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Abstract: A suitable approach to identifying doping behavior among athletes is to use 

advanced techniques. Bioinformatics can analyze large biological databases. It has potential 

approaches for mapping out decision models. Doping substances can severely distort an 

athlete's biomechanical performance. For example, stimulants may enhance short-term power 

output but disrupt the natural rhythm and coordination of muscle contractions, leading to 

imbalanced forces and increased risk of musculoskeletal injuries. This abnormal biomechanical 

loading can affect joint stability and movement efficiency. n training, doping gives a false 

impression of enhanced capacity. Athletes might overtrain, ignoring proper recovery periods. 

Their bodies, under the influence of doping, can't follow the normal adaptive process of training, 

leading to a breakdown in the physiological systems. Recovery is also hampered. Doping can 

disrupt the body's hormonal and metabolic balance, slowing down tissue repair and 

regeneration. Genetic predispositions, which might make an athlete more receptive to doping's 

effects, along with lower recovery rates and high competitive stress levels, are identified as key 

doping risk factors. Bioinformatics collects multi-source data like genomic profiles, hormone 

levels, and metabolic markers. Advanced tools analyze these to expose patterns and 

correlations related to doping risks. Machine learning trains a prediction model using historical 

doping data and biological signatures. Validated via simulations and real-world tests, it predicts 

doping risks. Sports authorities can use the resulting risk matrix to detect potential dopers early, 

promoting clean sports. 
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1. Introduction 

Cheating through doping in sports has emerged as a significant concern that poses 

a challenge to professional sporting events. Doping is best described as the application 

of banned substances or techniques to increase the athlete’s Performance; this defies 

the spirit of the sporting activity or competition since athletes are forced to find ways 

of gaining an unreasonable edge [1]. Some dopants in the past included anabolic 

steroids, blood transfusions, and recently discovered substances aimed at improving 

Performance, increasing muscle mass, or enhancing vitality. This practice alone denies 

a level playing field to athletes, and it also poses a danger to the health and well-being 

of athletes since the majority of the substances in use to enhance athletes’ performance 

are known to have long-term side effects. The adverse effects of doping cannot be 

limited to athletes and teams involved but also sports organizations, sponsors, and 

audiences. In scandals involving high-profile individuals in sports and when 

prominent teams and players are expelled from prestigious events, such as the 

Olympics and Tour de France, public confidence is undermined. Thus, sports 
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governing bodies, from the International Olympic Committee (IOC) to the World 

Anti-Doping Agency (WADA), have stepped up to fight and unveil doping. They have 

also adopted strict tests on athletes and policies to discourage using banned substances. 

However, doping continued to persist in various forms as a vice inherent in both 

professional and amateur athletes. The ever-shifting nature of performance-enhancing 

substances and techniques poses the problem of new doping surfacing constantly and 

far exceeding the scope and capability of existing detection methods [1]. Despite 

advancements in fighting doping, there is still a lot to be done regarding the 

implementation of the set and tested measures to avoid cheating by athletes. Traditional 

methods strictly base their samples on biochemical tests commonly employed for urine 

and blood samples to detect the presence of banned substances. These tests are usually 

taken after competitions or during the out-of-competition, random test. While they have 

caused many sanctions, all these approaches are more of a reactive measure. It might 

reach a moment when an athlete has been cheating, and other athletes have already used 

the banned substance, which is impossible to reverse [1]. 

Additionally, conventional deception schemes have loopholes that hackers can 

exploit to bypass the detection techniques. There is a trend among athletes and their 

entourages to use intelligent masking of performance enhancing drugs (PEDs) that 

includes blending it with naturally occurring compounds in the human body, using 

minimal doses of the PED, or using drugs that are, as of now, undetectable by the 

existing detection methods. Among the significant issues with doping is the fact that 

technology is constantly changing, making it a challenge for anti-doping bodies to 

keep changing the ways used to detect the activities [1,2]. Some substances have 

relatively short detection windows while deciphering individual metabolic impacts of 

PEDs is another challenge to timely identification. Furthermore, traditional testing 

concentrates on more reactive approaches like post-factum detection rather than actual 

risk assessment or prediction. Identifying an athlete who has used a PED after the 

completion of a sporting event hinders efforts to prevent the use of doping in the first 

place. It has, therefore, underlined the importance of developing better solutions that 

identify athletes involved in doping and evaluate probabilities of the same based on 

their biological and behavioral dispositions. Preventive measures help the concerned 

sports bodies take necessary preventive actions, thus minimizing the chances of 

doping and upholding the integrity of competitive sporting events. 

Bioinformatics, in the past few years, has become a promising approach that can 

overcome many of the pitfalls linked to conventional techniques for doping 

identification [2]. Definition is acquiring, storing, organizing, and analyzing large 

amounts of biological information. Sometimes, using different algorithms. 

Bioinformatics aims to discover the obscured relationships and patterns of 

biochemical processes like gene regulation, protein structure and function, and 

metabolic networks. One can then make logical predictions of multi-faceted biological 

processes based on the information obtained from the algorithms above. The potential 

of bioinformatics in doping detection is its applicability of genetic, physiological, and 

even behavioral data to determine an athlete’s risk of using banned substances. This is 

not limited to identifying substances in an athlete’s body but aims to identify 

biochemically inherent in athletes that may make them use banned substances. Such 

factors may include genetic predispositions, hormonal changes, and other biochemical 
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markers indicating the person’s vulnerability to the demands and stress of high-

performance sports [2]. Bioinformatics techniques can be used to determine doping 

risk based on analyzing large-scale biological databases, providing a more credible 

and proactive approach. For instance, the genomic sequencing test may indicate 

specific genetic traits associated with a quick, effective recovery, higher endurance, or 

improved muscle mass in athletes, which can easily make the athlete opt for PEDs. 

Likewise, hormone analysis can yield information about how athletes’ bodies respond 

to stress, injury, and fatigue-factors that force individuals to turn to doping as a means 

of treatment or to enhance performance [2]. Behavioral data can help bioinformatics 

consider psychological variables, such as competitive stress, peer pressure, and 

personal motivations that may encourage doping. The primary objective of this study 

is to develop a comprehensive risk assessment and prediction model for athlete doping 

use by leveraging bioinformatics techniques. The model aims to analyze and integrate 

multi-source biological data, including genetic profiles, physiological markers, and 

behavioral indicators, to predict doping tendencies in athletes [3]. 

2. Related works 

2.1. Doping detection techniques 

Doping has become widespread and more advanced with the use of performance-

enhancing substances [4]. Historically, anti-doping activities mainly involved sample 

analysis that included blood, urine, and drug testing to detect banned substances in 

athletes. These tests can be done in competition or out-of-competition, and the samples 

are searched for substances that can improve the athletes’ Performance. Despite the 

effectiveness of these methods in nabbing dopers, the approaches come with severe 

shortcomings. Blood tests are a leading method of discovering doping substances. 

They are mainly to flag off irregularities in an athlete’s blood sample, for instance, 

extremely high levels of red blood cell volume that may be a result of blood doping 

techniques like erythropoietin (EPO) and blood transfusion [4]. Likewise, urine tests’ 

emphasize the presence of metabolites of PEDs, which directly link the drug use to the 

system of the athlete involved. 

Among the substances detected in urine include anabolic steroids, stimulants, and 

masking agents to hide other substances. According to Lee et al. [5], tests are applied 

frequently because they allow for the identification of a connection between prohibited 

substances and an individual’s biological sample. However, traditional doping 

detection methods are post-detection rather than pre-detection since the athlete has to 

use the substance before its detection can be possible. In addition, doping substances 

can be easily concealed or administered in such a way that it does not trigger easily 

the detection of the prohibited substances. Others use what is termed microdosing, in 

which an athlete uses small quantities of banned substances that cannot be detected in 

confirmatory tests. Some take new molecular substances that are essentially different 

from known compounds and cannot be detected in standard drug screening tests [5]. 

Another significant issue is that most substances have limited detection windows. 

Substances such as anabolic steroids, which are common PEDs, have detection 

limitations in the amount of time they can be identified after being used, thus affording 

testers a small window to utilize them. Besides that, the substance may undergo 
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metamorphosis in the body and be eliminated from the system, making conventional 

tests irrelevant. Despite the efforts in detecting doping, such as using biomass, an 

approach that involves monitoring the athlete’s data and identifying changes that may 

indicate that they have been doping, doping techniques progress faster than the 

detection techniques. However, all these traditional doping detection methods rely on 

conventional analysis techniques that aim to detect specific banned substances in an 

athlete’s system after being ingested. There are still generalized methods that may 

determine an individual’s likelihood of doping and, thereby, the existence of athlete 

biological profiles, which anti-doping organizations are constantly trying to thwart due 

to the constant emergence of new creation doping techniques. Therefore, the 

requirement for a more comprehensive, evidence-based strategy to consider doping 

inclinations before the athlete turns to banned substances is growing more critical [5,6]. 

Thus, applying bioinformatics and machine learning can significantly improve anti-

doping technologies. 

2.2. Bioinformatics in science 

Ao et al. [6] say bioinformatics has emerged as a multidisciplinary field of study 

that applies computational methods of analyzing biological data; this field is helpful 

in various health sciences, such as genomics, pharmacogenomics, and disease 

prediction. Further, in cooperation with sports science, bioinformatics has gained more 

attention recently, focusing on performance enhancement, reducing injuries, and 

assessing athletes’ conditions. In sports science, bioinformatics has been used mainly 

to assess and enhance athletes’ training and recovery profiles. This is based on such 

factors as physiological and genetic makeup. For example, genomic profiling can 

determine genomic signatures of increased muscle regeneration, endurance, or injury 

proneness. Wahi et al. [7] have shown that some athletes are endowed with faster 

recovery capabilities physiologically. They can endure more stress in terms of physical 

demands. These have implications for optimizing training loads and designing 

recovery schedules. It is based on the athlete’s genetic disposition. 

Also, advancements have involved using bioinformatics tools to monitor athletes’ 

metabolic and hormonal indices. It allows for understanding how well an athlete 

responds to training or competition through monitoring the fluctuations. This is in the 

respective hormone levels, such as testosterone or cortisol, by coaches and medical 

staff involved in an athlete’s training. Such data-driven approaches can assist in 

identifying signs of fatigue, overtraining, or an impending injury before severe damage 

[8]. Bioinformatics emerged as applicable in detecting doping-related physiological 

abnormalities in the late nineties. For instance, when bioinformatics tools analyze 

metabolic profiling, one can deduce the use of PEDs since certain variations of 

metabolic pathways arise when specific drugs are consumed. Gene expression 

profiling techniques have been applied in athletes who have consumed PEDs to 

establish molecular biomarkers. 

2.3. Machine learning in predictive models 

Machine learning is a branch of AI. It has been widely used for studying high-

throughput biological data. AI excels at finding patterns and relationships in large data 
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arrays; it can be valuable for predictive analysis in health sciences. It has been explored 

widely in diagnosing diseases, predicting prognosis, and generating treatment plans. 

As demonstrated in these fields, machine learning is also promising for creating 

predictive models in sports, including doping risk prediction. Some machine learning 

techniques used include supervised learning techniques [8]. These analyze biological 

datasets to determine athletes’ potential health risks or Performance. For Machine 

Learning (ML) models have been applied to heart rate variability, metabolic data, and 

recovery rates to identify potential injuries and training volume among athletes. This 

way, machine learning models can ingest historical data, analyze specific activities, 

such as injury or performance spikes, and perform even better in future scenarios. This 

predictive capability benefits sports science by using data to determine training 

intensity, recovery time, and performance levels. In doping detection, machine 

learning has been used to detect unusual biological signals that may point to the use 

of prohibited substances. Machine-learning models can detect patterns deviating from 

regular biological markers like blood or metabolic profiles by training on large 

datasets representative of doping and non-doping athletes. 

Upon such training, the models utilized will effectively identify athletes with 

similar anomalous characteristics as is evident in dopers, hence flagging the athletes 

as potential dopers. The ML algorithms used for this type of analysis are decision trees, 

random forests, and support vector machines (SVM) [8,9]. Such models can accept 

one or more input attributes, including genetic variables, metabolic signatures, and 

hormonal value, for analysis to discover characteristics comparable to those banned in 

doping cases. Whenever more data is provided to the algorithm, it becomes better at 

predicting the doping patterns that athletes usually display. Furthermore, applying 

clustering algorithms attributed to unsupervised machine learning can help categorize 

athletes by their biological characteristics, which, in turn, may improve the accuracy 

of calculated risks. 

Regarding risk prediction, machine learning has generally been consistently 

employed in other areas, such as genomics in personalized medicine. For instance, 

machine learning models have been applied to assess a person’s likelihood of 

contracting specific diseases based on their genes. These machine-learning 

applications illustrate how this approach can bring insights from large and multi-

factorial biological datasets. In the same way, similar models could be used to analyze 

the genetic makeup, hormone levels, and behavior data to determine the likelihood of 

an athlete being involved in the use of doping substances [9]. 

Traditional doping detection methods focus almost exclusively on the post-

factum identification of banned substances, leaving a critical gap in proactive 

detection approaches. Research on bioinformatics applications in sports science still 

needs to be expanded to performance optimization and injury prevention [10], with 

little emphasis on its potential for doping risk assessment. One critical gap lies in the 

integration of multi-source biological data. Individual studies have focused on specific 

factors like genetic markers or hormone levels. Only some have attempted to combine 

these diverse data streams into a comprehensive predictive model. Genetic 

predispositions, metabolic responses, and psychological pressures influence doping 

risk. Robust doping prediction models must be able to integrate these variables to 

provide a holistic assessment of an athlete’s risk. Another area for improvement is the 
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underutilization of machine learning techniques in predictive doping models. ML has 

been used in other areas of sports science, such as injury prevention, and its application 

to doping risk prediction is still in its infancy. Current research is limited in scope and 

needs to fully leverage the predictive power of machine learning algorithms to assess 

doping tendencies based on comprehensive biological and behavioral data [10]. 

3. Data collection and processing 

The data sourcing for this study is rooted in multiple-source biological data, 

including athletes’ genetic information, hormone levels, metabolic profiles, and other 

data such as past doping cases and associated biological traits. The data was dictated 

to resemble normal hormonal levels and biomarkers that humans experience. The 

simulation was conducted based on the standard cut-off and variation values of 

essential biomarkers linked to doping, such as T/E ratio, Hemoglobin, Cortisol, and 

di(2-ethylhexyl) phthalate (DEHP) metabolites, among others. It was estimated that 

the testosterone levels for naturally performing athletes were to be in the range of 300–

1000 ng/dL. Genomic data are collected using genetic sequencing technologies that 

allow one to identify specific genetic factors that may be vulnerable to doping 

tendencies in athletes. The hormonal tests are cortisol and testosterone tests that are 

carried out to assess physiological stress and recovery. With these tests, doping 

scenarios are likely to happen. Other metabolic parameters, such as changes in energy 

metabolism or recovery periods, are also determined during training and competition 

to assess the total load of metabolism solicited by exercise and competition stress in 

an athlete [11]. These include the ones that comprised previous doping cases, which 

should be used in formulating prediction; these are biological markers associated with 

doping detected in the sample, such as increased levels of specific hormones or any 

other aspect that depicts altered metabolic prognosis. Concerning the ethical aspect of 

the study, collecting biological and genetic samples from athletes involves several 

specific considerations related to confidentiality and privacy. This will be completed 

with the athletes’ informed consent, which is another crucial component that ensures 

that the athletes understand how their data will be processed. It complies with 

international best practices for handling genetic results through secure environments 

and genetic masking of athletes to prevent their data from being exploited. 

Moreover, there are clear policies on data sharing, stating that it can only be 

shared with legitimate researchers. Data preprocessing comprises several crucial 

stages in cleaning, transforming, and formatting the large and complex dataset for 

analysis. This form of cleaning involves removing all the invalid cases, such as those 

with incomplete, duplicate, or irrelevant data, to avoid bias in the findings. For this 

reason, both the constant and the variable are normalized in a sufficiently acceptable 

manner for the scaling process, especially in situations where biometric outcomes vary 

greatly between one subject and another. In large and complex datasets like this one, 

other preprocessing steps, like feature extraction, are performed on the data before 

being fed to the various machine learning algorithms [12]. This step facilitates data 

quality optimization and helps avoid additional challenges, such as over-training while 

training the model. Overall, the stages of data acquisition and data preparation form 

the basis of the study for creating a plausible and satisfactory doping risk assessment 
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model that can be deemed ethical and effective in identifying the probability of doping 

using multiple biological data sources. 

4. Model construction 

The first stage of building the doping risk prediction model (Shown in Figure 1) 

requires the determining factors associated with the increased risk of doping. DNA 

sequences, hormonal levels, rate of recovery, and stress elements can be mined using 

bioinformatics. Heritable tendencies are determined by analyzing the Single 

Nucleotide Polymorphisms (SNPs) or the specific gene that makes one more 

susceptible to doping. Gene expression profiles include genes related to muscle 

performance and stress tolerance, like ACTN3 and COMT. Hormonal analysis targets 

other stress hormones, including cortisol, since high cortisol levels usually indicate a 

high risk of doping, especially among athletes under pressure to perform [13]. The rate 

of recovery may further act as a performance predictor as well as potential risk factors, 

given that delayed recovery, as measured by metabolic markers such as lactate and 

creatine kinase, may push athletes into using banned substances for performance 

enhancement purposes. Other stressors, such as psychological stress detected by 

biomarkers or questionnaires, extend the mentioned variables. Such biological and 

psychological factors are measured and incorporated into the model to consider how 

these elements play into doping inclinations. Figure 1 illustrates the conceptual 

framework of the doping prediction model that integrates genetic, physiological, and 

behavioral factors to assess the likelihood of doping use. 

 

Figure 1. Doping risk prediction model based on bioinformatics. 



Molecular & Cellular Biomechanics 2024, 21(4), 446. 
 

8 

Bioinformatics offers sophisticated procedures for working with and analyzing 

extensive biological information, especially genetic and physiological information. 

One of the approaches commonly employed is sequence alignment, where the DNA 

sequence of an athlete is compared with reference sequences to identify the genetic 

markers that are likely to create a propensity toward doping [14]. This can be done 

with the help of tools like Basic Local Alignment Search Tool (BLAST) or Bowtie. 

Sequence alignment is beneficial in identifying specific alleles or SNPs that are 

dominant among athletes with doping backgrounds. For gene expression analysis, 

which is useful in knowing how genes associated with muscle growth or recovery 

behave under stress, apps such as DESeq2 or EdgeR are used. These tools align the 

sequence data of athletes and study the differential gene expressional variations that 

signify the likelihood of using the substance for performance enhancement. The risk 

factors are mathematically represented as features for model input. Let 𝑋𝑖 represent 

each risk factor, such as genetic markers, hormone levels, and metabolic indicators, 

where 𝑖 = 1,2,3 … 𝑛 . The dataset 𝐷 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛}  is created, 

where 𝑦1 represents the binary label indicating doping history (0 for non-doping, 1 for 

doping). The bioinformatics techniques are then applied to refine the dataset and 

extract meaningful correlations [14]. 

Bioinformatics provides sophisticated procedures for working with and analyzing 

extensive biological information. One approach commonly employed is sequence 

alignment, where the DNA sequence of an athlete is compared with reference 

sequences to identify the genetic markers. Markers that are likely to create a propensity 

toward doping. It can be done with the help of tools like Basic Local Alignment Search 

Tool (BLAST) or Bowtie. Sequence alignment is beneficial in identifying specific 

alleles or SNPs that are dominant among athletes with doping backgrounds. For gene 

expression analysis, which helps know how genes associated with muscle growth or 

recovery behave under stress, apps such as DESeq2 or EdgeR are used [15]. These 

tools align the sequence data of athletes and study the differential gene expressional 

variations that signify the likelihood of using the substance for performance 

enhancement. The data output is typically in the form of expression fold changes, 

denoted as 𝐶 =
𝑅1

𝑅2
 as Equation (1). 

Random Forest is an ensemble learning method that builds multiple decision trees 

during training and outputs the class (doping or non-doping) that is the majority vote 

across all trees. The mathematical formulation of the decision trees involves 

recursively partitioning the data based on a feature 𝑥𝑖. The Gini impunity is shown 

below: 

𝐺 = 1 − ∑ (𝑝𝑖)2
𝐶

𝑖=1
 (2) 

𝑃(𝐷𝑜𝑝𝑖𝑛𝑔) =
1

𝑁
∑ ℎ𝑖(𝑋)

𝑁

𝑖=1
 (3) 

SVM is a supervised learning algorithm that constructs a hyperplane in high-

dimensional space to separate athletes who are likely to dope from those who are not. 

The algorithm aims to find the hyperplane: 
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min
𝑤

1

2
‖𝑤‖2𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦1(𝑤 × 𝑋1 + 𝑏) ≥ 1 ∀i (4) 

SVM is particularly useful in handling high-dimensional genomic data, where, 

based on biological signatures, clear separations between doping and non-doping 

athletes can be drawn. 

After the machine learning models are trained and validated, a comprehensive 

risk matrix is constructed based on the model outcomes and the identified risk factors. 

The matrix categorizes athletes into risk levels, such as low, moderate, and high, based 

on their genetic predispositions, hormone levels, recovery rates, and stress factors [16]. 

𝑅 = 𝑤1𝑃(𝑔𝑒𝑛𝑒𝑡𝑖𝑐) + 𝑤2𝑃(ℎ𝑜𝑟𝑚𝑜𝑛𝑎𝑙) + 𝑤3𝑃(𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐) + 𝑤4𝑃(𝑠𝑡𝑟𝑒𝑠𝑠) (5) 

This risk matrix is a predictive tool that sports authorities can use to assess an 

athlete’s likelihood of engaging in doping practices. It allows for early intervention 

and more targeted anti-doping measures. This is represented in a heat map shown in 

Figure 2 below. The heat map visualizes the doping risk levels across different athlete 

profiles based on genetic markers, hormone levels, and recovery rates, showing how 

risks are distributed among athletes. 

 

Figure 2. A heat map that visualizes the predicted doping risk across different athlete profiles based on genetic 

predispositions, hormone levels, recovery rates, and stress factors. 
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5. Model testing and validation 

Number one type of testing was made using simulation environments, which 

helped to evaluate the effectiveness and validity of the doping prediction model. The 

simulations were performed using fabricated athlete characteristics based on the 

historical records of doping and biological characteristics calculated through computer 

bioinformatics. Risk factors and athlete characteristics included genetic components, 

hormone levels, metabolic data, and stress levels in the athlete profiles [17]. These 

profiles were used to mimic different doping risks consisting of the low risk, where 

the angler did not have any significant usage of performance-enhancing substances, 

and the high risk, in which the angler possessed multiple signs of doping inclination. 

The simulation environment was constructed based on SNP repositories and 

physiological data obtained from athletes. To assess the ability of the prediction model 

to distinguish between dopers and non-dopers, data from each simulated athlete was 

processed into the model. In this process, the model’s predictions were checked 

against actual doping behaviors in the dataset employed to verify the degree of errors 

in the projections, the number of misclassifications, and the overall effectiveness of 

the predictions. The synthetic profiles also assisted in the calibration of the model’s 

decision boundaries by changing the relative contribution of genetic, physiological, 

and behavioral risk factors. For instance, some profiles were created with the intent of 

showcasing high heritability for doping inclinations, while others portrayed altered 

hormonal levels that resemble drug indications. Thus, the model was fine-tuned to 

account for the complex relationships between numerous factors that may affect 

doping patterns [17]. 

After proper validation of the simulated data, subsequent experiments were 

conducted using actual data of athletes implicated in doping cases. This testing phase 

was vital because it helped confirm the model’s predictions in real-life situations and 

the possibility of handling actual biological and physiological data. The data of 

athletes from the sports organizations and anti-doping agencies was used to assess the 

model [18]. The model was also validated with athletes from sports such as cycling, 

athletics, and weightlifting. These athletes were selected to cover various genetic 

variations, physiological tests and measures, and competitive stress. The doping 

history was then compared with the biological data of each athlete to label them 

indirectly. The real-world testing phase revealed that when applied to athletes, the 

model had a very high accuracy rate in signaling doping risks even if the athlete is not 

yet a confirmed doper through conventional screenings. By evaluating athletes’ 

genetic, physiological, and stress characteristics, the model proved to be more 

effective than the current approaches to doping control, namely the biochemical tests 

of prohibited substances [19]. See Table 1 below for a comparison of the various 

models used. 

 

 

 



Molecular & Cellular Biomechanics 2024, 21(4), 446. 
 

11 

Table 1. The following table compares the model’s performance against traditional 

doping detection methods. 

Method Accuracy Precision Recall F1-Score AUC-ROC 

Traditional Blood Test 78% 65% 60% 62% 0.75 

Drug Screening (Urine) 81% 70% 65% 67% 0.78 

Bioinformatics Prediction 93% 88% 85% 82% 0.93 

Table 1 above illustrates that bioinformatics prediction methods outperform 

traditional doping detection techniques (blood tests and urine screening) across all key 

metrics (accuracy, precision, recall, F1-score, and AUC-ROC). This suggests that 

computational models have the potential to be more effective at identifying doping, 

with fewer false positives and negatives, making them a promising tool in anti-doping 

efforts. The bioinformatics-based model significantly outperformed conventional 

methods regarding accuracy, precision, recall, and F1 score. Figure 3 is a high AUC-

ROC score, which further illustrates its ability to discriminate between dopers and 

non-dopers effectively [20]. The curve demonstrates the model’s ability to 

discriminate between dopers and non-dopers, with the high AUC-ROC value 

confirming its strong predictive power. 

 

Figure 3. A graph that plots the true positive rate (TPR) vs. false positive rate (FPR) 

to visually assess the bioinformatics model’s discrimination ability. 

6. Results and discussion 

The primary conclusion derived from this study is that algorithms or models 

developed with the help of bioinformatics that consider genetic, physiological, and 

behavioral markers are more accurate in identifying doping patterns of athletes. The 

simulation and real-world testing stages proved how accurate the model is and how it 

can locate athletes likely to indulge in doping. It showed that the heredity background 

that increased the risk of doping was SNPs owned up to gene factors that influenced 

muscle mass and stress tolerance. Another crucial reason for doping is hormonal 

disturbances, exceptionally high cortisol concentration, and sluggish metabolic 

rehabilitation rates [21]. Molecular profiling showed that specific genetic markers 
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associated with muscularity and muscular repair, including ACTN3 and COMT, were 

overrepresented in the doped athletes. These markers created a reliable baseline for 

doping risk assessment. 

Moreover, hormones like testosterone and cortisol were also explored as the 

physiological markers of doping inclinations. See Figure 4 for pairwise relationships. 

This plot shows the relationships between biomarkers such as hormone levels and 

genetic predispositions, helping to visualize how these factors correlate with doping 

risk. 

 

Figure 4. Pairwise relationship of key biomarkers by doping risk. 

Those with high cortisol levels chronically, implying high-stress levels, were 

likely to turn to use performance-enhancing drugs. Another aspect that showed high 

significance was the behavioral factor, which included pressure from within to excel 

in meets. Another crucial aspect of the model is its ability to combine these various 

data sources in a coherent risk evaluation architecture. In other words, the model takes 

genomic and physiological data and processes them with the help of bioinformatics 

tools and, therefore, is capable of analyzing doping risks more broadly than simple 

detection of the substance and its metabolites in biological samples, which often fails 

to reveal the roots of doping motivation and propensity [22]. Another exciting aspect 

of the model is its potential to forecast doping behavior even before it manifests in an 

athlete’s Performance or is identified by biochemical means. Scholars have described 

the application of the model to identify doping as a risk matrix that determines the 

likelihood of each athlete doping based on genetic, hormonal, and stress factors [22]. 

The contribution of different risk factors is represented by histograms shown in Figure 

5. The histogram illustrates the individual contributions of genetic, hormonal, and 
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stress-related factors to the overall doping risk, highlighting the dominant risk 

indicators. 

 

Figure 5. Histogram showing the contribution of different risk factors (e.g., genetic markers, hormone levels, recovery 

rates) to the overall doping risk. 

These measures enable sports authorities to embark on preventive measures, 

including mass tests or offering psychological support to identify at-risk athletes. 

Compared to conventional methods like blood and urine testing, the benefits of using 

the bioinformatics-based model include the following. In this sense, it goes beyond 

merely identifying the presence of banned substances; it also considers the athlete’s 

risk and the difficulty of being caught by as-yet undetectable substances. However, 

such a model has certain limitations [23]. One of the outstanding issues is the larger 

and more heterogeneous datasets for model re-training and validation. The current 

dataset involves several athletes from different sports, and incorporating athletes from 

less-represented sports or geographical locations would enhance the model’s 

generalization. 

Furthermore, the model heavily depends on genetic information, which is 

questionable due to ethical issues such as privacy and unintentional misuse of such 

data. This means that measures must be taken to guarantee that athletes’ genetic data 

is protected and is to be used solely for doping risk assessment [24]. See the box plots 

in Figure 6, which show the indicators for each risk factor. The box plot compares the 

variability and distribution of risk indicators (e.g., hormone levels, stress markers) 

across different athletes, providing insights into how these factors differ between 

dopers and non-dopers. 
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Figure 6. Box plot showing indicators by each risk factor. 

The bioinformatics-based doping detection method offers several advantages 

over traditional technologies like blood and urine tests. It proactively predicts doping 

risk by analyzing genetic, physiological, and behavioral data rather than detecting 

banned substances after use. With higher accuracy (93%) and precision (88%) than 

traditional methods, it minimizes false positives and negatives. This comprehensive 

approach identifies hidden doping patterns and flags potential dopers, even for 

substances undetectable by conventional tests, enabling early intervention. These 

strengths make it a more effective tool for doping detection and prevention [25]. 

7. Conclusion 

This study contributes to the doping detection field by developing a new 

bioinformatics risk assessment and prediction model. Employing multi-source 

biological data, including genetic makeup, hormonal profile, and metabolic indices, 

the model has been proven to provide a better prognosis for doping inclinations 

compared to blood or drug tests. Combining machine learning techniques with 

bioinformatics approaches, this research presents an improved methodology for 

detecting athletes at a higher risk of doping. It provides a deeper insight into the factors 

affecting doping tendency. Developing the risk matrix aggravates the model by 

making it more practical. As for sports authorities, applying this bioinformatics-based 

model can radically alter the approach to detecting and preventing doping. The 

assessment of risks in different profiles of athletes in the model offers a proactive tool 

that leads to early intervention in helping cleaner practices in sports. Added to this is 
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the ability to analyze multiple biological markers, and its predictive accuracy is 

significantly better than that of the currently available detection systems. Future work 

could further develop the model by implementing real-time monitoring of athletes’ 

physiological alterations throughout exercises and competitions. It could also be 

extended to enlarging the dataset with athletes training in different types of sports, thus 

determining the versatility of the given model. However, if elements related to 

environment and psychological variables were incorporated into the model, it would 

indeed be all-encompassing. 
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