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Abstract: The combination of Human-Computer Interaction (HCI) technology with 

biomimetic vision systems has transformational potential in animation design, particularly by 

incorporating biomechanical principles to create immersive and interactive experiences. 

Traditional animation approaches frequently lack sensitivity to real-time human motions, 

which can restrict engagement and realism. This study addresses this constraint by creating a 

framework that uses Virtual Reality (VR) and Augmented Reality (AR) to generate dynamic 

settings that include a variety of human activities, informed by biomechanical analysis. A 

biomimetic vision system is used to record these motions with wearable sensors, allowing for 

precise monitoring of user activity while considering biomechanical factors such as joint angles, 

force distribution, and movement patterns. The recorded data is preprocessed using Z-score 

normalization methods and extracted using Principal Component Analysis (PCA). This study 

proposed an Egyptian Vulture optimized Adjustable Long Short-Term Memory Network 

(EVO-ALSTM) technique for motion classification, specifically tailored to recognize 

biomechanical characteristics of human movements. Results demonstrate a significant 

improvement in precision (93%), F1-score (91%), accuracy (95%), and recall (90%) for the 

motion recognition system, highlighting the effectiveness of biomechanical insights in 

enhancing animation design. The findings indicate that integrating real-time biomechanical 

data into the animation process leads to more engaging and realistic user experiences. This 

study not only advances the subject of HCI but also provides the framework for future 

investigations into sophisticated animation technologies that use biomimetic and 

biomechanical systems. 

Keywords: animation; motion recognition; biomimetic vision system; human activities; 

biomechanics; Human-Computer Interaction (HCI) 

1. Introduction 

Human-computer interaction (HCI) technology plays an important function in 

animation design since it allows natural interaction between people and computers. It 

permits animators to create and manipulate complicated visual elements through user-

friendly interfaces and interactive systems [1]. When applied in the layout of 

animation, the approach is additionally efficient, inventive, and accessible to designers, 

enabling them to convey their ideas into consequence more accurately. It reduces the 

need for lots of manual intervention and narrows down the creative process. It presents 

new opportunities for launching innovative and complex animation projects [2]. 

A biomimetic vision system is an artificial visible processing generation that 

mimics biological vision, mainly human or animal vision structures. These systems 

are designed to capture, process, and interpret visual information further to how 
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residing organisms work [3]. In animation design, incorporating a biomimetic vision 

system allows for more realistic animations because the system can observe and 

interpret natural movements and visual cues, ensuring accurate person and 

surroundings rendering. It also adapts to varying lighting and environmental situations 

to reflect how human vision works in diverse settings [4]. The era can help designers 

obtain better ranges of elements and visual accuracy in their work. 

The integration of the biomimetic vision framework into animation enhances the 

realism of the visual factors. By simulating the way human beings understand light 

intensity, color, and movement, this era permits animators to create reasonable scenes 

and characters [5]. It results in extra immersive and convincing animators, where the 

movers interact with the surrounding experiences naturally, enriching the viewer’s 

experience. Realism can help animations evoke stronger emotional responses from the 

target audience [6]. Moreover, it lets in for extra attractive storytelling through making 

the visuals seem towards real life. 

HCI technology, when mixed with biomimetic vision, can massively enhance the 

interactive design of animations. Animators and architects can engage with the system 

more intuitively through the use of gestures, eye tracking, or voice instructions to 

control the animation technique [7]. The hand-free approach allows for smoother 

workflows and extra engaging user experiences, making it less complicated to create 

dynamic animations that reply to real-time inputs. Additionally, it fosters an extra 

immersive improvement where designers can, at once, affect results with minimum. It 

ensures greater innovative flexibility and reduces repetitive guide responsibilities. 

In 3D animation and visible outcomes, the biomimetic vision system can simulate 

complicated visual phenomena inclusive of reflections, shadows, and textures with 

higher accuracy [8]. These structures analyze the scene as a human eye track, 

supporting animators to generate more specified and visually attractive environments. 

The technology can also enhance motion capture using imitation of how human eyes 

follow movement, resulting in additional natural and fluid character movements. Thus, 

biomimetic vision makes it easy to grab and record subtle information, including 

changes in texture or light, to produce near-perfect digital worlds [9]. It contributes a 

dimension of professional excellence to tasks, generally making them even more 

pleasant across the board. 

For animation designers and manufacturers, the combination of HCI technology 

and biomimetic vision systems offers significant benefits. The time and effort exerted 

in the production of quality animation are also cut down, in that the device optimizes 

the critical animated values mainly based on real-world recorders [10]. Furthermore, 

this era also allows designers to explicitly express more visible styles and concepts 

while enabling realistic and interactive designs. It additionally makes collaboration 

simpler, as a couple of designers can work seamlessly with the device. It leads to 

quicker manufacturing cycles and complements the overall quality [11]. 

To enhance animation design, the integration of the HCI era and biomimetic and 

prescient systems can be applied to human activity. By leveraging actual time motion 

tracking and visual recognition, those technologies can analyze and interpret human 

moves with excessive precision. Biomimetic vision systems mimic the way human 

movements, bearing in mind more accurate classification of various activities together 

[12]. The approach is particularly useful in fields like animation, digital reality, and 
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video game development, wherein sensible character moves are crucial. Figure 1 

represents the general framework of virtual interaction and human activities. 

 

Figure 1. The general framework of virtual interaction and human activities. 

HCI generation additionally complements the process by supplying intuitive 

interplay methods, including gesture control and body movement monitoring, 

permitting designers to seamlessly manipulate animations that accurately replicate 

human activities. Additionally, device mastering algorithms can be integrated to 

continuously improve the accuracy of interest type by getting to know big information 

about human motion [13]. The effects include smoother and more fluid animations 

that reflect human movements; this integration streamlines workflows complements 

realism, and opens new opportunities for interactive actual-time animation 

improvement. 

The paper aims to improve animation design by proposing an Egyptian vulture-

optimized adjustable long short-term memory network (EVO-ALSTM) for human 

activity classification. 

Key contributions 

• The data was gathered from 30 participants using wearable sensors, which 

included accelerometers and gyroscopes. 

• Z-score normalization was used for preprocessing and PCA was used to extract 

the complex features from the preprocessed data. 

• EVO-ALSTM is proposed to classify human activity. 

The remaining parts of this paper: Part 2 represents the related work, a 

methodology that includes dataset, preprocessing, and feature extraction, and the 

proposed method was described in Part 3. Part 4 presents the result and discussion. 

Part 5 covered the paper’s conclusion. 

2. Related work 

To enhance the natural relationship between humans and machines, [14] created 

a detailed blueprint for a robot with a humanoid head that possessed human-like 

feelings and activities. It also evaluated how well human behavior and emotional 
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expression were simulated by the motor and sensory control system. The field of 

biomimetic humanoid robots benefited from these efforts. Experimental data from the 

survey indicated that participants expressed emotions, and participants replicated 

actions. 

A didactic, graphical tool that presented the most recent applications of 

biomimicry in medicine [15] suggested a webpage was created to show 2D artwork 

and visuals (animations). Animation was a tried-and-true method of educating the 

public about health-related topics. All respondents agreed that biomimicry could 

provide useful responses for medical design. Investigation showed that for public 

outreach, visual motions could successfully communicate complex ideas. 

A presentation on 2D animation using artificial intelligence and biomechanics 

modeling (2D-AI-BM) was presented in [16]. Deep neural networks (DNN) for 

movement predictions and development based on biopsychological principles were 

employed in the process to better resemble real human motions. Research contrasting 

that approach with conventional animation approaches has demonstrated that it 

reduced the production period while indeed generating realistic movements for 2D 

characters. It presented numerical results proving that the implementation of the 2D-

AI-BM model enhances an accuracy rate. 

A flexible simulated tactile approach that made use of the stick-slip sensing 

model in [17] offered a general approach to identify a failure and quantify the surface 

properties of an object through slippage. The system comprised a read-out system in 

the form of tips of hands, a display unit, and an artificial intelligence component. 

Based on the stick-slip sensing approach, the system had a high identification rate for 

slippage monitoring. The multipurpose system was also demonstrated for interactive 

gaming, robotic hand deception, and identifying objects, allowing for extensive and 

prospective interactions between humans and machines. 

A new architecture that employed motion data recorded [18] by human webcams. 

Because of that technique, which used a lot of movement information in the real-time 

recreation of such animation as animals moving, designers could be in a position to 

design those characters with more accurate movements, which could depict real-world 

settings. Moreover, users’ actions were tied to virtual reality, making the whole action 

more realistic and exciting. 

A model of random forests [19] was to process and create animation data, and 

from the collected animation data, the knowledge that could guide the development of 

animation was extracted. Based on the design goal and execution approach of the 

animated information processing and development platform, the features and 

categories of the random forest model were separated. The findings from the 

experiment showed that the platform for developing and processing 3D animation data 

was both practical and efficient. 

Created several techniques to expedite and reduce the expense of that procedure 

[20] developing a mobile robot that could follow the actor and record the scene while 

keeping them where he needs to be in the frame. By feeding the recorded video 

through a range of deep learning algorithms, the team could then determine the actor’s 

3D position. It could be used to animate the required 3D model; therefore, there is no 

need to use several cameras and a mobcap suit to capture the movements of the actor. 
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A customized DNN to constantly and accurately detect external haptic stimuli 

[21] suggested a new method of data enhancement process was pioneered by 

identifying the hexagonal structure of the sensor, which has six-fold rotational 

symmetry and possesses mirror images. The generated pseudo data could enhance the 

generalization performance of the DNN model by adding the obtained training data. 

The sensor proved its effectiveness and the feasibility of the proposed data 

augmentation technique and provided a good generalization of five touch modes and 

potential for further development to improve human-robot interaction. 

Four methods for incorporating deep learning models and Kinect camera-based 

animated manufacturing systems with natural human movement [22] were examined. 

The selection of each approach was contingent upon environmental circumstances and 

accuracy. The initial solution made use of a Kinect camera. A camera and a calibration 

algorithm were employed in the second technique. The third option made use of a deep 

learning framework. A deep learning model was employed when combined with 

Kinect in the fourth method. Comparing the recommended method’s experiments to 

previous approaches, it was found that the fourth method, which combines a Kinect 

and a deep learning model, produced the greatest results. 

A complex HCI program to point at the problem of communication impairment 

between groups of individuals with hearing disabilities and without such problems was 

designed [23]. The advancement of artificial intelligence has made it quite possible by 

the hard work of listening and people without disabilities to communicate as per their 

desire. Using near-wearable technology and utilizing backpropagation (BP) neural 

network models to classify gestures, the proposed system was able to successfully 

close the communication gap between the impaired and the non-impaired individuals. 

A revolutionary biomimetic bidirectional cooperation perceiving system 

(BBCPS) [24] suggested the gaze function in human eyes served as inspiration for 

their creation of a simple yet versatile BBCPS. The results of the simulation 

demonstrate that it reduced operational energy consumption and enhanced braking 

effectiveness. Furthermore, a system for initial position calibration was established to 

ensure that the BBCPD state matches the control strategy that followed. The 

methodology allowed for the certification and modification of the camera pose and 

servo motors’ zero-position. The gaze error was fewer than three pixels across in real 

testing, confirming the control performance of the BBCPS. 

Neurological control systems [25] enhance significantly the realism of the 

simulation of human movement. They have underscored some of the challenges in 

relocating head pose and facial emotions from the pictures and clinical movies into 

muscle-actuated modeling of facial and head and neck. A complicated biomechanical 

system was also involved in generating locomotion-based animations with 

biomechanical plausibility. It extended the use of imitation, physics-based humanoid 

simulators, and modeling in graphic design and vision by showcasing the adaptability 

of the face and body controlled by muscles. 

A unique learning-based method for biomechanically modeling the face-head-

neck complicated by importing facial emotions and head motions from images and 

videos was described in [26] and suggests training a DNN to take in the face actions 

coding system (FACS) with action units (AUs) and produce appropriate facial muscle 

and mouth motion signals for the biomechanics model by using the FACS as a 
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substitute for representing emotion distance. Experiments including the projection of 

different facial emotions and head poses from films onto the face-head-neck model 

demonstrated the model’s efficacy. 

A simple yet efficient method that used deep learning (DL) [27] to create a basic 

3D animation of numerous people moving in 2D. Despite recent considerable 

advances in 3D human posture calculation, multi-person determination of pose was 

rather a challenging topic, and most previous works were yet limited to single-person 

estimation of poses. Using the publicly available dataset, the proposed system 

performed comparably to prior state-of-the-art 3D multi-person pose approximation 

approaches and surpassed previous competitive human pose tracking devices by a 

significant margin. 

The efficacy and precision of human annotators, whether employing video, data, 

or both for annotating events across four human activity recognition (HAR) tasks [28] 

observed that annotators were more accurate in classifying kinds of events when 

employing video alone on all four tasks and more effective while using data alone on 

three of the four assignments. The annotations of event boundaries based on data alone 

were more accurate. The experimental findings discovered that the data and video 

collected for HAR task annotations had multiple functions and that the functions might 

vary across the HAR tasks. 

A novel system for deep learning based on signals from movement to identify 

human activities and address these limitations and difficulties using deep learning 

techniques [29] Utilized convolutional neural networks (CNNs) and laboratory 

metrics, the methodology was effectively studied and obtained better accuracy in 

comparison to machine learning techniques. The research’s innovative approach was 

to improve classification accuracy while executing tasks more quickly and with a 

lower mistake rate. It also introduced a new technique that uses CNN with Adam’s 

optimization technique to detect human involvement in the dataset. 

Problem statement 

The current animation design using HCI with a biomimetic vision system brings 

massive challenges, such as capturing and responding to actual time human motion. 

Traditional animation techniques regularly fail to offer the level of sensitivity and 

interactivity required for attractive and practical user experiences. Existing 

frameworks often struggle to appropriately interpret complicated moves, leading to a 

disconnection between user actions and animated responses. There is also a lack of 

standardized protocols for integrating HCI and biomimetic systems, complicating the 

development of cohesive frameworks that make certain compatibility and 

effectiveness. The high cost related to the advanced technology implementation can 

restrict accessibility for big adoption and innovation within the field. These challenges 

collectively hinder the potential of animation design to create trust immersive and 

interactive investigations that resonate with users. The proposed method deals with 

the limitations of cutting-edge animation techniques with the aid of growing a 

framework that utilizes VR and AR to create dynamic environments that contain 

numerous human activities. 
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3. Methodology 

The data consists of analysis of the relevant data where Z-score normalization is 

needed to standardize the distribution of the data. To reduce dimensionality, and retain 

the most important variance, Principal Component Analysis (PCA) is used. The 

present method EVO-ALSTM, combines the benefits of Egyptian Vulture optimized 

adjustable Long Short-Term Memory networks prediction power as well as optimizing 

the learning process adaptively. The purpose of the coupling is to focus on improving 

the performance of the model concerning complex data sets these overall procedures 

are shown in Figure 2. 

 

Figure 2. Methodology’s overall procedure. 

3.1. Dataset 

The dataset was gathered from Kaggle 

(https://www.kaggle.com/datasets/ziya07/human-motion-dataset-for-animation-

design/data). The dataset comprises human activity data acquired using attached 

motion sensors; accelerometers and gyroscopes, which were embedded into a 

biomimetic vision sensor system on thirty subjects (15-males, 15-females). This 

system intraocular visualizes dynamic activities as a human eye would increase the 

precision in such activities. Each of the subjects performed a set of defined motions, 

namely walking, jumping, waving arms, and performing sports-mimicking actions. 

The activities were recorded in an enclosed area as most of the activities were captured 

and implemented in a 3D world so a 3D vision system was used along with augmented 

reality (AR). Before data gathering, the sensors and the imaging system were set up to 

enhance their functional efficiency and accuracy for the measurements of motion and 

body dynamics. Each session per participant lasted 30 min with the directive to act as 

freely as possible while the recordings were taken. The data obtained, which was 

further enhanced by the imaging system, was collected and classified in an orderly 

https://www.kaggle.com/datasets/ziya07/human-motion-dataset-for-animation-design/data
https://www.kaggle.com/datasets/ziya07/human-motion-dataset-for-animation-design/data
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fashion along the lines of subject identification number and type of activity to facilitate 

in-depth tracking of human movements for other purposes. 

3.2. Z score normalization 

The process of normalizing data involves scaling or mapping abnormal data to 

standard data. The Z-score approach, a numerical data type, is used in the model and 

its normalized values in the dataset. A common statistical method for standardizing 

and normalizing numerical features in a dataset is the Z-score method. It calculates the 

Z-score for every fact point by subtracting the implied and dividing, utilizing the 

standard deviation of the dataset. The normalization statistics can have a mean of 0 

and a popular deviation of 1, improving the model’s overall performance in the 

movement class. It facilitates minimizing the influence of outliers and ensures that 

different capabilities contribute similarly to the type system. The formula for Z-score 

normalization is represented in Equation (1). 

𝑧 =
(𝑥𝑖 − µ)

𝜎
 (1) 

3.3. Extraction of feature 

PCA utilized to remove features to maximize records variability and then convert 

it directly into a space with a low number of dimensions. It is a powerful method used 

for feature extraction in movement category responsibilities related to human activity 

datasets. By reducing the dimensionality of the statistics, PCA identifies the most 

sizeable capabilities that account for the variance in human actions, facilitating 

improved model performance. The method eliminates the noise and redundant data, 

making it easier to classify critical patterns and movements. This algorithm can 

function extra efficaciously and correctly, enhancing the recognition of numerous 

human activities and it contributes to extracting effective and reliable movement 

classification structures. An ortho basis set that is identical is the resultant vector set. 

Since the fundamental elements are the vectors that form part of the balanced 

interaction matrix, each of them is orthogonal. In mathematics, if 𝑙 samples are taken 

from a dataset and the class label is not considered, then every measurement is n-

dimensional. Assume 𝑤1, 𝑤2, … … , 𝑤𝑙 ∈ ℜ
𝑚

 that the following steps for PCA 

calculation. 

Determine the mean vector 𝜇 in 𝑛 observations by Equation (2): 

𝜇 =
1

𝑙
∑ 𝑤𝑗

𝑙

𝑗=1

 (2) 

Obtain the expected coefficients matrix 𝑇 for the acquired data by Equation (3): 

𝑇 =
1

𝑙
∑(𝑤𝑗 − 𝜇)(𝑤𝑗 − 𝜇)

𝑠
𝑙

𝑗=1

 (3) 

Compute the appropriate equations and𝑇 as an eigenvalue where𝜆1 ≥ 𝜆2 ≥ ⋯ ≥

𝜆𝑙 ≥ 0. 
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Using the 𝑙 starting parameters, produce the 𝑙 necessary components by Equation 

(4): 

𝑧1 = 𝑏11𝑤1 + 𝑏12𝑤2 + ⋯ + 𝑏1𝑙𝑤𝑙

𝑧2 = 𝑏21𝑤1 + 𝑏22𝑤2 + ⋯ + 𝑏2𝑙𝑤𝑙
⋯

𝑧𝑙 = 𝑏𝑙1𝑤1 + 𝑏𝑙2𝑤2 + ⋯ + 𝑏𝑙𝑙𝑤𝑙

 (4) 

Attempts to explain the first variation in the data set as much as possible, and 𝑧2 

attempts to explain the remaining variance, etc. A few instances of bigger eigenvalues 

usually control the rest in the most valuable data sets that are represented in Equation 

(5). 

𝛾𝑙 =
𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛

𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 + ⋯ + 𝜆𝑙
 (5) 

where𝜆𝑙 represents the percentage preserved in the data forms. Since the produced 

principal components via PCA extracted features constitute the variability in the data, 

they ought to be retained. 

3.4. Egyptian vulture optimized adjustable long short-term memory 

network (EVO-ALSTM) 

Hybrid approach combining the evolutional optimization approach of the 

Egyptian Vulture optimized (EVO) with adjustable LSTM (ALSTM) algorithms. The 

optimization mimics the foraging characteristic of Egyptian vultures to fine-tune 

hyperparameters, including learning rate, amount of hidden units, and dropout rate 

within the ALSTM, which is designed to regulate its memory and neglect gates 

dynamically. This hybridization approach improves the ALSTM’s capacity to evolve 

to varying temporal dependencies in movement classification responsibilities. The 

integration ensures faster convergence and better motion sequence reputation 

performance by leveraging each efficient optimization and flexible memory 

modification in the LSTM. It achieves improved accuracy and efficiency in movement 

classification compared to standard LSTM networks. 

3.4.1. ALSTM 

ALSTM is a variant of the LSTM network designed for motion classification 

tasks, wherein the model dynamically adjusts its internal memory gates based on 

various temporal dependencies in movement sequences. This adaptability allows the 

ALSTM to selectively consider or forget information at special time steps, enhancing 

in classifying complex and time-sensitive movement patterns. There are four layers in 

the ALSTM prediction model: input, hidden, output, and EVO. The prediction model 

is optimized by the usage of EVO. Based on the RNN design approach and 

consider the properties. 𝐶 = {𝑊1, 𝑊2, … . , 𝑊𝑟} denotes the entire collection, it is 

separated into two subsets: a training data set called 𝑊𝑡𝑟𝑎𝑖𝑛 = {𝑊1, 𝑊2, … . . , 𝑊𝑜} and 

a test data set called𝑊𝑡𝑒𝑠𝑡 = {𝑊𝑜+1, 𝑊𝑜+2, … … . , 𝑊𝑟}. Each of those samplings is 

represented by the symbol 𝑊𝑡𝑟𝑎𝑖𝑛
′ = {𝑊1

′ , 𝑊2
′ , … . , 𝑊𝑜

′} , which includes n 

attributes 𝑊𝑗 = {𝑤𝑗,1, 𝑤𝑗,1, … . . , 𝑤𝑗,𝑚}𝑜 < 𝑟𝑜, 𝑟 ∈ 𝑀 . Utilizing the Z-score 

normalization technique (mean 0, variance 1), standardize the training set as expressed 

in Equation (6): 
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𝑊𝑠
′ = (𝑊𝑖 −

∑ 𝑊𝑠
𝑜
𝑠=1

𝑜
) /√∑(𝑊𝑖 − ∑ 𝑊𝑠

𝑜

𝑠=1

/𝑜

𝑜

𝑠=1

)2/𝑜 (6) 

In the above instance Ws’ is the standardized amount for the property at 

time𝑠𝑊𝑠
′ ∈ [−1,1] and 𝑠 ∈ [1, 𝑜], data are split to adjust to the hidden layer’s input 

properties. Equations (7)–(9) denote the data set separation appears as follows when 

the separation length is set to𝐾: 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑜/𝐾−1} (7) 

𝐶𝑖 = {𝑊𝑖
′, 𝑊𝑖+1

′ , … … , 𝑊𝑖+𝐾−1
′ }    1 ≤ 𝑖 ≤ 𝐾 ≤ 𝑜 (8) 

𝑊𝑖
′ = [𝑤𝑖,1

′ , … . , 𝑤𝑖,𝑖
′ , … . . , 𝑤𝑖,𝑚

′ ]𝑗 ∈ [1, 𝑚] (9) 

The amount of 𝑤𝑖,𝑗
′  at a given time is entered as an algorithm in the hidden layer, 

which is composed of 𝐾 identical LSTM units interconnected at the times before and 

after. The hidden layer’s output in Equation (10) is as follows: 

(𝑔𝑠, 𝑑𝑠) = 𝐿𝑆𝑇𝑀([𝑊𝑠
′, 𝑔𝑠−1], 𝑑𝑠−1, 𝑋 (10) 

where the current state and output of the preceding LSTM unit have the following 

values: 𝑑𝑠−1 and𝑔𝑠−1. 𝐿𝑆𝑇𝑀(∗) is the LSTM unit’s forward computation. Equation 

(11) represents the final output of the LSTM network after it has passed through a fully 

connected layer, which is the ALSTM’s output. 

𝑍𝑠 = 𝜎(𝑋𝑧𝑑𝑔𝑠 + 𝑎𝑧𝑑) (11) 

The training method uses the mean square error, which is defined in Equation 

(12), as the loss function. 

𝑙𝑜𝑠𝑠 = ∑ (𝑜𝑗 − 𝑧𝑟𝑒𝑎𝑙)
2
/(𝐾 × 𝑁)

𝐾×𝑁

𝑗=1
 (12) 

where 𝐾 and 𝑁 stand for the isomorphic LSTM unit and the total amount of input 

samples, correspondingly. The numerical value of the LSTM model’s training output 

is indicated by𝑜𝑗. The sample’s real value is denoted by𝑧𝑟𝑒𝑎𝑙. The network algorithm’s 

layer counts, training intervals, and hidden layer neuron count are all simultaneously 

adjusted to the optimization. 

3.4.2. EVO 

EVO was a meta-heuristic method initially developed to solve complicated 

arrangement problems. It is aroused by the Egyptian vulture’s behavior to obtain a 

solution. This avian creature’s cunning behavior is converted into an algorithm that 

can handle challenging optimization issues. The system has been modified to 

incorporate the detailed EVOA processes. It optimizes the selection of key features, 

improving the accuracy and efficiency of ALSTM in recognizing complicated human 

motions. By integrating this bio-inspired optimization technique, the ALSTM can 

better capture temporal dependencies and diffused variations in movement 

information. This method leads to greater specific and dependable motion types, 
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especially in dynamic environments. Figure 3 represents the process of EVO, 

algorithm 1 represents the EVO-ALSTM algorithm, and the following are the steps in 

the procedure: 

 

Figure 3. Process of EVO. 

Algorithm 1 EVO-ALSTM algorithm 

1: Step 1: def initialize_population(): 

2:     population = []   

3:     for i in range(pop_size): 

4:         individual = random_hyperparameters() 

5: population.append(individual) 

6:     return population 

7: Step 2: def fitness (individual, train_data, val_data): 

8: lstm_model = build_lstm(individual) 

9: lstm_model.train(train_data) 

10:     performance = evaluate_model (lstm_model, val_data) 

11:     return performance 

12: Step 3: def egyptian_vulture_optimization(population, train_data, val_data): 

13:     for generation in range (max_generations): 

14:         for vulture in population: 

15: fitness_score = fitness (vulture, train_data, val_data) 

16: update_best_solution(fitness_score) 

17:         population = evolve_population(population) 

18:         return best_solution 

19: Step 4: def adjustable_lstm (input_data, hyperparameters): 

20: lstm_layer = LSTM (hyperparameters[‘hidden_units’], return_sequences=True) 

21: dropout_layer = Dropout(hyperparameters[‘dropout’]) 

22: adjusted_output = adjust_memory_for_sequence(lstm_layer, input_data) 

23:     return dropout_layer(adjusted_output) 

24: Step 5: def evo_alstm_motion_classification (train_data, val_data): 

25:     population = initialize_population () 

26: best_hyperparameters = egyptian_vulture_optimization (population, train_data, val_data) 

27: lstm_model = build_lstm (best_hyperparameters) 

28: Step 6: hyperparameters 

29: lstm_model.train (train_data) 

30: motion_classification_results = lstm_model.classify (test_data) 

31: return motion_classification_results 
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Step 1: The initialization of the solution set of strings contains changeable 

representations of the parameters. One possible solution state is represented by a string 

with a set of parameters. 

Step 2: Conditions are verified, limitations are superimposed, and representative 

variables are refined. 

Step 3: Stones are thrown at predetermined or random locations. 

Step 4: Either a portion of the string or the complete one is picked for the Rolling 

of the Twigs performance. 

Step 5: The strategy of changing the angle is used to reverse a specific portion of 

the solution. 

Step 6: Fitness is assessed. 

Step 7: Checking the stopping criterion is necessary. 

4. Result and discussion 

In this section, the confusion matrix for classification is calculated, the 

performance of the proposed method based on the factors including walking, jumping, 

arm waving, and sports action is evaluated, and the effectiveness of the proposed 

method EVO-ALSTM with the conventional technique ALSTM is compared based on 

the metrics (accuracy, precision, recall, and F1-score). 

4.1. Experimental setup 

An Intel i7-7500U CPU running at 2.70GHz with 8 GB of RAM and Mat lab 

R2014a was used to simulate the proposed method. 

4.2. Confusion matrix 

 

Figure 4. Output of confusion matrix with 30 participants. 

To evaluate the performance of a classification method, it compares the 

prediction classification with the actual results by organizing outcomes into four 

classes, including true positive (TP), false positive (FP), true negative (TN), and false 
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negative (FN). Figure 4 represents the output of the confusion matrix with 30 

participants. In Figure 4, the diagonal values represent accurate detections, with 

excessive accuracy for walking (92), jumping (75), arm waving (96), and sports action 

(75). Misclassifications are seen, which include walking expected as sports action (7 

instances) and jumping misclassified as sports action (7 instances). Darker cells imply 

better accuracy, at the same time as lighter cells reflect fewer correct classifications. 

Overall, the model successfully classifies all instances without errors. 

4.3. Motion detection accuracy 

The motion detection accuracy that estimates how well the system features the 

ability to cope with the concerns of identification of movement within an environment 

or in a video frame movement tracking. It is expressed as the number of correctly 

identified motion events over the number of existed motion events. The accuracy level 

of various human activities classified using EVO-ALSTM was evaluated, which is 

collected using sensors. Table 1 represents the motion detection accuracy of human 

activity. 

Table 1. Motion detection accuracy of human activity. 

Human activities Motion detection accuracy (%) 

Walking 94.7% 

Jumping 92.3% 

Arm waving 95% 

Sports action 93.4% 

Figure 5 shows the wearable sensors and a biomimetic vision system used to 

record various human activities indicating reliable movement detection accuracy. 

Among the different activities, 94.7 % accuracy was recorded in walking while arm 

waving was slightly higher at 95%. Complementing this, jumping and sports-related 

activities recorded an accuracy of 92.3 % and 93.4 % respectively. This underlines the 

efficient performance of the system in the execution of any other dynamic activities. 

According to the findings, the proposed method achieved a high accuracy level in 

classifying arm-waving movement. 

 

Figure 5. Motion detection accuracy of human activity. 
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4.4. Comparison 

4.4.1. Accuracy 

The model’s accuracy is calculated by dividing the total number of true positive 

(TP) and true negative (TN) predictions by the total number of forecasts. This gives 

an overall performance level of the model with consideration of all the classes. It 

consists of the proportion of accurately identified cases to all occurrences of human 

activity. Table 2 and Figure 6 display the performance of accuracy. 

Table 2. Values of four metrics. 

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) 

ALSTM 88% 83% 86% 82% 

EVO-ALSTM 95% 93% 90% 91% 

 

Figure 6. Performance of accuracy. 

Figure 6 compares the accuracy of two methods: ALSTM and EVO-ALSTM 

(Proposed). EVO-ALSTM demonstrates improved accuracy achieved 95%, while 

ALSTM shows slightly lower performance around 88%. This indicates that the 

proposed EVO-ALSTM method outperforms the standard ALSTM in terms of 

accuracy. 

4.4.2. Precision 

Precision focuses on the number of true positive predictions when compared to 

the total amount of accurate forecasts that the model produced. This indicates that 

based on the model’s overall number of accurate predictions during the period under 

consideration, how many of them are real predicted positive cases and how better the 

model in making non-positive predictions. It measures how the model accurately 

classifies a motion. It indicates how many positive instances are positive. Figure 7 

and Table 2 show the precision evaluation. 
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Figure 7. Precision performances. 

Figure 7 depicts an assessment of the precision of ALSTM and the EVO-

ALSTM model. The precision of the EVO-ALSTM technique is remarkably better 93% 

which confirms its capability to locate pertinent instances with minimal errors. The 

ALSTM achieves an accuracy level of about 83%, which infers a relatively higher 

false positive ratio. 

4.4.3. Recall 

Sensitivity also referred to as recall is the measure of the ratio of the number of 

true positives as compared to the number of positive cases in the population. This 

shows the capability of the model to recognize all the relevant elements of a certain 

class. Recall measures the classifier’s capacity to find every relevant occurrence of a 

given motion by calculating the proportion of the true positive to the actual positive. 

Table 2 and the recall performance is shown in Figure 8. 

 

Figure 8. Performance of recall. 

In Figure 8, the recall percentage in the two methods ALSTM and EVO-ALSTM 

is presented with the proposed EVO-ALSTM with very high recall 90% proving its 

effectiveness in instances recovery task. The recall performance of ALSTM is less 
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than that, at about 86%, suggesting that this method loses more relevant information 

when compared to EVO-ALSTM. 

4.4.4. F1-score 

The F1 score is a metric that takes into account both precision and recall by 

averaging their numerical scores. It is especially positive in cases of irregular data 

distribution where both false positive and false negative are important. It is the balance 

between precision and recall, ensuring that the model performs well in both classifying 

and accurately assigning motion. Table 2 and the analysis of the F1-score are shown 

in Figure 9. 

 

Figure 9. Evaluation of F1-score. 

Figure 9 shows the F1 score for both the ALSTM and EVO-ALSTM approaches. 

The efficiency of the suggested EVO-ALSTM in various recovery tasks is 

demonstrated by its extremely high F1 score of 91%. However, ALSTM’s F1 score 

performance is lower than that, at around 82%, indicating that this approach loses more 

pertinent data than EVO-ALSTM. 

4.5. Discussion 

The standard method EVO, while effective for hyperparameters optimization, 

could struggle with local minima and convergence speed, particularly in high 

dimensional search spaces. Additionally, it is computationally expensive, as it requires 

multiple evaluations of the fitness function, a process that can be time-consuming in 

large data sets. Moreover, EVO lacks the dynamic adjustment that is necessary for 

real-time motion classification because it is designed to deal only with parameters 

rather than model structures. Compared to it, ALSTM has a flexible memory 

mechanism with hyperparameter sensitivity, and the model cannot adapt to the variety 

of motion patterns correctly without tuning hyperparameters. Further, ALSTM can 

end up in an overfitting situation, particularly when few data are used in training and 

its efficiency tends to drop sharply when input information is noisy. The EVO-

ALSTM models are assisted by the evolutionary algorithms for adaptive optimization, 

which improves the ability of the model to optimize and escape out of local minima 

reducing the overall convergence times. This allows for improved generalization and 

accuracy when dealing with complex and nonlinear data distributions. Furthermore, 
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due to its flexible structure, the architecture can be customized to fit the specific 

attributes of the dataset, thereby enhancing performance. The proposed EVO-ALSTM 

method addressed these limitations by integrating the strengths of both techniques: it 

leverages the efficient exploration that EVO affords to dynamically configure the 

ALSTM architecture, ensuring that the model not only learns effectively but also 

manages memory in real-time. This hybridization results in enhanced accuracy and 

robustness in motion classification tasks, effectively managing the weakness of the 

individual methods and enhancing overall performance. 

5. Conclusion 

In this paper, an Egyptian Vulture optimized Adjustable Long Short-Term 

Memory Network (EVO-ALSTM) was introduced for motion classification. The 

dataset was gathered from 30 participants. The wearable sensors, like accelerometers 

and gyroscopes, were used to collect human activity, including walking, jumping, arm 

waving, and sports actions, from the participants. Preprocessed the data by using Z 

score normalization and extracted the complex features by using PCA. The proposed 

EVO-ALSTM method was used as a classification to identify the motions. As a result, 

the four human activities measured for the motion detection accuracy of the proposed 

method showed that arm waving (95%) has a high detection motion accuracy level. 

The proposed EVO-ALSTM method was compared with the standard method 

(ALSTM) based on the metrics, including accuracy (95%), precision (93%), recall 

(90%), and F1-score (91%). According to the findings, the proposed method has 

superior performance than other methods to classify human activity and it helps to 

enhance the animation design. 

Limitation and future scope 

The framework’s dependence on wearable sensors may restrict the range of 

motion statistics, and the computational complexity of the EVO-ALSTM approach 

will be resource-intensive for real-time processing. Additionally, generalization to 

various person environments and motions may require further optimization. This 

investigation opens avenues for similar studies into integrating biomimetic 

imaginative and visual structures with greater superior device mastering models for 

even greater accuracy in motion popularity. Future research may want to explore 

expanding the variety of human sports recorded and integrating this technology into 

various packages like gaming, digital learning, and interactive storytelling. Enhancing 

actual time feedback capabilities in VR and AR environments could also increase 

immersion. 
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