
Molecular & Cellular Biomechanics 2024, 21(3), 484. 

https://doi.org/10.62617/mcb484 

1 

Article 

Sports training injury risk assessment combined with dynamic analysis 

algorithm 

Zhihong Hou, Yuan Xue* 

Physical Education Department, Qinhuangdao vocational and technical college, Qinhuangdao 066100, Hebei, China 

* Corresponding author: Yuan Xue, 13803358622@163.com 

Abstract: To explore the application of dynamic analysis algorithm in sports training injury 

risk assessment, this paper takes the Spatio-Temporal Graph Convolutional Network (ST-GCN) 

as the main algorithm, and introduces the Adaptive Graph Convolution Module (AGCM) and 

Residual Channel Attention Module (RCAM). ST-GCN is improved to form AGCM + RCAM-

ST-GCN (ARST-GCN) motion posture recognition algorithm. Meanwhile, combined with the 

extreme gradient boosting (XG Boost), the final physical training injury risk assessment model 

is formed. The performance of the improved ARST-GCN and the proposed damage risk 

assessment model is verified by experiments. The results show that ARST-GCN, which 

combines AGCM and RCAM modules, performs best in all indicators. Compared with ST-

GCN, the accuracy rate is increased by 1.94% and the F1 value is increased by 4.3%. In 

addition, in the performance comparison of different sports injury risk models, the recall rate 

and F2 value of XGBoost are 0.937 and 0.893, respectively, and the overall performance is the 

best, indicating that XGBoost has significant advantages in dealing with sports injury risk 

assessment (SIRA) tasks. The research results provide theoretical basis and practical reference 

for injury prevention in sports training, and help to improve the accuracy and reliability of 

SIRA. 

Keywords: physical training; injury risk; spatio-temporal graph convolutional network; 

adaptive graph convolution module; residual channel attention module 

1. Introduction 

With the increasing importance of sports in the field of health and competition, 

the scientific and meticulous management of sports training has gradually become the 

key to improving sports performance and ensuring athletes’ health [1,2]. Accurate 

evaluation and prevention of sports injuries has become one of the focuses of sports 

science research. The major components of traditional sports injury risk assessment 

(SIRA) systems are athlete self-reports and expert expertise. Although these methods 

can reveal the potential risks of sports injuries to a certain extent, they often lack real-

time and accuracy [3]. Furthermore, these approaches have limited practical relevance 

because they are unable to anticipate and alert to the possibility of injury early in the 

training phase [4]. 

SIRA has made extensive use of big data and machine learning techniques in 

recent years due to the quick advancements in sensing and data processing 

technologies [5]. The foundation of assessing the risk of sports injuries is motion 

posture identification. As an advanced dynamic analysis algorithm, Spatio-temporal 

graph convolutional network (ST-GCN) shows its unique advantages in processing 

graph data containing spatio-temporal information [6]. ST-GCN can effectively 
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capture the dynamic changes in the process of sports by constructing spatio-temporal 

graph structure and modeling the spatial and temporal characteristics of sports data [7]. 

Adaptive graph convolutional module (AGCM) and residual channel attention 

module (RCAM) are introduced in this research with the goal of optimizing the classic 

ST-GCN, which is then used to the SIRA model. The paper offers a novel technical 

approach to injury risk assessment in sports training, as well as methodological 

guidance and theoretical backing for related domains of study and practice. 

The main contributions of this paper are as follows: 

Firstly, an improved ST-GCN is proposed. By introducing AGCM and RCAM, 

the accuracy and robustness of motion posture recognition are improved. 

Secondly, the improved ST-GCN is applied to the SIRA model, which provides 

a more accurate SIR prediction method. 

Finally, the effectiveness of the proposed model in sports posture recognition and 

injury risk assessment is verified by experiments, which provides technical support 

and theoretical basis for scientific management of sports training and sports injury 

prevention. 

2. Related work 

SIRA aims to predict and prevent potential sports injuries by analyzing athletes’ 

sports data. At present, research has made progress in sports training injury risk 

assessment. An innovative dual-feature fusion neural network model is proposed by 

Meng and Qiao. The issue of feature loss was resolved by applying 1 × 1 convolution 

and hyperlink to create a dual fusion structure, which was then used to assess sports 

injuries [8]. Their study provided a new idea for sports injury prediction and 

highlighted the importance of feature fusion in deep learning. In their discussion of 

the use of machine learning in football injury risk assessment, Nassis et al. noted that 

while machine learning’s capacity for injury prediction was currently limited, it could 

aid in determining the early risk of musculoskeletal injuries [9]. This showed that 

although technology was progressing, the accuracy and reliability of machine learning 

model needed to be further improved. A recurrent neural network (RNN) model was 

created by Dhanke et al. to examine the impact of sports training on injuries sustained 

by players. By gathering and examining training data from athletes, the model assessed 

and forecasted sports injuries [10]. This study emphasized the importance of dynamic 

training data for injury risk assessment and laid a foundation for future research. 

Rebelo et al. evaluated the application of technology in sports training and injury 

prevention, and found that wearable devices and power boards were widely used in 

monitoring athletes’ performance and injury prediction. Especially, the sports load 

data was very important for customizing training load [11]. This discovery emphasized 

the practical application of technology in sports science and provided theoretical 

support for personalized training. Li and Zhu put forward a sports injury risk analysis 

system based on neural network, which combined blockchain and Internet of Things 

to solve the common injury problems in athletes’ training. Through multi-sensor data 

fusion technology, the system could quickly identify the damage location within 0.2 

seconds. The recovery rate reached 94.39%, which significantly improved the 

accuracy and stability of damage monitoring [12]. Their study showed how advanced 
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technology could be applied in sports medicine to improve the response speed and 

accuracy. 

In addition, the existing motion posture recognition algorithms have also made 

remarkable progress. To detect the movement posture, Hu et al. introduced a unique 

multi-scale time sampling module and depth spatio-temporal feature extraction 

module, which increased the spatio-temporal feature extraction and the feature map’s 

receptive field [13]. The innovation of this method lied in its multi-level consideration 

of feature extraction, which provided a new methodology for complex motion 

recognition. Wang used a deep learning technique based on convolutional neural 

networks (CNNs) to address the issue of traditional feature extraction methods’ 

reliance on manual design. This allowed for the identification of key posture time 

through cosine similarity in fitness scenes using a multi-scene action similarity 

analysis algorithm based on human joint points [14]. Their study provided a new way 

for motion posture analysis based on visual data, and highlighted the value of action 

similarity in the recognition process. Arab et al. discussed the feasibility and 

effectiveness of using 24 GHz Doppler radar to detect and extract human motion 

signals through theoretical analysis, simulation and experimental verification, and 

applied dual-channel CNN to learn high-level features, achieving 98.85% accuracy of 

motion classification [15]. The findings showed that the potential of radar technology 

in motion analysis opened a new direction for the application of sensor technology in 

the future. Dong and Wang proposed a method for recognizing athletes’ gestures based 

on improved deep neural network, designed a standard for recognizing sports gestures, 

and extracted fusion features through image processing. The experimental results 

showed that this method had a high recognition rate and the recognition time was only 

1.2 seconds [16]. This achievement emphasized the importance of rapid reaction time 

in athletes’ training monitoring. Li and Boers studied a method of human motion 

recognition in dance video based on pose estimation algorithm. The experimental 

results showed that the average recognition rate of this algorithm (77.95%) was 

slightly higher than that of other algorithms (such as deep learning algorithm 76.23%), 

which showed its application potential in dance teaching and motion analysis [17]. 

Their study provided technical support for traditional dance teaching methods and 

showed the practicability of computer vision in the art field. 

Sports posture recognition algorithms and sports training injury risk assessment 

have made some progress thus far. The motion posture recognition algorithm greatly 

enhances the ability to recognize complicated motion postures, and the SIRA approach 

improves the assessment’s accuracy and real-time performance. However, these 

methods still have shortcomings in dealing with diverse sports scenes and individual 

differences, and need to be further improved and optimized. In this paper, a SIRA 

model combined with an improved ST-GCN is proposed. By introducing AGCM and 

RCAM, the applicability and robustness of the model in different sports scenes are 

improved, which provides a new solution and theoretical support for sports training 

injury risk assessment. 
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3. SIRA model combined with ST-GCN 

The dynamic analysis algorithm is to model and analyze the time series data, and 

extract the dynamic characteristics from it to reveal the law of the object changing 

with time [18]. Sports training injury risk assessment is a specific application for this 

type of algorithm since sports activities contain intricate spatial and temporal dynamic 

features. ST-GCN, as a typical dynamic analysis algorithm, can effectively capture 

and deal with the changes in spatial and temporal dimensions during the movement 

process, and provide a deep understanding of the movement pattern [19]. The paper 

proposes a novel SIRA model to assist the safety of sports training by integrating 

AGCM and RCAM to improve ST-GCN. 

3.1. ST-GCN 

ST-GCN is a deep learning model that combines Graph Convolutional Network 

(GCN) and Temporal Convolution Network (TCN). By constructing a graph structure 

containing the relationship between space and time, the spatio-temporal characteristics 

are extracted by graph convolution operation, and the dynamic process is modeled and 

analyzed. The basic principle of ST-GCN is based on transforming time series data 

into graph structure to model spatial and temporal characteristics [20]. The initial step 

in the data construction process for human motion detection in ST-GCN is to create a 

spatio-temporal graph. The nodes of the network represent the important locations on 

the human skeleton, while the edges show the connections between these important 

locations. Assuming that there are T frames of motion data, each frame contains n 

skeleton joint points, the graph 𝐺 = (𝑃, 𝐸) can be expressed as a graph, where P is a 

node set and E is an edge set. Specifically, the node set P includes joint points in all 

frames, and is defined as: 

𝑃 = {𝑝𝑡,𝑖|𝑡 = 1,2, ⋯ , 𝑇; 𝑖 = 1,2, ⋯ , 𝑛} (1) 

Edge set E consists of two parts: spatial edge 𝐸𝑠 and time edge 𝐸𝑡. Space edge 𝐸𝑠 

describes the connection between nodes in the same frame, while time edge 𝐸𝑡 

describes the connection between the same joint points across frames. The equation is 

expressed as: 

𝐸 = 𝐸𝑠 ∪ 𝐸𝑡 (2) 

The spatial edge 𝐸𝑠 is composed of the spatial connection set S in the graph: 

𝐸𝑠 = {(𝑝𝑡,𝑖, 𝑝𝑡,𝑗)|(𝑖, 𝑗) ∈ 𝑆} (3) 

Time edge 𝐸𝑡 is the edge connecting the same joint points in adjacent frames: 

𝐸𝑡 = {(𝑝𝑡,𝑖, 𝑝𝑡+1,𝑖)|𝑡 = 1,2, ⋯ , 𝑇 − 1} (4) 

In ST-GCN, spatio graph convolution and temporal convolution are key 

operations. By merging data from each node and its surrounding nodes, the spatial 

graph convolution operation convolves the spatial graph in each frame with the aim of 

updating each node’s properties [21]. To gain a better understanding of the 

convolution product of spatio graph, the conventional two-dimensional convolution 

process is compared. Its form for the conventional two-dimensional convolution 

process is: 
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𝑓𝑜𝑢𝑡(𝑥) = ∑ ∑ 𝜔(𝑘, 𝑤)

𝐻

𝑤=1

𝐻

𝑘=1

× 𝑓𝑖𝑛(𝑥 − 𝑘, 𝑦 − 𝑤) (5) 

𝑓𝑖𝑛 is the input characteristic graph. 𝑓𝑜𝑢𝑡 is the output characteristic graph. 𝑥 is 

the abscissa of a specific position of the input feature map, and 𝑦 is the ordinate of a 

specific position of the input feature map. The size of convolution kernel is H × H. 

𝜔(𝑘, 𝑤) is the weight value of convolution kernel, and the weight at the height of k 

and the width of w. 

For the convolution operation in graph data, the convolution process becomes 

more complicated because of the irregular neighborhood structure of nodes. The 

neighborhood set V of nodes is usually expressed as: 

𝑉(𝑝𝑡,𝑖) = {(𝑝𝑡,𝑗|𝑑(𝑝𝑡,𝑖, 𝑝𝑡,𝑗) ≤ 𝐷} (6) 

𝑑(𝑝𝑡,𝑖, 𝑝𝑡,𝑗) represents the distance between nodes 𝑝𝑡,𝑖 and 𝑝𝑡,𝑗. 𝐷 is the distance 

threshold of spatial neighborhood. 

In ST-GCN, the modeling of time dimension is completed by time convolution 

network, which can capture the dynamic changes in time series data [22]. The spatio-

temporal graph convolution operation extends the spatial neighborhood of each node 

to the time dimension, which is defined as: 

𝑉𝑆𝑇(𝑝𝑡,𝑖) = {(𝑝𝑡,𝑗, 𝑝𝑎,𝑏)|𝑑(𝑝𝑡,𝑖 , 𝑝𝑡,𝑗) ≤ 𝐷 𝑎𝑛𝑑 |𝑡 − 𝑎| ≤ 𝑅} (7) 

𝑉𝑆𝑇(𝑝𝑡,𝑖) is a spatio-temporal neighborhood, that is, a set of nodes adjacent to 

node 𝑝𝑡,𝑖 in time and space. 𝑝𝑎,𝑏 is the b-th node in the a-th frame, and it is a node in 

a different time frame from node 𝑝𝑡,𝑖. 𝑑(𝑝𝑡,𝑖, 𝑝𝑡,𝑗) is the spatial distance, and |𝑡 − 𝑎| 

is the time span. 𝑅 is the scale of the time convolution kernel, which determines the 

scope of the time neighborhood, that is, the distance |𝑡 − 𝑎| between two nodes in the 

time dimension must be less than or equal to 𝑅  before they are adjacent. The 

characteristics of node 𝑝𝑡,𝑖  in the spatio-temporal neighborhood can be updated by 

combining the characteristics of nodes in the spatio-temporal neighborhood, such as: 

𝑓𝑆𝑇(𝑝𝑡,𝑖) = ∑ 𝜔(𝑝𝑡,𝑖, 𝑝𝑡,𝑗, 𝑝𝑎,𝑏)

(𝑝𝑡,𝑗,𝑝𝑎,𝑏)∈𝑉𝑆𝑇(𝑝𝑡,𝑖)

× 𝑓(𝑝𝑡,𝑗 , 𝑝𝑎,𝑏) 
(8) 

𝑓𝑆𝑇(𝑝𝑡,𝑖) is the updated feature of node 𝑝𝑡,𝑖 in the spatio-temporal neighborhood. 

𝜔 is the weight function of spatio-temporal convolution kernel, and 𝑓(𝑝𝑡,𝑗 , 𝑝𝑎,𝑏) is the 

nodes 𝑝𝑡,𝑗 and 𝑝𝑎,𝑏. 

3.2. Improved ST-GCN 

To improve the accuracy and robustness of ST-GCN in motion recognition, 

AGCM and RCAM are introduced to improve the original ST-GCN, and the improved 

ST-GCN is called ARST-GCN (AGCM + RCAM − ST-GCN). While RCAM weights 

the feature channels, AGCM can dynamically modify the adjacency matrix, improving 

the model’s capacity to extract important data. Figure 1 depicts the ARST-GCN 

model’s architecture. 
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Figure 1. ARST-GCN model architecture diagram. 

 

Figure 2. Data processing flow in ARST-GCN model. 

In ARST-GCN model, the input data is preprocessed by AGCM module. AGCM 

adjusts the adjacency matrix according to the dynamic characteristics of input features 

to optimize the graph structure. In this process, AGCM integrates data-driven 

information feedback into its calculation, and enhances the expressive ability of GCN 

by updating adjacency matrix. The processed feature map is then transferred to ST-

GCN. In this process, the adaptive adjacency matrix generated by AGCM can 

significantly improve ST-GCN’s ability to capture motion patterns. On this basis, 

RCAM module is introduced to further optimize the model performance. RCAM is 

closely combined with ST-GCN, which receives the feature map from ST-GCN, 

calculates the channel weights, and adjusts the features. RCAM processes features by 

embedding global information to ensure that key motion features are strengthened. 

This weighting operation not only improves the sensitivity to subtle movement 

changes, but also enhances the model’s ability to capture key information. Finally, the 

feature map optimized by AGCM and RCAM modules is extracted by TCN to ensure 

the complete retention of time dimension information. In the output stage, all the 
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processed feature maps are fused, and the final motion posture recognition result is 

generated through the fully connected layer. The whole process can be summarized as 

the flow chart shown in Figure 2. 

(1) Adaptive graph convolution module 

The fundamental principle of AGCM is to use data-driven mode to adaptively 

modify the graph structure to optimize it based on the properties of real data, hence 

increasing the model’s flexibility and accuracy [23]. In the basic ST-GCN, let A be the 

adjacency matrix representing the physiological connection between the key points of 

human bones, and the basic graph convolution operation can be expressed as: 

𝑓𝑜𝑢𝑡 = ∑ 𝑊𝑘𝑓𝑖𝑛𝐴𝑛𝑜𝑟𝑚
𝑘

𝐾

𝑘=1

 (9) 

𝑊𝑘 is the trainable weight matrix. 𝐴𝑛𝑜𝑟𝑚
𝑘  is the normalized adjacency matrix. 𝑓𝑖𝑛 

and 𝑓𝑜𝑢𝑡  are the input and output characteristic graphs respectively. To introduce 

adaptability, this paper proposes a data-driven adaptive graph convolution product, 

which is expressed as: 

𝑓𝑜𝑢𝑡 = ∑ 𝑊𝑘𝑓𝑖𝑛(𝑍𝑘

𝐾

𝑘=1

+ 𝐶𝑘) (10) 

𝑍𝑘 is a data-guided graph adjacency matrix, and its initial value is the parameters 

of the basic adjacency matrix 𝐴𝑘 . In the whole network training process, the 

parameters of 𝑍𝑘 are updated, so that it can adjust the graph structure adaptively under 

the guidance of training data. Compared with the fixed basic adjacency matrix 𝐴𝑘, the 

adaptive graph adjacency matrix 𝑍𝑘  can automatically adjust the connection 

relationship and strength between nodes according to the data, and even generate 

connections that do not exist in the original physiological structure, thus describing 

the dynamic characteristics of the human skeleton more flexibly [24,25]. Specifically, 

the updating process of 𝑍𝑘 is as follows: 

𝑍𝑘 = 𝐴𝑘 + 𝑄𝑘 (11) 

𝑄𝑘  is a learnable mask matrix. By learning the connection strength between 

different joints during training, the original adjacency matrix is optimized. 

In addition, 𝐶𝑘 is also an adjacency matrix of adaptive graph, which captures the 

interaction between two nodes by using normalized Gaussian embedding function by 

referring to non-local attention mechanism, and is defined as follows: 

𝐶𝑖𝑗 =
𝑒𝜑(𝑝𝑖)𝑇×𝜃(𝑝𝑗)

∑ 𝑒𝜑(𝑝𝑖)𝑇×𝜃(𝑝𝑗)𝑁
𝑗=1

 (12) 

𝜑(∗) and 𝜃(∗) are mapping functions. 𝑝𝑖 and 𝑝𝑗 are two nodes in the same frame. 

By calculating their similarity, the connection relationship and strength between nodes 

are determined. The specific calculation steps of this process are as follows: first, the 

input feature map 𝑓𝑖𝑛 is mapped to a new feature space, and the feature map with the 

size of C × T × N is obtained. Then, two embedding functions 𝜑 and 𝜃 are used to 

map it, and data with sizes of N × C × T and C × T × N are obtained. Next, the two 

characteristic matrices are multiplied to obtain a similarity matrix 𝐶𝑘 with the size of 
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N × N. 𝐶𝑖𝑗  represents the similarity between nodes 𝑝𝑖  and 𝑝𝑗 . Because normalized 

Gaussian embedding is equivalent to softmax operation, the calculation method of 

matrix 𝐶𝑘 can also be expressed as: 

𝐶𝑘 = softmax(𝑓𝑖𝑛
𝑇 𝑊𝜃𝑘

𝑇 𝑊𝜑𝑘𝑓𝑖𝑛) (13) 

(2) Residual channel attention module 

RCAM is introduced into ST-GCN, and the network’s ability to capture motion 

features is improved through adaptive correction and enhancement of different 

channel features [26]. This module’s primary goal is to give the feature information of 

various channels corresponding weights to emphasize key aspects and increase the 

model’s accuracy and resilience [27]. Figure 3 depicts the RCAM’s construction. 

 

Figure 3. Residual channel attention module. 

Firstly, the initial spatial feature map 𝑓𝑜𝑢𝑡 is embedded with global information, 

which is realized by global average pooling. Specifically, the feature map with the size 

of C × A × B is compressed into a vector O with the size of C × 1 × 1, and the equation 

is as follows: 

𝑂𝑐 = 𝐹𝑠𝑞(𝐿𝑐) =
1

𝐴 × 𝐵
∑ ∑ 𝐿𝑐(𝑖, 𝑗)

𝐵

𝑗=1

𝐴

𝑖=1

 (14) 

𝐹𝑠𝑞  is a global information embedding function, and the feature map is 

compressed from three dimensions to one dimension by global average pooling. Its 

function is to compress the two-dimensional feature map of each channel into a scalar, 

which represents the global characteristics of the channel. 𝐿𝑐(𝑖, 𝑗)  represents the 

characteristic value of the output characteristic graph at the position (𝑖, 𝑗) on channel 

c. 

Next, the vector O is excited by two fully connected layers. Firstly, the vector O 

is mapped to a 
𝐶

𝑠
 dimension vector through the first fully connected layer, and ReLU 

activation is performed to get the intermediate vector 𝑂1. Then, 𝑂1 is mapped back to 

the C-dimensional vector through the second fully connected layer, and Sigmoid 

activation is carried out to obtain the weight vector 𝑊, and the specific calculation 

process is as follows: 

𝑊 = 𝐹𝑒𝑥(𝑂) = 𝜎(𝑄2(𝛿(𝑄1𝑂))) (15) 
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𝐹𝑒𝑥 is an excitation operation function, and the compressed vector is transformed 

nonlinearly through two fully connected layers. Its function is to map the compressed 

vector 𝑂 into a weight vector 𝑊 with the same number of channels as the input feature 

map through the combination of two fully connected layers and activation functions 

to adjust the importance of each channel. 𝑄1 ∈ ℝ
𝐶

𝑠
×𝐶

 and 𝑄2 ∈ ℝ𝐶×
𝐶

𝑠  are the 

parameter matrices of two fully connected layers respectively. 𝜎 represents Sigmoid 

activation function and 𝛿 represents ReLU activation function. 

The weight vector 𝑊 is multiplied by the initial spatial feature map 𝑓𝑜𝑢𝑡 element 

by element, and then the residual connection is made with the feature map before 

correction, and the final output feature map 𝑓 is obtained by addition. The equation is 

as follows: 

𝑓 = 𝑓𝑜𝑢𝑡⨀𝑊 + 𝑓𝑜𝑢𝑡 (16) 

To sum up, AGCM dynamically adjusts the adjacency matrix in a data-driven 

way, so that the network can flexibly adapt to the temporal and spatial characteristics 

of the data. This adaptive adjustment not only optimizes the representation ability of 

graph structure, but also enhances the robustness of the model to dynamic data. On the 

other hand, RCAM ensures the prominent display of important features by weighting 

the features of each channel, thus improving the sensitivity of the model to subtle 

movement changes. Combining the advantages of these two modules, the improved 

ST-GCN shows higher accuracy and robustness when dealing with complex motion 

data, and can capture the subtle changes in human motion more effectively. 

3.3. Risk assessment model of sports injury based on ARST-GCN 

The enhanced ARST-GCN motion posture recognition algorithm is used to the 

model to increase the SIRA’s accuracy and resilience. Figure 4 illustrates the structure 

of the sports risk assessment model. 

 

Figure 4. SIRA model based on ARST-GCN. 
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This model mainly includes the following main modules: data preprocessing 

module, improved ST-GCN module, feature fusion and classification module, and 

damage risk prediction module. Firstly, the motion data is preprocessed, including data 

cleaning, normalization and skeleton point extraction. This process ensures the 

consistency and quality of input data, and lays a foundation for subsequent feature 

extraction and modeling. Secondly, ARST-GCN is used to extract features. The 

spatio-temporal features extracted by ARST-GCN are fused, and a multi-layer neural 

network is constructed for further processing and classification of features. Through 

the full connected layer and activation function, the module performs dimensionality 

reduction and nonlinear transformation on the extracted features, and finally outputs 

the classification results of motion postures. Finally, the extreme gradient boosting 

(XG Boost) technique is used to predict the injury risk of athletes during the training 

process by combining the associated factors of sports injuries with the movement 

patterns that are identified, utilizing the output results of the feature fusion and 

classification module [28]. The SIRA model based on ARST-GCN can efficiently 

identify and assess potential injury risks during sports activities and offer real-time 

risk warning and assessment recommendations thanks to the collaborative efforts of 

the above modules. 

4. Model performance verification 

4.1. Experimental design 

This experiment is divided into two parts. 

Experiment 1: Performance verification of ARST-GCN algorithm. This 

experiment is conducted on Nanyang Technical University Red Green Blue + Depth 

(NTU RGB + D) dataset, which is a standard data set widely used in motion posture 

recognition. The NTU RGB + D dataset contains 60 action categories with a total of 

56,880 action samples, and records the RGB video, depth image and skeleton data of 

each action. Each sample in the dataset consists of multiple skeleton points, and the 

coordinates of these skeleton points in three-dimensional space are used to model the 

posture and movements of athletes. To ensure the fairness and reliability of model 

evaluation, the dataset is divided into training set, verification set and test set according 

to the ratio of 8:1:1. 

In the process of hyperparameter optimization, firstly, several key parameters are 

optimized by grid search method. These parameters include learning rate, weight 

attenuation coefficient and batch size. Selections are made from a predetermined range. 

For example, the learning rate is chosen from 0.01 to 0.1, the weight decay coefficient 

is chosen from 1e-4 to 1e-2, and the batch size is chosen from 16 to 64. The optimal 

combination of hyperparameter is determined by evaluating the performance of the 

model on the validation set. In addition, an early stopping strategy is used to avoid the 

overfitting phenomenon. During the training process, the training will be stopped 

when the loss on the validation set does not improve in 10 consecutive epochs. This 

strategy effectively balances the training time and performance of the model. 

The experimental running environment and parameter settings are shown in 

Table 1. 
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Table 1. Experimental environment and parameter settings. 

Hardware/parameter name Parameter/value 

Operating system Windows10 

CPU AMD R7-5800H 

Display card NVIDIA GeForce RTX3090 

Hard disc 512G SSD 

Deep learning framework Pytorch 1.7.0 

Initial learning rate 0.1 

Epoch 50 

Data volume of each batch 32 

Weight attenuation coefficient 1 × e−4 

The experiment’s evaluation indices for motion posture recognition are the 

accuracy rate, precision rate, recall rate, and F1 value. Let TN be the number of 

samples that are accurately classified as belonging to this category. FP stands for the 

number of samples that other categories incorrectly anticipated to fall into this 

category. The number of samples that do not belong in this category and are expected 

to not belong in this category is represented by TP, while the number of samples that 

this category label predicts to belong in other categories is represented by FN. The 

accuracy calculation equation is: 

𝐴𝑐𝑐 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (17) 

F1 value is the harmonic average of precision and recall. Precision represents the 

proportion of the sample of the predicted category that belongs to the category, and its 

calculation expression is shown in Equation (18). 

𝑃𝑟𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (18) 

Recall indicates the correct sample ratio among all samples belonging to this 

category, which is calculated by Equation (19). 

𝑅𝑒𝑐 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (19) 

The calculation expression of the F1 value is shown in the public notice (20). 

𝐹1 = 2 ×
𝑃𝑟𝑒 × 𝑅𝑒𝑐

𝑃𝑟𝑒 + 𝑅𝑒𝑐
 (20) 

Experiment 2: Performance verification of SIRA model based on ARST-GCN. 

20 male volunteers are selected to carry out SIRA experiments. All participants need 

to sign an informed consent form before the start of the experiment, clearly informing 

them of the purpose, process and potential risks of participating in the study. At the 

same time, participants have the right to withdraw from the experiment at any time 

without any consequences. All the collected data are anonymously processed in the 

process of storage and analysis to ensure that the personal identity information of the 

participants is not leaked, including the de-identification of data such as sports training 

load, health status and injury records. In addition, all data are stored on a secure server, 
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and access is limited to the research team members. Through the above measures, the 

personal privacy and data security of participants are fully respected and protected. 

The average age of these participants is 20 years old, and the data of exercise training 

load, subjective perception of health, exercise quality evaluation and injury record of 

these 20 volunteers are monitored during the six-month period. Data collection is 

displayed in Table 2. 

Table 2. Data collection of experiment 2. 

Data classification Quantization method Quantitative index Explain 

Sports training load data 

Quantitative index of 

training load 

Subjective physical 

sensation scale 

Assess participants’ subjective feelings about physical 

load. 

Cumulative training load 

index 

Short-term cumulative load Record the training load within 7 days. 

Long-term cumulative load Record the training load within 28 days. 

Trend index of training load 

change 

Monotonicity of training 

load 
Evaluate the changing law of training load 

Short-term long-term load 

ratio 
Ratio of short-term load to long-term load 

Subjectively perceived 

health data 
Health status survey scale 

The health status of participants is obtained through 

questionnaire survey. 

Sports quality evaluation 

data 
Test results of squats, push-ups, 100 m sprints, etc. Record the test results of these trainings. 

Damage record data Medical examination 

Record the damage location Record the location of the damage. 

Damage property 
Record the nature of the injury (such as tear, 

contusion, etc.) 

Damage type 
Record the types of injuries (such as fractures, 

sprains, etc.) 

Damage occurrence 
Record the occurrence of injuries (e.g. during 

training, competition, etc.) 

The dataset is split at random into a training set and a verification set with a 9:1 

ratio for the experiment. The model’s precision, recall rate, and F2 value are utilized 

as performance metrics. Recall rates must be increased while maintaining precision 

because the cost of misdiagnosing an injury is far higher than that of correctly 

diagnosing it. The following calculation approach yields an F2 number that accurately 

represents the prediction model’s overall performance on both the majority and 

minority samples: 

𝐹2 =
5 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐

4 × 𝑃𝑟𝑒 + 𝑅𝑒𝑐
 (21) 

4.2. Performance verification of ARST-GCN motion recognition 

algorithm 

(1) Ablation experiment 

To test the performance of ARST-GCN model, several groups of ablation 

experiments are designed to verify the effectiveness of AGCM and RCAM modules. 

Firstly, the performance of AGCM module is verified, in which there are two 

graph adjacency matrices 𝑍𝑘  and 𝐶𝑘 , which are verified respectively. The 
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experimental results of ablation based on the adjacency matrix 𝑍𝑘 of adaptive graph 

are shown in Figure 5. 

 

Figure 5. Experimental results of ablation based on graph adjacency matrix z k . 

In Figure 5, ST-GCN noQ represents the case where the mask matrix 𝑄𝑘  is 

removed in the ST-GCN model, and ST-GCN + Z represents the case where only the 

graph adjacency matrix 𝑍𝑘 is used. Figure 5 shows that the performance of the model 

without the mask matrix 𝑄𝑘 is the worst, indicating the importance of the mask matrix. 

The model using graph adjacency matrix 𝑍𝑘  performs better, and its accuracy, 

precision, recall and F1 value are 0.939, 0.925, 0.919 and 0.922, respectively. 

Compared with the basic ST-GCN model, the model using 𝑍𝑘  has achieved 

remarkable improvement in all evaluation indexes, and the accuracy, precision, recall 

and F1 value have increased by 1.29%, 1.09%, 2.11% and 1.65% respectively. This 

fully demonstrates the effectiveness of graph adjacency matrix 𝑍𝑘 of AGCM module 

in feature capture and information flow. This is because through the graph adjacency 

matrix 𝑍𝑘, the model can dynamically adjust the connection relationship and strength 

between nodes according to the characteristics of training data, thus optimizing the 

movement posture recognition process. 𝑍𝑘  not only improves the accuracy of the 

model, but also enhances its ability to identify key information, ensuring that different 

categories can be effectively distinguished in complex motion postures. 

 

Figure 6. Experimental results of ablation based on graph adjacency matrix c k. 
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The experimental results of ablation based on graph adjacency matrix 𝐶𝑘  are 

shown in Figure 6. 

In Figure 6, the ST-GCN + Z + C model combined with the adjacency matrix of 

two graphs has the best performance in accuracy, precision, recall and F1 value, with 

accuracy of 0.942, precision of 0.94, recall of 0.943 and F1 value of 0.941. Compared 

with the model with only one graph adjacency matrix, the accuracy, precision and F1 

value are improved by 0.32%, 1.62% and 1.62% respectively. This shows that using 

graph adjacency matrices 𝑍𝑘 and 𝐶𝑘 at the same time can significantly improve the 

overall performance of the model, and verifies the optimization effect of the fusion 

graph adjacency matrix on the model performance. This is because the graph 

adjacency matrix 𝐶𝑘 can dynamically adjust the connection strength between nodes by 

capturing the interaction between nodes and using the non-local attention mechanism, 

thus reflecting the complex characteristics in the movement process more accurately. 

At the same time, the introduction of 𝐶𝑘 ensures that the model can comprehensively 

consider the interaction between joints when dealing with dynamic motion data. This 

fusion not only improves the accuracy of feature extraction, but also enhances the 

sensitivity of the model to subtle changes. To sum up, AGCM module significantly 

optimizes the overall performance of motion posture recognition by effectively 

integrating 𝑍𝑘  and 𝐶𝑘, which fully proves its unique contribution in improving the 

expression ability of the model. 

Secondly, the performance of RCAM module is verified, and the result is shown 

in Figure 7. 

 

Figure 7. Experimental results of ablation based on RCAM module. 

In Figure 7, the ST-GCN + Z + C + RCAM model, which combines the 

adjacency matrix of two graphs and RCAM module, performs best in all indicators, 

with an accuracy of 0.945, a precision of 0.943, a recall of 0.95 and a F1 value of 

0.946. Compared with ST-GCN, the accuracy increased by 1.94% and the F1 value 

increased by 4.3%. Compared with ST-GCN + Z + C model without RCAM module, 

the accuracy is improved by 0.32% and the F1 value is improved by 0.53%. These 

data show that the introduction of RCAM module can improve the performance of the 



Molecular & Cellular Biomechanics 2024, 21(3), 484.  

15 

model. This is mainly because RCAM module effectively enhances the model’s ability 

to capture key information by weighting the importance of different characteristic 

channels. Specifically, RCAM module embeds the global information of each channel 

of the input feature map through global average pooling operation, and ensures that 

the important features are strengthened while the secondary features are suppressed 

through adaptive weight distribution. This feature enhancement mechanism enables 

ARST-GCN model to capture subtle changes in motion more accurately, especially in 

posture recognition tasks under complex motion patterns. 

(2) Comparison with other algorithms 

To better validate the effectiveness of the ABST-GCN model, comparisons are 

conducted on the NTU RGB + D dataset. The model is compared with Deep Long 

Short-Term Memory (D-LSTM), Variational Autoencoder Long Short-Term Memory 

(VA-LSTM), TCN, Adaptive Spatio-Temporal Graph Convolutional Network (AS-

GCN), as well as the Spatio-Temporal Transformer (ST-TR) model and Pose 

Transformer (PoseFormer) model, which were both proposed in recent years 

specifically for human motion recognition tasks and feature innovative approaches in 

spatio-temporal feature modeling. The results are shown in Figure 8. 

 

Figure 8. Performance comparison of different motion posture recognition 

algorithms. 

In Figure 8, the ABST-GCN model performs well in the task of motion posture 

recognition, with its accuracy of 0.945, precision of 0.94, recall of 0.95 and F1 value 

of 0.945. Compared with the second performance ST-TR model, the accuracy, 

precision and F1 value are improved by 0.32%, 0.53% and 0.21% respectively. On the 

whole, ABST-GCN performs well in all performance indexes, which shows its 

remarkable advantages in dealing with complex motion posture recognition tasks. 

(3) Comparison of model computing resources 

In order to evaluate the feasibility and efficiency of ARST-GCN model in 

practical application, the differences in computing resources and training time between 

ARST-GCN and ST-GCN models under the same hardware environment are 

compared, and the results are shown in Table 3. 
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Table 3. Comparison of computing resources and training time between ARST-GCN and ST-GCN. 

Model Parameter quantity Training time (hours) GPU utilization (%) Memory requirements (GB) 

ST-GCN 3.1M 1.8 80 4 

ARST-GCN 3.5M 2.7 85 6 

Table 3 shows that ARST-GCN model has more parameters than ST-GCN in 

terms of the number of model parameters, mainly due to the introduction of AGCM 

and RCAM modules. This makes the total parameters of ARST-GCN model reach 

about 3.5M, while that of ST-GCN model is about 3.1M. Although the increase of 

parameters may improve the expressive ability of the model, it also leads to higher 

computational complexity. The training time of ARST-GCN model is slightly longer. 

Specifically, in the same hardware environment, the training time of ST-GCN model 

is 1.8 hours, while that of ARST-GCN model is 2.7 h. This difference is mainly 

because ARST-GCN needs to perform extra calculation steps in the training process 

to deal with the complexity introduced by AGCM and RCAM modules. Memory 

requirement is also an important index to evaluate the computing resources of the 

model. The memory requirement of ARST-GCN model is relatively high, about 6GB, 

while that of ST-GCN is 4GB. This means that using ARST-GCN model may face 

certain challenges in the environment of limited resources. Finally, the comparison of 

GPU utilization shows that the GPU utilization rate of ARST-GCN model is 85% 

during training, while that of ST-GCN model is 80%. This shows that ARST-GCN 

model can use GPU resources more effectively in the training process, but it also 

further increases the computational burden. On the whole, although ARST-GCN 

model has significantly improved its performance, the increase of its computing 

resources and training time has also brought challenges to practical application. 

(4) Confusion matrix 

The confusion matrix results of ARST-GCN model for five different action 

categories on NTU RGB+D dataset are shown in Figure 9. 

 

Figure 9. Accuracy confusion matrix of ARST-GCN model in five different actions. 
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In Figure 9, ARST-GCN model shows high recognition accuracy in most action 

categories, especially “lying” and “sitting” actions, and the accuracy in the confusion 

matrix is significantly higher than other values, indicating that these actions have 

better recognition effects. This is due to the obvious characteristics of these two actions 

in spatial posture. When lying down, the body is relatively static, and in most cases, 

the joint angle of the body changes little, which makes it easier for the model to extract 

relevant features. In the standing posture, although there is a certain dynamic, the 

overall action pattern is relatively stable and easy to identify. There is certain 

confusion between some action categories, such as “walking” and “running”, which 

may be due to the biomechanical similarity between the two actions. Although running 

is faster than walking, and the gait is different, they may show similar skeletal 

movement patterns in the same environment and perspective. Therefore, ARST-GCN 

model may still need further optimization in capturing these dynamic features. 

4.3. Performance verification of SIRA model 

To confirm the effectiveness of the suggested model, the SIRA model utilizing 

XGBoost is contrasted with models utilizing Random Forest (RF), Decision Tree (DT), 

and Logistic Regressive (LR). In Figure 10, the outcome is displayed. 

 

Figure 10. Performance comparison results of different SIR models. 

Figure 10 shows that the precision, recall and F2 of XGBoost are 0.752, 0.937 

and 0.893, respectively, and the overall performance is the most balanced and 

excellent, especially in the aspect of recall, which is very important for SIRA, because 

a higher recall means fewer real injuries are missed. This result shows that XGBoost 

has obvious advantages in dealing with SIRA tasks, and because of its higher recall 

rate and F2 value, it is especially suitable for application scenarios that require highly 

accurate detection. 
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5. Conclusion 

By optimizing ST-GCN, this paper puts forward a SIRA model based on the 

optimized ARST-GCN, and evaluates the performance of this model through 

experiments. The conclusions are as follows: (1) In the ablation experiment based on 

AGCM, the model using graph adjacency matrix 𝑍𝑘 and 𝐶𝑘 at the same time has the 

best accuracy of 0.942, precision of 0.94, recall of 0.943 and F1 value of 0.941, which 

verifies the optimization effect of the fused AGCM module on the model performance. 

(2) In the RCAM-based ablation experiment, ARST-GCN combined with AGCM and 

RCAM modules performed the best in all indexes, and compared with the model only 

combined with AGCM, the accuracy increased by 0.3% and the F1 value increased by 

0.5%. This shows that the introduction of AGCM module and RCAM module 

significantly improves the performance of the model, which proves the effectiveness 

of RCAM module in improving the overall ability of motion posture recognition. (3) 

In the performance comparison of different SIR models, the precision, recall and F2 

of XGBoost are 0.752, 0.937 and 0.893, respectively, and the overall performance is 

the most balanced and excellent, especially in the recall, which shows that XGBoost 

has obvious advantages in dealing with SIRA tasks.  

However, there are still some shortcomings in this paper. The implementation of 

ARST-GCN model in real sports training also faces some practical challenges. Firstly, 

the model has high computational complexity. This complexity is particularly evident 

in practical application scenarios. In these scenarios, the model may need to process a 

large number of real-time data. This requirement places a high demand on hardware 

resources and computing power. How to effectively optimize the calculation 

efficiency and ensure the performance of the model is a big challenge in the process 

of model deployment. Secondly, the equipment for collecting motion data in sports 

training needs to have high accuracy and reliability, but the high-performance motion 

capture system is often expensive, which may limit the cost in large-scale 

implementation. In addition, the action characteristics of different sports events are 

quite different, and the adaptability of the model in different sports scenes still needs 

further verification. Future research can explore the generalization ability of the model 

in various sports environments, and how to reduce the dependence on expensive 

equipment and promote wider practical application. It can also be further extended to 

the combination of wearable technology to realize real-time sports data collection and 

risk assessment and explore the applicability of the model in different sports to verify 

its wide application potential. These directions will help to improve the practicality 

and popularization value of the model in actual sports training. 
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