally help athletes of all ages and talents, either for rehabilitation or to improve 

overall performance. These upgrades reveal the potential of the MGO-ACNN method 

to provide higher type performance and reliability in applications that require high 

accuracy and performance. 

5. Conclusion 

The study highlights the significant role of incorporating VR into biomechanical 

analysis for enhancing sports training by providing an immersive real-world-like 

environment. The proposed MGO-ACNN algorithm offers a groundbreaking 

approach to analyzing joint angles used in sports action training. By integrating VR 

simulation, the research provided a controlled, interventional environment that 

improves the accuracy of joint anterior examination compared to traditional methods. 

Moreover, by combining VR with advanced imaging techniques such as the WF and 

GF, the suggested method enables precise extraction and analysis of motion data. The 

study’s findings showcasing superior performance in terms of recall (99.73%), 

accuracy (99.73%), precision (99.75%), and F1-score (99.72%) underscore the 

significance of this research. The results demonstrate the potential of VR-based 

systems to create highly personalized, detailed training experiences that closely mimic 

real-world conditions, offering valuable insights into optimizing sports performance 

and refining training methods. 

Limitation and future scope 

VR simulations lack the sensory statistics important to educate high-quality 

motor abilities that can lessen the general realism of the training experience. The 

findings are primarily based on sports activity and won’t be without delay relevant to 

other industries without similarly validation. Future studies specialize in incorporating 

new sensory factors into VR simulations to enhance the realism and effectiveness of 
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satisfactory motor talents training. Explore advances in VR and motion-tracking 

technology to make biomechanical evaluation extra accurate and dependable. 
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