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Abstract: The biomechanical mechanisms of swimming involve a number of aspects. The 

forces exerted by muscles during different swimming postures are crucial. These muscle 

contractions and relaxations follow specific biomechanical principles. This work aims to 

develop a swimming posture recognition system based on inertial sensors and a 

Convolutional Neural Network-Support Vector Machine (CNN-SVM) to improve the 

accuracy and real-time performance of posture recognition. First, an inertial sensor system to 

be worn on swimwear is designed to collect three-axis motion data, including acceleration, 

angular velocity, and magnetometer readings. The collected data are then preprocessed 

through denoising, normalization, and feature extraction steps to ensure high-quality input 

data. Next, a Convolutional Neural Network (CNN) is constructed to automatically extract 

high-level features from the preprocessed sensor data. The CNN model, through multi-layer 

convolution and pooling operations, effectively captures the spatiotemporal patterns in the 

motion data, extracting highly distinguishable features for posture recognition. To further 

improve the model’s classification performance, a Support Vector Machine (SVM) classifier 

is applied based on the CNN model. Specifically, CNN is responsible for feature extraction, 

while the SVM handles the final posture classification. Cross-validation is used to train and 

validate the model, assessing its performance. Experimental results show that the model 

achieves a 95% accuracy rate on the training dataset and maintains an accuracy rate above 93% 

on the test dataset. The system can accurately and in real-time recognize various swimming 

postures, including freestyle, breaststroke, backstroke, and butterfly. The recognition 

accuracy for all four swimming styles exceeds 91%. Understanding these biomechanical 

mechanisms helps in improving the accuracy of the recognition system. In summary, the 

proposed method for swimming posture recognition based on inertial sensors and CNN-SVM 

has significant advantages in accuracy and real-time performance. It allows for better 

interpretation of the sensor data and more precise identification of different postures. The 

high accuracy and generalization ability of the proposed system suggest that it can effectively 

capture and analyze the biomechanical nuances of swimming, providing valuable insights for 

swimming training and performance evaluation, and opening up new avenues for intelligent 

sports monitoring. evaluation. 

Keywords: biomechanical mechanisms; inertial sensors; convolutional neural network; 

support vector machine; swimming posture recognition 

1. Introduction 

Swimming, as a widely participated sport, offers significant health benefits and 

holds an important place in competitive sports and recreational activities. However, 

accurately recognizing swimming postures has always been a key challenge in 
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swimming training and performance evaluation [1–3]. Traditional methods of 

recognizing swimming postures mainly rely on video analysis and the professional 

judgment of coaches. These methods are not only time-consuming and labor-

intensive but also subject to environmental conditions and the subjective factors of 

observers, making efficient and accurate posture recognition difficult to achieve [4]. 

With the progress of sensor technology and artificial intelligence, methods based on 

inertial sensors and deep learning for swimming posture recognition have gradually 

become a research hotspot [5]. These methods automatically recognize and classify 

swimming postures by capturing subtle changes in motion data, significantly 

improving recognition accuracy and real-time performance. 

Current swimming posture recognition methods primarily rely on video analysis 

and manual feature extraction. While these methods have achieved some success in 

specific scenarios, they often require high computational costs and complex manual 

configurations. Moreover, they still face challenges in handling complex movement 

patterns and accommodating individual differences among swimmers. Therefore, the 

motivation for this work stems from the recognition of the limitations and 

breakthroughs of existing swimming posture recognition methods. Although current 

methods have improved posture recognition accuracy to some extent, they still face 

challenges in handling complex motion patterns and accommodating individual 

differences among swimmers [6]. Inertial sensors, as portable and efficient data 

collection tools, can stably and continuously obtain motion data in various 

environments, providing a new data source for swimming posture recognition. 

Meanwhile, Convolutional Neural Network (CNN) has demonstrated excellent 

performance in processing image and spatiotemporal data, making it an ideal choice 

for feature extraction. Support Vector Machine (SVM), as a powerful classifier, has 

good generalization ability and can construct optimal classification decision 

boundaries in high-dimensional spaces. Therefore, combining inertial sensors, CNN, 

and SVM to construct an efficient swimming posture recognition system is the core 

objective of this work. 

The primary research objective is to develop a swimming posture recognition 

system based on inertial sensors and CNN-SVM to improve the accuracy and real-

time performance of swimming posture recognition. By integrating inertial sensors, 

CNN, and SVM, a new method for swimming posture recognition is proposed. 

Compared with traditional methods, this approach has significant advantages in 

terms of recognition accuracy and real-time performance. Moreover, it exhibits 

excellent generalization ability, adapting to the recognition needs of different 

swimmers and various swimming postures. The significance of this work lies in 

providing a new technological pathway for the application of intelligent sports 

monitoring devices. With the increasing emphasis on exercise and health, the 

application prospects of intelligent sports monitoring devices in training and 

performance evaluation are broad. This work not only provides an efficient method 

for swimming posture recognition but also offers a reference for posture recognition 

and monitoring in other sports forms. By improving the accuracy and real-time 

performance of posture recognition, the proposed system can help swimmers better 

understand their motion states, promptly adjust training strategies, and enhance 

performance. Additionally, this system can be applied in swimming teaching and 
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rehabilitation training, providing scientific and reliable data support for coaches and 

medical personnel. 

2. Related work 

In recent years, the recognition of sports postures based on inertial sensors has 

garnered widespread attention in the fields of sports science and intelligent wearable 

devices. Baniasad et al. studied a running posture recognition method based on an 

Inertial Measurement Unit (IMU) [7]. They integrated accelerometer and gyroscope 

data and used a random forest classifier for posture recognition. The findings showed 

high accuracy across different runners. Cust et al. developed a system for gymnastics 

movement recognition, and utilized IMU sensor data input into a Long Short Term 

Memory (LSTM) network to efficiently recognize complex gymnastics movements 

[8]. 

In the realm of swimming posture recognition, Xing et al. proposed a multi-

sensor fusion-based swimming posture recognition system [9]. While it performed 

well on static datasets, it faced limitations in dynamic and real-time applications. 

Similarly, Xu combined accelerometer and magnetometer data with a CNN for 

swimming posture recognition, achieving high classification accuracy [10], but the 

real-time application remained a challenge. Hernandez et al. studied motion posture 

recognition based on deep learning, presenting a model combining CNN and 

Recurrent Neural Network for real-time recognition of various sports postures [11]. 

Despite its outstanding performance in multiple sports, its feature extraction 

capability for swimming posture recognition needed improvement. Taborri et al. 

explored machine learning algorithms based on inertial sensor data, achieving high 

recognition accuracy in static environments [12]. Additionally, You et al. addressed 

data preprocessing issues in posture recognition, proposing a wavelet transform-

based denoising method to enhance sensor data quality [13]. Although effective in 

reducing noise, its high computational complexity limited real-time application. In 

contrast, Sun et al. used standardization and normalization techniques for 

preprocessing sensor data, significantly improving data input quality and enhancing 

model performance [14]. 

To improve model real-time performance, Zhong et al. developed a lightweight 

CNN, reducing model parameters and computational complexity for efficient 

operation on embedded devices [15]. However, this method’s generalization ability 

in practical applications was limited, making it difficult to adapt to different 

swimmers and various postures. 

In summary, although existing research on sports posture recognition based on 

inertial sensors has achieved certain results across different sports, there remain 

some shortcomings in the field of swimming posture recognition. First, many 

methods perform excellently on static datasets but face limitations in actual dynamic 

and real-time applications. Then, the choice of feature extraction and data 

preprocessing techniques significantly impacts recognition accuracy and real-time 

performance, but current research optimization in this regard is insufficient. 

Additionally, model generalization ability is a pressing issue, with existing methods 

struggling to adapt to different swimmers and various postures. The innovations of 
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this work are as follows. First, a hybrid model based on inertial sensors and CNN-

SVM is proposed. This model leverages the feature extraction capabilities of the 

CNN and the classification strengths of SVM to improve posture recognition 

accuracy and real-time performance. Next, an efficient data preprocessing process, 

including denoising, standardization, and feature extraction, is designed to ensure 

high-quality data input. Finally, cross-validation is used to train and validate the 

model, comprehensively evaluating its performance. Experimental results show that 

this method has promising applications in actual swimming environments. This work 

not only achieves significant progress in posture recognition accuracy and real-time 

performance but also proposes a method with excellent generalization ability, 

adapting to different swimmers and various swimming postures. It offers a new 

technological pathway for intelligent sports monitoring devices and holds important 

implications for enhancing swimming training and performance evaluation. 

3. Construction of swimming posture recognition model based on 

inertial sensors and CNN-SVM 

3.1. Inertial sensor system design 

This work adopts an integrated attitude sensor module with a waterproof 

treatment suitable for motion data collection in swimming environments [16]. 

Figure 1 displays the structure of the sensor module, which internally integrates a 

high-precision three-axis accelerometer, three-axis gyroscope, and three-axis 

magnetometer. 

WIFI wireless 

module

Power module

Three-axis 

accelerometer

Three-axis angular 

velocity sensor

Three-axis 

geomagnetic field 

sensor

Micro controller

Clock module

 

Figure 1. Sensor structure. 

Inside the sensor module, a high-performance microcontroller polls the 

measurement data from each sensor. It combines the data with a dynamic attitude 

solver and Kalman dynamic filtering algorithm to real-time solve the current motion 

posture of the sensor module. The posture and time data are uploaded in real-time 

via a Wireless Fidelity (WIFI) wireless module. When the sensor module remains 

stationary for more than five minutes, it automatically enters sleep mode to conserve 

system power; upon detecting motion, it automatically exits sleep mode and returns 
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to normal operation. The entire sensor module is equipped with an external 

Universal Serial Bus (USB) charging interface and is powered by a built-in power 

module [17,18]. 

The sensor module consumes approximately 50 mW of power during normal 

operation. Equipped with a 1000 mAh lithium-polymer battery, this module can 

operate continuously for about 20 h, meeting the duration requirements of regular 

swimming training sessions. To optimize battery efficiency, the sensor module 

automatically enters sleep mode after five minutes of inactivity and wakes up once 

movement is detected. This design ensures reliable monitoring during extended 

training periods without the need for frequent recharging. 

To ensure data accuracy and comprehensiveness, this work performs 

initialization settings on the sensor module. Table 1 shows the specific parameters. 

Table 1. Sensor module parameter settings. 

Parameter Value Accuracy 

Accelerometer Measurement Range ±16 g 0.01 g 

Gyroscope Measurement Range ±2000 °/s 0.05 °/s 

Data Sampling Frequency 100 Hz - 

The sensor module is installed at the center of the swimmer’s waist and back 

using a strap to ensure the stability and reliability of data collection. To guarantee the 

real-time accuracy and precision of the data, this work employs a Kalman dynamic 

filter to process the sensor data. The Kalman filter is a recursive algorithm that 

optimizes measurement results by estimating the system’s state variables and error 

covariance. The mathematical expressions for the filtering process are shown in 

Equations (1)–(3): 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 −𝐻𝑥𝑘|𝑘−1) (1) 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅)−1 (2) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1 (3) 

𝑥𝑘|𝑘−1 represents the predicted state variable, 𝑥𝑘|𝑘  refers to the updated state 

variable, and 𝐾𝑘 is the Kalman gain. 𝑃𝑘|𝑘−1 is the predicted error covariance, 𝑃𝑘|𝑘 is 

the updated error covariance, 𝐻 is the observation matrix, and 𝑅 is the measurement 

noise covariance matrix. 

During the data collection process, to obtain high-quality motion labels, this 

work uses high-speed cameras from Zhongchuang Lianda Company to record 

synchronized videos. The video frame rate is set to 5000 frames per second. By 

reviewing the video frame-by-frame synchronized with the sensor data time, the 

swimmer’s actual movements and movement time are determined. The collected 

data are uploaded in real-time to a server via a WIFI wireless module and stored. 

Each data collection includes acceleration, angular velocity, and timestamps. 
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3.2. Data preprocessing 

Data preprocessing is an essential step before conducting swimming posture 

recognition. High-quality data preprocessing can significantly enhance the model’s 

recognition accuracy and stability. The data preprocessing includes denoising, 

normalization, and feature extraction. 

Raw sensor data typically contains various types of noise, such as 

environmental noise and electronic noise. To eliminate these noises, this work uses a 

low-pass filter to smooth the data. A cutoff frequency of 10 Hz is selected because it 

effectively removes high-frequency noise while preserving the key features of 

swimming motions. The mathematical expression for the filtering process is as 

follows. 

𝑦[𝑛] =
1

𝑁
∑ 𝑥[𝑛 − 𝑘]

𝑁−1

𝑘=0

 (4) 

In Equation (4), 𝑦[𝑛] represents the filtered data, 𝑥[𝑛] represents the raw data, 

and 𝑁 is the filter window size. This work selects a low-pass filter with a window 

size of 5 to smooth the three-axis acceleration and angular velocity data. 

Since the measurement ranges and units of the sensor data differ, 

standardization is required to eliminate discrepancies between different dimensions. 

Standardization scales the data to a uniform range, improving the effectiveness of 

model training. The standardization process is as Equation (5): 

𝑥′ =
𝑥 − 𝜇

𝜎
 (5) 

𝑥 is the raw data, 𝜇 is the mean of the data, and 𝜎 is the standard deviation of 

the data. The standardized data has the properties of a mean of 0 and a standard 

deviation of 1, which facilitates faster convergence of the model. 

Feature extraction involves identifying useful feature values from the raw data 

for posture recognition. To capture the dynamic changes in swimming movements, 

this work employs a method that combines time-domain and frequency-domain 

features to extract characteristics from the preprocessed acceleration and angular 

velocity data. The specific features include Time-domain features: Mean, standard 

deviation, maximum value, minimum value, and peak value; frequency-domain 

features: spectral energy, dominant frequency, and band energy extracted through 

Fast Fourier Transform (FFT). The FFT is represented by Equation (6): 

𝑋(𝑓) = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

𝑒−𝑗𝑧𝜋𝑓𝑛/𝑁 (6) 

𝑋(𝑓) represents the frequency-domain signal, 𝑥[𝑛] is the time-domain signal, 

and 𝑁 is the data length. Feature vectors rich in motion information are obtained 

through feature extraction, providing high-quality input data for subsequent model 

training and posture recognition. 
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3.3. CNN construction 

CNN has significant advantages in processing time series and image data. To 

extract high-level features from the preprocessed sensor data, this work designs and 

trains a CNN-based model for swimming posture recognition [19,20]. 

The CNN architecture designed here consists of the input layer, convolutional 

layer, pooling layer, fully connected layer, and output layer. Figure 2 illustrates the 

specific structure. 

Input layer

Convolutional 

layer
Pooling layer

Fully connected layer

Output layer

Feature 

map

Feature 

map

Feature 

map

Feature 

map

 

Figure 2. CNN architecture. 

The input data consists of multidimensional time series with a shape of (N, T, 

C). N represents the number of samples, T is the time steps, and C is the number of 

channels (including data from the three axes of acceleration and angular velocity). 

Convolution operations are performed to extract the spatiotemporal features from the 

data. Each convolutional layer contains several convolutional kernels, and the 

convolution operation is represented by Equation (7): 

𝑦𝑖,𝑗 = ∑ ∑ 𝑥𝑖+𝑚,𝑗+𝑛

𝑁−1

𝑛=0

× 𝑤𝑚,𝑛

𝑀−1

𝑚=0

+ 𝑏 (7) 

𝑦𝑖,𝑗  represents the convolution output, 𝑥𝑖+𝑚,𝑗+𝑛  is the input data, 𝑤𝑚,𝑛  is the 

weight of the convolutional kernel, and 𝑏  is the bias. Pooling operations are 

performed to reduce the size of the feature maps while retaining important features 

and decreasing computational complexity. Common pooling methods include max 

pooling and average pooling, with max pooling represented by Equation (8): 

𝑃𝑖,𝑗 = max(𝑥𝑖+𝑚,𝑗+𝑛) (8) 

𝑃𝑖,𝑗 represents the pooling output. The feature maps obtained from convolution 

and pooling are flattened into a one-dimensional vector and further processed 

through fully connected layers for feature extraction. The output of the fully 

connected layer undergoes a nonlinear transformation via an activation function, 

commonly using the Rectified Linear Unit (ReLU), represented by Equation (9): 

𝑦 = max(0, 𝑥) (9) 
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The final output layer uses the Softmax activation function to map the feature 

vector to a probability distribution over the various swimming postures. The Softmax 

function is as Equation (10). 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑗
 (10) 

𝑧𝑖 represents the raw output for the 𝑖-th class, and 𝑃(𝑦𝑖) denotes the probability 

for the 𝑖-th class. 

The model training process consists of three steps: forward propagation, loss 

calculation, and backward propagation. In forward propagation, the input data passes 

through the convolutional layers, pooling layers, fully connected layers, and output 

layers to generate predictions. The loss calculation uses the cross-entropy loss 

function to compute the difference between the predicted results and the true labels, 

as shown in the following Equation (11): 

𝐿 = −∑𝑦𝑖

𝐶

𝑖=1

log(𝑃(𝑦𝑖)) (11) 

𝐿 represents the loss value, 𝐶 is the number of classes, 𝑦𝑖 denotes the true label, 

and 𝑃(𝑦𝑖) is the predicted probability. The backpropagation algorithm computes the 

gradients of the parameters for each layer, and the parameters are updated using the 

gradient descent method. The parameter update expression is as Equation (12): 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐿(𝜃𝑡) (12) 

𝜃𝑡  represents the parameters at the 𝑡-th iteration, 𝜂  is the learning rate, and 

∇𝐿(𝜃𝑡) is the gradient of the loss function with respect to the parameters. During 

model training, the stochastic gradient descent algorithm is employed, along with 

momentum and learning rate decay strategies, to accelerate model convergence and 

enhance training stability. 

3.4. SVM classifier 

This work recruits 20 professional swimmers (age range: 18–30 years old, 

training experience: 5–10 years) and 15 amateur swimming enthusiasts (age range: 

16–40 years old, swimming experience: 2–5 years). These participants possess 

varying levels of swimming skills to ensure data diversity and representativeness. All 

participants sign informed consent forms before taking part in the study, ensuring 

ethical compliance. The data collection process is synchronized using high-speed 

cameras and worn inertial sensor modules to ensure the accuracy and reliability of 

the collected data. 

SVM is a supervised learning model primarily used for classification and 

regression analysis. To further enhance the classification performance of swimming 

posture recognition, this work employs SVM as the final classifier, leveraging the 

features extracted by CNN [21,22]. Table 2 outlines the SVM algorithm training 

process. 
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Table 2. SVM algorithm training process. 

Step Description 

1 Input: Dataset(𝑥1, 𝑦1), (𝑥2, 𝑦2),⋯ , (𝑥𝑁, 𝑦𝑁), where 𝑥𝑖 is the feature vector and 𝑦𝑖 ∈ {−1,1}is the label 

2 Initialize: Set regularization parameter CCC and kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) 

3 Formulate the optimization problem: 

3.1 𝑚𝑖𝑛𝛼
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) −∑𝛼𝑖

𝑁

𝑖=1

𝑁

𝑗=1

𝑁

𝑖=1

 

3.2 s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶,∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖 = 0 

4 Solve for the Lagrange multipliers 𝛼: Use an optimization algorithm (e.g., SMO algorithm) to solve for the Lagrange multipliers 𝛼𝑖 

5 Calculate weight vector 𝑤 and bias 𝑏: 

5.1 𝑤 =∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖𝜙(𝑥𝑖) 

5.2 For any support vector𝑥𝑘, compute 𝑏 

5.3 𝑏 = 𝑦𝑘 −∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑖=1

 

6 Construct the decision function: 

6.1 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏) 

7 Output: The classification decision function 𝑓(𝑥) 

SVM’s fundamental idea is to construct a hyperplane in a high-dimensional 

space to maximize the margin between different classes, thereby achieving sample 

classification [23,24]. For linearly separable data, SVM determines the optimal 

classification hyperplane through the optimization problem described by Equations 

(13) and (14): 

𝑚𝑖𝑛𝑤,𝑏
1

2
‖𝑤‖2 (13) 

𝑠. 𝑡. 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2,⋯ ,𝑁 (14) 

𝑤 represents the weight vector, 𝑏 is the bias, 𝑦𝑖 is the label for the sample 𝑥𝑖, 

and 𝑁  is the number of samples. By solving the Lagrangian dual problem and 

applying the Karush-Kuhn-Tucker (KKT) conditions, the support vectors and their 

corresponding decision function can be derived. 

For linearly inseparable data, SVM introduces a kernel function to map the data 

into a high-dimensional space where the data become linearly separable. Commonly 

used kernel functions include the linear kernel, the radial basis function (RBF) kernel, 

and the polynomial kernel. This work selects the RBF kernel, and its expression 

reads: 

𝐾(𝑥𝑖, 𝑥𝑗) = exp(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) (15) 

𝛾  is the kernel parameter that controls the mapping effect into the high-

dimensional space. In this swimming posture recognition system, the SVM classifier 
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is responsible for classifying the high-level features extracted by the CNN. This 

work selects a CNN-SVM combined model for swimming posture recognition based 

on several key considerations. First, CNN demonstrates exceptional performance in 

extracting spatiotemporal features. Through multiple layers of convolution and 

pooling operations, local features in images are effectively captured, and higher-level 

abstract features are progressively built. This is crucial for swimming posture 

recognition, as swimming movements often involve complex spatial and temporal 

variations. Through CNN, fine-grained spatiotemporal features are extracted from 

video sequences, accurately reflecting the athletes’ dynamic performance. Second, 

SVM is particularly effective in classification tasks within high-dimensional spaces 

[25–27]. Optimal hyperplanes are created by SVM to separate different categories of 

data, and robust classification capabilities of SVM enable its good performance even 

when dealing with complex and high-dimensional data [28,29]. This is especially 

beneficial in scenarios with small sample sizes, which aligns with the limited number 

of participants here. Therefore, combining the SVM with CNN allows for the 

utilization of high-dimensional features extracted by CNN, further enhancing 

classification accuracy. Finally, the CNN-SVM combined model leverages the 

strengths of both methods to improve the accuracy and real-time performance of 

swimming posture recognition. Feature extraction from the input data is handled by 

CNN, while SVM is responsible for the subsequent classification tasks. This division 

of labor not only boosts the overall performance of the model but also reduces 

computational complexity to some extent, making real-time applications feasible. 

The effectiveness of this combined approach provides a solid theoretical foundation 

and practical support for accurately recognizing swimming postures in this research. 

Figure 3 shows the swimming posture recognition model based on the inertial 

sensor and CNN-SVM. 
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Power module
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Micro controller
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Figure 3. Swimming posture recognition model based on inertial sensors and CNN-

SVM. 

Figure 4 presents an inertial sensor system designed to be worn on a swimsuit. 

This system integrates the high-precision three-axis accelerometer, three-axis 

gyroscope, and three-axis magnetometer, and uploads posture and time data in real-

time via a WiFi module. To adapt to the swimming environment, the sensor 

component is treated for waterproofing, and appropriate measurement ranges and 
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sampling frequencies are selected to ensure the accuracy and reliability of data 

collection. Next, the collected data are preprocessed, including denoising, 

standardization, and feature extraction, to guarantee high-quality input data. 

Specifically, the denoising process uses a Kalman filter to reduce sensor noise, while 

the standardization step converts the data to a unified scale range. During feature 

extraction, this work focuses on extracting time-domain and frequency-domain 

features that reflect the characteristics of swimming actions, enhancing the model’s 

recognition ability. After data preprocessing, a CNN model is constructed to 

automatically extract high-level features. This model consists of multiple 

convolutional and pooling layers. By performing layer-by-layer convolution and 

down-sampling on the input data, the model effectively captures spatiotemporal 

patterns in the motion data and extracts features with high recognition capability for 

posture recognition. The filter parameters of the convolutional layers are trained 

using the backpropagation algorithm, enabling the model to learn optimal feature 

representations from the data. To further improve classification performance, this 

work uses an SVM as the classifier on top of the CNN model. Specifically, the CNN 

model extracts high-level features from the preprocessed sensor data, and the SVM 

utilizes these features for the final posture classification. By solving a quadratic 

optimization problem, the SVM finds the optimal classification hyperplane, 

distinguishing different swimming postures. During training, cross-validation is 

adopted to evaluate the model’s performance, ensuring its generalization ability. 
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Figure 4. Performance of the model under different parameters. 

“1” indicates the number of convolutional layers: 3 layers; “2” indicates the 

number of convolutional layers: 4 layers; “3” indicates the number of convolutional 

layers: 5 layers; “4” indicates the number of pooling layers: 2 layers; “5” indicates 

the number of pooling layers: 3 layers; “6” indicates SVM kernel function: linear 

kernel; “7” indicates SVM kernel function: RBF; “8” indicates SVM kernel function: 

polynomial kernel; “9” indicates SVM penalty parameter C: 1; “10” indicates SVM 

penalty parameter C: 10; “11” indicates SVM penalty parameter C: 100. 
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4. Experimental results of the swimming posture recognition model 

based on CNN-SVM 

This work conducts a comprehensive evaluation of the performance of the 

swimming posture recognition system based on inertial sensors and CNN-SVM 

under different parameter settings. Specifically, it tests the impact of the number of 

convolutional layers, pooling layers, SVM kernel function types, and penalty 

parameter C on model performance. Figure 4 presents the model performance under 

various parameters. By adjusting the number of convolutional layers, pooling layers, 

and the SVM kernel function along with the penalty parameter C, variations in the 

accuracy, precision, recall, and F1 score in the training and testing sets are observed. 

First, a configuration with three convolutional layers achieves a good balance 

between accuracy and computational efficiency, resulting in an accuracy of 94.80% 

on the training set and 92.30% on the test set. This result indicates that three 

convolutional layers effectively extract features while avoiding overfitting. In 

contrast, although four convolutional layers provide a higher accuracy on the training 

set (95.20%), the accuracy on the test set (93.10%) is only slightly higher than that of 

the three-layer configuration, demonstrating a loss in computational efficiency as 

model complexity increases. Additionally, the SVM with the RBF kernel function 

performs best, achieving a test set accuracy of 93.10%. It is found that the RBF 

kernel handles complex data distributions more effectively than the linear and 

polynomial kernels, significantly improving the model’s generalization capability in 

classification tasks. Furthermore, when adjusting the SVM’s penalty parameter C, a 

configuration with C set to 10 also achieves good results (test set accuracy of 

93.10%), demonstrating its effectiveness in model regularization. In summary, by 

appropriately selecting the number of convolutional layers and kernel functions, the 

proposed model strikes a good balance between accuracy and computational 

efficiency, optimizing overall performance. 

To evaluate the system’s recognition performance for different swimming 

strokes, tests are conducted on four swimming styles: freestyle, breaststroke, 

backstroke, and butterfly stroke. Figure 5 displays the model’s recognition 

performance for different strokes. It suggests that the model performs best in 

recognizing breaststroke, achieving both precision and recall rates exceeding 93%, 

with an F1 score of 93.80%. In contrast, the model’s performance for butterfly stroke 

is slightly lower, with precision and recall rates around 91% and an F1 score of 

91.40%. Overall, the model demonstrates ideal recognition performance across 

different swimming styles, with all metrics exceeding 91%. This indicates that the 

model has good generalization capabilities and can accurately identify various 

swimming postures.  
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Figure 5. Model recognition performance under different swimming strokes. 

This work evaluates the estimation errors for the starting and ending time of 

movements in the system across different swimming strokes (Figure 6). The results 

show that there are certain differences in time estimation errors for different 

swimming styles. The average estimation errors for the start and end time of 

freestyle and breaststroke are both approximately 0.2 seconds, with relatively small 

standard deviations. This indicates that the time estimation for these two strokes is 

quite accurate. In contrast, the estimation errors for backstroke and butterfly are 

relatively larger, especially with higher standard deviations for the end time. This 

suggests that there is room for further optimization in the time estimation accuracy 

for these two strokes. Although the time estimation errors for backstroke and 

butterfly are larger, the average errors are still controlled between 0.1 seconds and 

0.35 seconds, which has a limited impact on most training feedback and performance 

analysis applications. Such a range of errors is sufficient to ensure that coaches and 

athletes receive timely and practical feedback, allowing for adjustments to technical 

points during training. Therefore, despite the presence of certain time estimation 

errors, the system’s effectiveness in practical applications remains assured. 
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Figure 6. Time estimation errors for the starting and ending movements of the model 

under different swimming strokes. 
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This work also tests the system’s performance across different populations, 

evaluating both professional athletes and recreational swimmers to assess its 

generalization ability. Figure 7 presents the detailed results. It reveals that the model 

performs better with athletes, with all metrics exceeding those of recreational 

swimmers by approximately 1–2 percentage points. This difference may be 

attributed to athletes having more standardized and stable swimming techniques, 

which enhances the model’s recognition accuracy. Nonetheless, the model’s 

performance with recreational swimmers also reaches a high level, indicating that the 

system is highly practical and applicable to swimmers of varying skill levels. 
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Figure 7. Recognition performance across different populations. 

This work also evaluates the system’s recognition performance in different 

environments, including indoor and outdoor swimming pools. Figure 8 shows the 

performance across these environments. The data indicate that the model performs 

slightly better in indoor swimming pools compared to outdoor pools, likely due to 

the more stable indoor environment and higher quality of sensor data. Nevertheless, 

the model’s performance in outdoor pools is also quite satisfactory, with all metrics 

exceeding 91%. This suggests that the system is adaptable to different environments, 

demonstrating strong environmental adaptability and robustness. 
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Figure 8. Recognition performance across different environments. 
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To evaluate the effectiveness of the algorithm presented, this work compares it 

with other advanced algorithms. Figure 9 displays the performance of different 

algorithms in swimming posture recognition. The results indicate that the proposed 

model outperforms other algorithms across all metrics, particularly in the recognition 

accuracy for breaststroke and backstroke, where the advantages are especially 

pronounced. The LSTM model also demonstrates good overall performance, but it is 

slightly inferior to the proposed model in the recognition accuracy for freestyle and 

butterfly strokes. Overall, the proposed swimming posture recognition model based 

on inertial sensors and CNN-SVM exhibits significant advantages in accuracy and 

real-time performance, making it better suited to meet practical application needs. 
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Figure 9. Performance of different algorithms in swimming posture recognition. 

Table 3 displays the performance of different algorithms in swimming posture 

recognition. It can be observed that the method proposed performs exceptionally 

well across all metrics, particularly in accuracy and precision, surpassing other 

algorithms. This indicates that the model not only outperforms other methods in 

terms of recognition accuracy but also exhibits significant advantages in 

classification stability and reliability. 

Table 3. The performance of different algorithms in swimming posture recognition. 

Method Accuracy (%) Precision (%) Recall rate (%) 

The Proposed Method 92.90% 93.50% 92.80% 

LSTM 91.22% 90.00% 91.00% 

SVM 88.80% 87.50% 88.00% 

CNN 90.66% 89.00% 90.00% 

5. Conclusion 

The swimming posture recognition method proposed demonstrates significant 

advantages in accuracy and real-time performance, along with strong generalization 

capabilities to adapt to various swimmers and different swimming postures. This 

system provides a new technological pathway for the application of smart sports 
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monitoring devices, playing a crucial role in enhancing swimming training and 

performance evaluation. The algorithm proposed not only demonstrates its 

advantages in swimming posture recognition but also holds significant potential for 

broader applications. In the future, this technology can be extended to other water 

sports, such as rowing, diving, and water polo, to assist athletes in improving their 

technical performance. Additionally, in the field of rehabilitation, monitoring 

patients’ postures during hydrotherapy and rehabilitation training can provide 

physical therapists with important real-time feedback, thereby optimizing 

personalized rehabilitation programs. These applications will further enhance the 

social value and practical significance of this work. However, there remains room for 

improvement regarding the accuracy of time estimation and adaptability to different 

environments. In particular, the model exhibits relatively larger errors in the 

estimation of action timing for backstroke and butterfly strokes, necessitating further 

optimization of the algorithm to enhance precision. Additionally, while the model 

performs well in both indoor and outdoor environments, the stability of indoor 

conditions provides higher-quality data for the system. Future work will focus on 

fine-tuning the algorithm to improve the system’s robustness and adaptability under 

diverse environmental conditions. It will also explore the potential applications of 

this technology in other sports domains, aiming to achieve broader technological 

impact and societal benefits. 
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