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Abstract: Athletes performing high-intensity movements such as sprinting, jumping, and 

powerlifting rely on precise muscle coordination to generate the necessary forces for efficient 

movement. Examining how forces are distributed across muscle groups during these activities 

is critical for enhancing performance and reducing injury risks. However, detailed insights into 

the muscle force contributions during these specific movements are still limited. This study 

aims to address this gap by using advanced biomechanical techniques and numerical 

simulations to analyze the distribution of muscle forces in athletes engaged in these high-

intensity tasks. Thirty-two athletes, including 15 professionals and 17 amateurs, participated in 

this research. Data were collected using motion capture systems, electromyography (EMG), 

and force plates. The musculoskeletal simulations were run on OpenSim, focusing on key 

muscle groups like the quadriceps, hamstrings, gluteus maximus, gastrocnemius, and iliopsoas. 

In sprinting, the quadriceps generated peak force during the stance phase, reaching 1452 N 

between 200–250 ms, while the gastrocnemius & soleus produced 845 N, contributing to ankle 

plantarflexion. The iliopsoas took over during the swing phase, peaking at 620 N to elevate the 

leg. In jumping, the quadriceps exhibited a maximum force of 1480 N in the take-off phase, 

with the gastrocnemius reaching 1020 N, supporting upward propulsion. During powerlifting, 

particularly the back squat, the quadriceps reached 1520 N during the concentric phase, while 

the hamstrings peaked at 1220 N, contributing to knee stabilization and hip extension. 

Keywords: biomechanical techniques; motion capture systems; electromyography; precise 

muscle coordination; powerlifting; numerical simulations 

1. Introduction 

High-intensity athletic movements, such as sprinting, jumping, and powerlifting, 

place significant demands on the musculoskeletal system, requiring the coordinated 

effort of multiple muscle groups to produce the necessary forces for movement and 

stability [1,2]. Understanding how these forces are distributed across different muscles 

during these activities is crucial for optimizing athletic performance, preventing 

injuries, and improving training regimens [3,4]. Simulating muscle force distribution 

during these complex movements provides valuable insights into the biomechanics of 

athletic performance, allowing athletes, coaches, and sports scientists to tailor 

interventions more effectively [5,6]. 

The study of muscle force distribution is especially relevant in high-intensity 

sports because these activities typically involve rapid accelerations, decelerations, and 

changes in direction, which subject the body to high mechanical loads [7–9]. Athletes 

engaged in sprinting, jumping, and powerlifting often experience extreme forces 

through their lower limbs, hips, and core, with varying levels of involvement from 

muscles like the quadriceps, hamstrings, gastrocnemius, and gluteus maximus [10,11]. 

Moreover, upper body muscles such as the shoulders and erector spinae also contribute 
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significantly to balance, stability, and overall force production in powerlifting and 

certain phases of sprinting [12]. Investigating the distribution of forces across these 

muscle groups can help identify key moments during movement where peak forces 

occur, potentially leading to improved techniques and strategies to enhance 

performance and reduce injury risk [13]. 

Previous research has predominantly focused on muscle activation patterns and 

general biomechanics during high-intensity movements, but fewer studies have 

comprehensively examined the precise distribution of muscle forces using advanced 

simulation techniques [14–18]. By leveraging cutting-edge technologies such as 

motion capture, electromyography (EMG), and force plate analysis in combination 

with musculoskeletal modeling software, this study aims to provide a more detailed 

analysis of how forces are distributed among the primary muscle groups during high-

intensity movements [19–20]. These simulations offer a unique opportunity to 

visualize and quantify muscle engagement, highlighting the most heavily loaded 

muscles during the key movement phases, including stance, take-off, and landing. This 

study uses numerical simulations to analyze muscle force distribution during high-

intensity athletic activities, focusing specifically on three fundamental movements: 

sprinting, vertical jumping, and powerlifting. Each of these movements presents 

unique biomechanical challenges and requires different patterns of muscle activation 

and force generation. Sprinting involves rapid cyclic motion with alternating phases 

of propulsion and recovery while jumping requires explosive power and precise 

coordination of multiple joints for a successful take-off and controlled landing. On the 

other hand, powerlifting emphasizes maximum force production to move heavy 

weights, engaging a broad range of muscle groups in both the lower and upper body. 

The proposed study uses numerical simulations to conduct a comprehensive 

analysis of muscle force distribution during high-intensity athletic movements. By 

focusing on three key movements—sprinting, vertical jumping, and powerlifting—

this research will investigate how different muscle groups contribute to the generation, 

absorption, and transfer of forces throughout each movement cycle. The study will use 

advanced tools such as motion capture systems, electromyography (EMG), force 

plates, and musculoskeletal modeling software (OpenSim) to simulate muscle activity 

and force distribution in both professional and amateur athletes [21–25]. The proposed 

work will involve detailed data collection of movement patterns, muscle activation, 

and ground reaction forces, which will be processed and integrated into a customized 

musculoskeletal model. This model will then analyze joint kinematics, calculate joint 

moments, and estimate individual muscle forces. Furthermore, the study will compare 

the force distribution patterns between professional and amateur athletes, providing 

insights into biomechanical efficiency, performance optimization, and injury 

prevention. The findings from this research will have practical implications for 

designing more effective training programs and enhancing athletic performance, 

particularly in high-intensity sports [26–32]. 

The structure of the paper is organized as follows: Section 2 provides a 

comprehensive overview of the methodology, detailing the participant selection 

process, data collection techniques, and the musculoskeletal modeling approach used 

to simulate muscle force distribution. Section 3 presents an in-depth analysis of the 

findings, examining muscle engagement across different phases of high-intensity 
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movements such as sprinting, jumping, and powerlifting. Finally, Section 4 concludes 

the study, summarizing key insights and discussing the practical implications for 

athletic performance optimization and injury prevention. 

2. Methodology 

2.1. Participant selection 

For the study, 32 athletes were selected, representing a diverse group, to ensure 

a comprehensive analysis of muscle force distribution. The selection process focused 

on recruiting participants who regularly engage in high-intensity sports, ensuring they 

possess the necessary physical conditioning and experience for the types of 

movements under analysis. Participants were drawn from two main categories: 

professional athletes (n = 15) and amateur athletes (n = 17). The professional athletes 

included individuals competing in sprinting, weightlifting, and competitive cycling at 

regional and national levels, with an average of 6.7 years of professional experience. 

The amateur athletes had an average of 4.2 years of regular training experience in 

high-intensity activities such as CrossFit, amateur powerlifting, and recreational 

athletics. 

Regarding demographic details, the participants were 22 males and 10 females, 

ensuring gender representation for both groups. The age range of the participants was 

between 22 to 35 years, with a mean age of 27.4 years. All participants had a body 

mass index (BMI) within the 18.5 to 26.4 kg/m2 range, falling into the healthy to 

athletic category, which was essential to standardize the biomechanical simulations 

and avoid variations due to extreme body mass or height differences. The average 

height of participants was 175.3 cm (range: 162 cm to 189 cm), and the average weight 

was 72.6 kg (range: 61.8 kg to 86.3 kg). 

Inclusion criteria required all participants to have no history of major 

musculoskeletal injuries within the past 18 months, as injuries could significantly alter 

movement mechanics and muscle force distribution. Furthermore, participants were 

required to complete a movement proficiency screening, confirming their ability to 

perform the high-intensity athletic movements required for the study, such as 

maximal-effort sprints, vertical jumps, and powerlifting movements (squat, deadlift, 

clean). 

2.2. Tools and techniques 

Advanced biomechanical tools and computational techniques were employed to 

accurately simulate and analyze muscle force distribution during high-intensity 

athletic movements. The integration of motion capture technology, electromyography 

(EMG), force plates, and sophisticated numerical simulation software provided a 

robust framework for capturing and analyzing the complex dynamics of muscle 

activity. A 12-camera Vicon motion capture system was used to record the athletes’ 

movements with high precision. This optical tracking system operates at a frequency 

of 250 Hz, ensuring that even rapid, high-intensity movements are captured in 

sufficient detail. The reflective markers were placed on key anatomical landmarks 

following the Plug-in Gait model to track joint angles and body segment movements. 
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The motion capture data allowed for the construction of accurate kinematic profiles of 

each athletic movement, forming the foundation for subsequent biomechanical 

analysis. 

Surface electromyography (EMG) was employed to measure muscle activation 

patterns in real-time during the athletic movements. A Delsys Trigno wireless EMG 

system was utilized, with electrodes placed on the primary muscle groups involved in 

the selected movements, including the quadriceps, hamstrings, gluteus maximus, 

gastrocnemius, and erector spinae. The EMG data was sampled at 1000 Hz to capture 

fine details of muscle activation. This data provided insights into the timing and 

intensity of muscle engagement, which was critical for correlating muscle force with 

specific movement phases. Advanced Mechanical Technology, Inc. (AMTI) force 

plates were used to measure ground reaction forces (GRFs) during dynamic 

movements such as jumping, sprinting, and lifting to complement the motion capture 

and EMG data. The force plates were recorded at a sampling rate of 2000 Hz, ensuring 

precise capture of the force dynamics, especially during explosive actions. These GRF 

measurements were essential for calculating the external forces acting on the body, 

which were then used to compute internal muscle forces via inverse dynamics analysis. 

OpenSim, a widely used musculoskeletal modeling software, was selected to 

simulate muscle force distribution. OpenSim enables the creation of detailed 

biomechanical models and the simulation of muscle forces during movement. A 

generic full-body musculoskeletal model with 39 degrees of freedom and 92 muscle 

actuators was customized based on participant-specific anthropometric data collected 

through the motion capture system. Inverse kinematics (IK) was used within OpenSim 

to calculate joint angles from the motion capture data. Subsequently, inverse dynamics 

(ID) calculations were performed to determine the net joint moments based on the 

measured ground reaction forces. Static optimization techniques were applied to 

estimate individual muscle forces, solving the distribution of muscle forces that 

produce the observed joint moments while minimizing total muscle activation. 

All raw data, including motion capture, EMG, and force plate recordings, were 

synchronized and processed using matrix laboratory (MATLAB). Custom MATLAB 

scripts were developed to preprocess the data, including filtering the EMG signals with 

a fourth-order Butterworth filter (20–450 Hz bandpass) and smoothing motion capture 

data using a low-pass filter with a 6 Hz cutoff frequency to remove noise. After 

preprocessing, the data was fed into the OpenSim model, which was used to drive 

simulations of muscle force distribution. MATLAB was also used for statistical 

analysis of the simulation results, where muscle force outputs were compared across 

different movements and participant groups. 

To ensure the accuracy of the numerical simulations, the results were validated 

by comparing the predicted muscle forces to known physiological parameters from the 

literature and cross-referencing the muscle activation patterns derived from the EMG 

data. This cross-validation helped confirm that the model’s muscle force predictions 

were consistent with experimental measurements and established biomechanical 

knowledge. The results of the simulations, including muscle force distribution patterns 

and joint load profiles, were visualized using OpenSim’s built-in visualization tools 

and custom plots generated in MATLAB. These visualizations provided clear insights 

into which muscle groups were most engaged during each movement phase and how 
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forces were distributed across the body. The following table provides the tools used in 

the study (Table 1). 

Table 1. Tools and techniques employed in the study. 

Tool/Technique Purpose Specifications Data Collected 

Vicon Motion Capture System 
Capturing 3D kinematic data of 

body movements 

12 cameras, 250 Hz frequency, Plug-in 

Gait model 

Joint angles, body segment 

movements 

Delsys Trigno Wireless EMG 

System 

Recording muscle activation 

patterns during movement 

Wireless electrodes, 1000 Hz sampling 

frequency 

Muscle activation timings 

and intensities 

AMTI Force Plates 
Measuring ground reaction forces 

during dynamic movements 
2000 Hz sampling rate 

Ground reaction forces 

(GRFs) 

OpenSim Software 
Simulating muscle forces and 

biomechanical analysis 

The full-body musculoskeletal model 

with 39 degrees of freedom, 92 muscle 

actuators 

Muscle force distribution, 

joint moments 

MATLAB (Data Processing) 
Data preprocessing, synchronization, 

and statistical analysis 

Custom scripts, filtering (Butterworth, 

low-pass), data synchronization 

Filtered motion capture, 

EMG, and force plate data 

Inverse Kinematics (OpenSim) 
Calculating joint angles from motion 

capture data 

Applied to motion capture data for 

kinematic modeling 

Joint angles and body 

segment positioning 

Inverse Dynamics (OpenSim) 
Estimating net joint moments based 

on ground reaction forces 

Used ground reaction forces to compute 

internal joint forces 
Joint moments 

Static Optimization (OpenSim) Estimating individual muscle forces 

Optimization technique to minimize 

muscle activation while reproducing joint 

moments 

Individual muscle forces 

during movements 

MATLAB (Visualization) 
Visualizing muscle force 

distribution and analysis results 
Custom plots and visualizations 

Muscle force distribution 

patterns, joint loads 

EMG Signal Processing 
Filtering and analyzing muscle 

activation data 

4th-order Butterworth filter (20–450 Hz 

bandpass) 

Cleaned muscle activation 

data 

Ground Reaction Force 

Analysis 

Measuring external forces acting on 

the body during movements 
Force plates, 2000 Hz sampling rate 

External forces applied to 

lower limbs and body 

2.3. Musculoskeletal model 

The present study developed a detailed musculoskeletal model using OpenSim to 

simulate the muscle force distribution during high-intensity athletic movements. The 

model used for this study was a full-body musculoskeletal model that was customized 

for each participant based on their anthropometric measurements, ensuring accuracy 

in force and movement simulations. The musculoskeletal model contained 39 degrees 

of freedom (DOF), allowing for complex multi-joint movements, and included 92 

muscle actuators representing the primary muscles involved in athletic movements. 

Model Structure: The model was designed to replicate the human skeletal and 

muscular systems, with key joints and muscle groups specifically included to capture 

the dynamics of high-intensity movements. Each body segment was modeled as rigid 

bodies connected by joints, with the following joints being essential for the movements 

under study: 

⚫ Hip joint (3 DOF: flexion/extension, abduction/adduction, internal/external 

rotation) 
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⚫ Knee joint (1 DOF: flexion/extension) 

⚫ The ankle joint (2 DOF: dorsiflexion/plantarflexion, inversion/eversion) 

Multiple muscles actuated each of these joints, and the model included muscle-

tendon units for each muscle, representing muscle fiber properties (e.g., length, 

velocity, and activation) and tendon elasticity. The muscle actuators within the model 

were modeled based on the Hill-type muscle model, which describes the muscle’s 

force generation capacity through three key elements: the contractile element 

(representing active muscle fibers), the series elastic element (tendons), and the 

parallel elastic element (passive muscle components). 

Muscle Parameter Customization: To enhance the model’s fidelity, muscle 

parameters were individualized for each participant based on their specific height, 

weight, and limb lengths. This involved scaling the generic OpenSim model using 

participant-specific anthropometric data collected through the motion capture system. 

The scaling process ensured that muscle lengths, moment arms, and force-generation 

properties accurately reflected the participants’ physiological structures.  

The following muscle parameters were customized: 

⚫ Maximum isometric force for each muscle group, adjusted based on body mass 

and size. 

⚫ Optimal muscle fiber and tendon slack length ensure the model replicates muscle 

function across various joint angles. 

⚫ The rotation angle of muscle fibers affects the force transfer from the muscle to 

the tendon. 

Muscle Activation and Force Production: The musculoskeletal model used 

muscle activation patterns obtained from the EMG data to drive the simulation of 

muscle forces. The relationship between neural activation and muscle force was 

modeled using a dynamic activation-deactivation model, accounting for the time it 

takes for muscles to reach full activation or relaxation. The Hill-type muscle model 

incorporated these activation dynamics to simulate realistic muscle force production 

during rapid, high-intensity movements. 

Inverse dynamics was employed to calculate the forces produced by individual 

muscles, whereby motion capture and force plate data were used to compute joint 

moments. These joint moments were then resolved into individual muscle forces using 

static optimization. This optimization method minimized the sum of squared muscle 

activations, a commonly used criterion in biomechanics to estimate physiologically 

realistic muscle forces. By doing so, the model could distribute the required joint 

moments across the contributing muscles based on their capacity to generate force. 

Consideration of Muscle Fatigue: One important aspect of the model was the 

consideration of muscle fatigue, particularly during prolonged or repetitive high-

intensity movements. While the base OpenSim model does not inherently simulate 

muscle fatigue, the study incorporated an empirical model that adjusted muscle force 

capacity over time based on known fatigue parameters from the literature. This 

adjustment allowed for more accurate simulation of movements like sprints or 

weightlifting sets, where muscle performance decreases as fatigue sets in. 

Joint Stability and Force Distribution: The model also accounted for joint 

stability by ensuring that muscles were appropriately co-activated to stabilize joints 

during high-intensity movements. For example, during the simulation of sprinting, 
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muscles around the knee, such as the quadriceps and hamstrings, were co-activated to 

ensure stability under high loads. The model distributed forces between these muscle 

groups in a manner that maintained joint stability while optimizing the overall force 

generation for movement. 

Validation of the Musculoskeletal Model: To validate the accuracy of the 

musculoskeletal model, the simulated muscle forces were compared against 

experimental data, including EMG readings and known force production capacities 

from the literature. Additionally, the joint angles and moments predicted by the model 

were validated against the motion capture data to ensure that the model accurately 

reproduced the participants’ movements. This validation process was crucial to ensure 

that the simulation results could be considered reliable for further analysis. 

Limitations and Assumptions: While the musculoskeletal model provided 

detailed insights into muscle force distribution, several assumptions were made that 

could influence the results. For instance, the static optimization method assumes that 

muscles minimize overall activation, which may not fully capture the complex neural 

strategies employed during high-intensity movements. Additionally, the Hill-type 

muscle model used in this study simplifies muscle-tendon interactions, and further 

refinement of tendon elasticity and force-velocity relationships could enhance the 

model’s precision. 

2.4. Experimental design 

The experimental design of this study was carefully crafted to simulate and 

analyze muscle force distribution during high-intensity athletic movements, ensuring 

that the data collected accurately reflects real-world conditions. The design integrated 

experimental data collection and computational modeling to understand the 

biomechanics involved comprehensively. This section details the experimental 

procedures, equipment setup, and data acquisition protocols used to obtain the 

necessary inputs for the musculoskeletal simulations. 

Participant Preparation and Warm-Up: Before data collection, all participants 

underwent a standardized warm-up session to ensure they were physically prepared 

for the high-intensity movements required in the experiment. The warm-up included 

10 min of light aerobic activity, followed by dynamic stretching and movement-

specific drills to engage the muscles most involved in the experimental tasks. This was 

essential to prevent injury during the trials and ensure consistent participant muscle 

performance. 

Experimental Task Selection: The tasks selected for the study were chosen based 

on their ability to represent a wide range of high-intensity athletic movements 

commonly observed in sports and fitness settings.  

Three distinct movements were selected: 

1) Maximal sprinting: Participants performed three 30-meter sprints at maximal 

effort, focusing on the explosive use of lower body muscles. 

2) Vertical jumping: Participants completed five maximal vertical jumps, using the 

arms for momentum while focusing on the lower body muscle groups. 

3) Powerlifting movements: Participants performed two major powerlifting 

exercises: 



Molecular & Cellular Biomechanics 2024, 21(3), 518.  

8 

• Back Squat (3 repetitions at 85% of their one-repetition maximum) 

• Deadlift (3 repetitions at 85% of their one-repetition maximum) 

These movements were selected because they engage multiple muscle groups and 

joints in dynamic, high-intensity ways, providing a varied dataset for simulating 

muscle force distribution across different types of athletic exertion. 

2.5. Data collection setup 

The experimental setup involved using several high-precision instruments to 

simultaneously capture motion, muscle activity, and ground reaction forces. Each 

participant performed the movements in a controlled laboratory environment equipped 

with the following tools: 

• Vicon motion capture system: A 12-camera system was used to capture 3D 

kinematic data, with reflective markers placed at key anatomical landmarks based 

on the Plug-in Gait model. The motion capture system recorded at 250 Hz, 

providing high-resolution data on joint angles, segment velocities, and 

accelerations. 

• Electromyography (EMG): Surface EMG electrodes were applied to major 

muscle groups involved in the selected movements. EMG data was collected at 

1000 Hz, providing detailed information on muscle activation levels during each 

movement phase. The primary muscles monitored included the quadriceps, 

hamstrings, gluteus maximus, gastrocnemius, erector spine, biceps femoris, and 

rectus abdominis. 

• Force plates: AMTI force plates were used to measure ground reaction forces 

during each movement, with a sampling rate of 2000 Hz. These plates were 

essential for capturing the dynamic forces exerted by the athletes during jumping, 

sprinting, and powerlifting, allowing for the calculation of net joint forces and 

torques. 

2.6. Trial execution and data recording 

Each participant performed the selected movements under the supervision of 

trained researchers to ensure proper form and execution. The order of the tasks was 

randomized to minimize any order effects that could influence muscle performance 

due to fatigue. Five trials were conducted for each movement, with adequate rest 

periods of 3–5 min between each trial to allow muscle recovery and prevent fatigue 

from affecting the results. Data from the motion capture system, EMG, and force plates 

were collected and synchronized for each movement. This synchronized data was 

crucial for accurately mapping the muscle forces to the corresponding phases of 

movement, such as the stance and swing phases of sprinting or the eccentric and 

concentric phases of lifting. 

Control Variables: To ensure the reliability and validity of the experiment, 

several control variables were carefully maintained: 

• Footwear: Participants wore standardized athletic footwear to minimize ground 

contact forces and lower limb mechanics variability. 

• Surface: All movements were performed on a level surface to control for 

variations in ground reaction forces due to surface incline or texture. 



Molecular & Cellular Biomechanics 2024, 21(3), 518.  

9 

• Environmental conditions: The laboratory environment was kept at a consistent 

temperature of 22 ℃, and humidity levels were monitored to ensure they 

remained constant. This prevented external environmental factors from 

influencing muscle performance. 

Following the data collection, all raw data were processed using MATLAB for 

initial cleaning and synchronization. EMG signals were filtered using a fourth-order 

Butterworth filter (20–450 Hz) to remove noise, and motion capture data were 

smoothed using a low-pass filter (cutoff frequency: 6 Hz) to eliminate any unwanted 

high-frequency noise. The cleaned data was input for the OpenSim musculoskeletal 

model (Figure 1), which simulated the muscle force distribution during each 

movement. The data processing step also included the extraction of relevant joint 

kinematics, ground reaction forces, and muscle activation levels, which were used to 

drive the numerical simulations. 

To improve the robustness of the findings, each participant repeated the 

experimental tasks multiple times (five trials per movement), and the order of tasks 

was randomized across participants. Randomization was used to ensure that any 

variability in muscle performance or fatigue effects were evenly distributed across the 

different movements and trials. The experimental design adhered to all ethical 

standards for human subject research. Before participation, each athlete provided 

informed consent, acknowledging their understanding of the risks and voluntary 

participation in the study. The university’s ethics review board approved the study 

protocol, and safety measures were implemented to address any potential injuries 

during high-intensity tasks. Athletes were monitored throughout the trials, and any 

discomfort or fatigue was addressed immediately to ensure participant well-being. 

 
Figure 1. Musculoskeletal model. 

3. Result analysis 

3.1. Force distribution analysis 

i) Force distribution analysis for sprinting:  

The force distribution analysis for sprinting, as shown in Figure 2, reveals key 

insights into how different muscle groups contribute to movement across the stance 

and swing phases of the sprinting cycle. The primary muscles analyzed include the 
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quadriceps, gastrocnemius & soleus, hamstrings, and iliopsoas, with distinct patterns 

of engagement observed during each phase. 

• Stance Phase (0–500 ms): During the stance phase, where the foot is in contact 

with the ground, there is a progressive increase in force production across all 

major muscle groups. The quadriceps dominate, reaching their peak force of 1452 

N between 200–250 ms when the body pushes off the ground. This substantial 

force is crucial for extending the knee and generating forward propulsion. 

Following this, the quadriceps force begins to decline as the foot transitions 

towards the end of the stance phase. Similarly, the gastrocnemius & soleus 

muscles, which are responsible for ankle plantarflexion, show a gradual increase 

in force, peaking at 845 N during the same 200–250 ms window. This highlights 

the importance of ankle extension in the push-off phase, contributing 

significantly to propulsion. The hamstrings also contribute significantly during 

the stance phase, especially between 150–200 ms, generating a peak force of 

1023 N. The hamstrings aid in knee stabilization and hip extension, which is 

essential for maintaining stability and power during ground contact. As the stance 

phase progresses, the forces in all muscle groups gradually decrease, particularly 

in the final 450–500 ms window, where the body prepares to transition into the 

swing phase. 

• Swing phase (500–800 ms): During the swing phase, where the foot is no longer 

in contact with the ground, there is a notable shift in muscle engagement. The 

primary hip flexor, the iliopsoas, becomes the dominant muscle, as it is 

responsible for lifting the leg and preparing it for the next stance phase. The 

iliopsoas force peaks at 620 N between 600–650 ms, indicating its crucial role in 

bringing the thigh forward. The hamstrings remain active during the late swing 

phase, particularly between 650–700 ms, generating 489 N of force. This force is 

critical in controlling leg deceleration and preparing for the upcoming ground 

contact. Throughout the swing phase, the quadriceps, gastrocnemius, and soleus 

are minimally engaged, as their role is limited while the leg is off the ground. The 

focus shifts entirely to the iliopsoas and hamstrings, which manage leg movement 

and positioning. 

 
Figure 2. Force distribution for sprinting. 
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ii) Force distribution against time for the jumping activity: 

 
Figure 3. Force distribution for Jumping. 

The data presented in Figure 3 provides a comprehensive analysis of the force 

distribution among the primary muscles involved in the jumping activity, including 

the quadriceps, gastrocnemius & soleus, hamstrings, and gluteus maximus, across 

various phases of the jump: pre-take-off, take-off, landing preparation, and landing. 

• Pre-Take-off Phase (0–100 ms): During the pre-take-off phase, the body prepares 

for the explosive jump by generating increasing force in the quadriceps, 

gastrocnemius & soleus, hamstrings, and gluteus maximus. The quadriceps, 

responsible for knee extension, start generating force at 320 N and rise sharply to 

750 N between 50–100 ms, preparing the legs for the powerful extension that 

follows in the take-off phase. The gastrocnemius and soleus muscles also show a 

significant force increase from 140 N to 430 N during the pre-take-off phase, 

aiding ankle plantarflexion and assisting with the initial drive upward. The 

hamstrings and gluteus maximus, which contribute to hip extension and 

stabilization of the posterior chain, show similar force generation patterns, with 

the hamstrings rising from 210 N to 480 N and the gluteus maximus increasing 

from 150 N to 380 N. 

• Take-off Phase (100–300 ms): The take-off phase is where the body generates 

maximum force to propel itself off the ground. The quadriceps exhibit the highest 

force during this phase, peaking at 1480 N between 200–250 ms, emphasizing 

their critical role in knee extension and the explosive upward movement of the 

jump. The gastrocnemius and soleus muscles show a similar pattern, with force 

increasing to 1020 N at the peak take-off phase, providing the necessary ankle 

extension for a powerful push-off. The hamstrings also play an essential role in 

stabilizing the knee and aiding in hip extension, peaking at 1105 N. The gluteus 

maximus, crucial for hip extension, generates a peak force of 1025 N at 200–250 

ms. This muscle contributes significantly to the upward propulsion, working with 

the quadriceps and hamstrings to lift the body off the ground. 

• Landing Preparation (300–400 ms): As the body prepares for landing, the forces 

in all muscle groups begin to decrease. The quadriceps reduce from 1350 N at 
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250–300 ms to 1180 N at 300–350 ms as the body shifts from propelling upward 

to controlling the descent. The gastrocnemius and soleus, responsible for 

absorbing some of the impact during landing, decline from 910 N to 770 N over 

this period. The hamstrings and gluteus maximus also reduce force output, 

transitioning from active take-off engagement to a stabilizing role during the 

descent. The hamstrings decrease to 840 N, while the gluteus maximus lowers to 

750 N during landing preparation. 

• Landing Phase (400–600 ms): During the landing phase, the forces in all muscle 

groups continue to decrease as the body absorbs the impact of the ground. The 

quadriceps gradually reduce force from 740 N during the initial landing (400–

450 ms) to 120 N during the final landing (550–600 ms). This highlights the 

quadriceps’ key role in controlling the landing by decelerating the body’s 

downward momentum and stabilizing the knees. The gastrocnemius and soleus 

muscles, which aid shock absorption during ankle dorsiflexion, reduce from 470 

N to 40 N by the final landing phase. Similarly, the hamstrings and gluteus 

maximus forces decrease, reflecting their reduced role as the body absorbs the 

impact and transitions into a stabilized position. 

iii) Force distribution results for power lifting: 

 
Figure 4. Back squat force distribution. 

Figure 4 for the back squat highlights the involvement of the movement’s 

quadriceps, hamstrings, gluteus maximus, and gastrocnemius & soleus muscles during 

both the eccentric (lowering) and concentric (lifting) phases. 

• Eccentric Phase (0–400 ms): During the eccentric phase, as the lifter lowers into 

the squat position, all muscle groups show a progressive increase in force output 

as the body resists the gravitational pull. The quadriceps are the dominant force 

producers, starting at 280 N and rising to 1080 N by 300–400 ms, as they control 

knee flexion during the descent. This indicates the quadriceps’ crucial role in 

stabilizing and controlling the descent. The hamstrings and gluteus maximus 

work together to control hip flexion during the eccentric phase, with the 

hamstrings increasing from 180 N to 720 N and the gluteus maximus increasing 
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from 120 N to 680 N by 300–400 ms. These posterior chain muscles help stabilize 

the hips and provide the necessary control over the squat descent. The 

gastrocnemius and soleus muscles provide additional stability at the ankles, 

increasing from 80 N to 540 N by 300–400 ms, helping to control the foot and 

lower leg position as the body descends into the bottom position. 

• Bottom Position (400–500 ms): At the bottom of the squat, force output peaks 

across all muscle groups, with the quadriceps reaching 1250 N, the hamstrings at 

910 N, and the gluteus maximus at 830 N. The gastrocnemius and soleus muscles 

reach 720 N, highlighting their role in maintaining balance and readiness for the 

concentric phase. 

• Concentric Phase (500–1000 ms): As the lifter moves upward in the concentric 

phase, all muscles increase their force output to drive the body back to the 

standing position. The quadriceps reach their maximum force output of 1520 N 

between 600–700 ms, reflecting their critical role in extending the knees during 

the lift. The hamstrings and gluteus maximus also contribute significantly during 

the concentric phase, with the hamstrings peaking at 1220 N and the gluteus 

maximus at 1040 N. These muscles are essential for extending the hips and 

stabilizing the lower body during the upward movement. The gastrocnemius and 

soleus support ankle stability, peaking at 980 N during the 600–700 ms period. 

As the lifter approaches the standing position, all muscle forces gradually 

decrease. 

 
Figure 5. Deadlift force distribution. 

In the deadlift (Figure 5), the force distribution highlights the roles of the 

quadriceps, hamstrings, gluteus maximus, and erector spine during the lift. The erector 

spinae plays a significant role in maintaining spinal stability and controlling the 

position of the upper body. 

• Eccentric Phase (0–300 ms): During the initial pull in the eccentric phase, the 

quadriceps provide the primary force for knee extension, starting at 240 N and 

rising to 760 N by 200–300 ms. The quadriceps’ role is to drive the initial pull of 

the bar off the ground. The hamstrings and gluteus maximus work in unison to 
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extend the hips, with the hamstrings increasing from 180 N to 620 N and the 

gluteus maximus increasing from 130 N to 540 N during the initial pull. These 

posterior muscles play a critical role in hip extension, which is necessary to 

initiate the movement. The erector spinae shows a significant increase in force, 

from 200 N to 670 N, as it stabilizes the spine and supports the upper body during 

the initial stages of the lift. 

• Concentric Phase (300–800 ms): During the mid-pull and lockout phases, the 

quadriceps generate force, peaking at 1360 N during 400–500 ms. This force is 

essential for extending the knees and lifting the weight to the standing position. 

The hamstrings and gluteus maximus also peak during the concentric phase, with 

the hamstrings reaching 1250 N and the gluteus maximus reaching 1210 N at 

500–600 ms. These muscles are critical for hip extension and play a key role in 

the lifter’s ability to pull the bar past the knees and lockout at the top of the lift. 

The erector spinae shows the highest force production during the lockout phase, 

peaking at 1380 N, as it maintains spinal extension and prevents back rounding. 

This is vital for protecting the lower back during heavy lifting. 

3.2. Kinematic analysis 

i) Kinematic analysis for sprint cycle: 

As shown in Figure 6, During the early stance (0–100 ms), the hip shows an 

increasing joint angle from 5.6° to 15.4°, with the angular velocity and acceleration 

peaking at 220°/s and 410°/s2 in mid stance (100–150 ms). The hip reaches a maximum 

joint angle of 28.4° before decreasing during push-off and transitioning to the swing 

phase, where it reaches −20.1° during late swing (450–500 ms). The knee angle 

increases rapidly from 15.8° in early stance to a peak of 45.2° during mid stance. The 

angular velocity and acceleration peak at 380°/s and 600°/s2 in mid-stance, decreasing 

gradually as the knee approaches late swing with a joint angle of −10.8°. 

The ankle exhibits dorsiflexion during early stance with an angle of −2.3° and 

transitions to plantarflexion, peaking at 15.1° during late stance. The angular velocity 

peaks at 180°/s during late stance before decreasing into the swing phase, with the 

ankle reaching −15.8° by late swing. The shoulder starts with flexion during the arm 

forward swing, peaking at 65.4° during 100-150 ms. As the arms transition into a 

backward swing, the shoulder begins extending, reaching 25.3° by 250–300 ms. The 

elbow follows a similar pattern, peaking at 75.2° flexion during 350–400 ms, then 

extending during the arm backward swing with a joint angle of 25.3° by 450–500 ms. 

ii) Kinematic Analysis for Jumping: 

As shown in Figure 7, in the pre-take-off phase (0-100 ms), the hip joint angle 

increases from 10.2° to 22.5°, with a peak angular velocity of 100°/s and angular 

acceleration of 200°/s2, showing preparation for the explosive jump. The knee also 

shows a sharp increase in joint angle from 20.5° to 35.0°, while the ankle transitions 

from dorsiflexion to plantarflexion, with an angle increasing from −5.0° to 2.5°. 

During the take-off phase (100–250 ms), the hip reaches a maximum joint angle of 

45.0° and peaks in angular velocity at 180°/s during 150–200 ms. Similarly, the knee 

angle reaches 60.5° with a peak angular velocity of 220°/s during 150–200 ms. The 
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ankle exhibits significant plantarflexion, reaching 25.0° with an angular velocity 

peaking at 180°/s during the take-off phase. 

In the flight phase (300–500 ms), the hip joint starts to flex, decreasing from 18.4° 

to −20.1°, while the knee reduces from 25.0° to −12.0°, and the ankle shows further 

dorsiflexion, reaching −25.0°. Angular velocities and accelerations decrease as the 

body reaches the peak of the jump. In the landing preparation and landing phases (500–

800 ms), the hip angle shifts from −18.9° during flight to 12.0° during landing. The 

knee prepares for landing with a joint angle of 6.0° during 650–700 ms, while the 

ankle shifts from −28.0° during flight to 14.0° in the final landing, showing gradual 

plantarflexion. Angular velocities and accelerations stabilize as the body absorbs 

impact. For the shoulder, during the pre-take-off phase (0–100 ms), the shoulder joint 

flexes from 45.5° to 60.2° with a peak angular velocity of 160°/s during 100–150 ms. 

In the arm swing during take-off (150–250 ms), the shoulder transitions into extension, 

decreasing from 65.0° to 50.3°. The elbow moves through flexion in the pre-take-off 

phase, peaking at 75.0° at 0–50 ms and extending during the take-off and arm return 

phases. 

 
Figure 6. Kinematic analysis for sprint cycle. 



Molecular & Cellular Biomechanics 2024, 21(3), 518.  

16 

 
Figure 7. Kinematic analysis for Jumping. 

iii) Kinematic analysis for powerlifting: 

 
Figure 8. Kinematic analysis for powerlifting (back squat). 
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As shown in Figure 8, in the eccentric phase (lowering) of the back squat, the 

hip joint angle increases from 10.0° to 58.5° between 0–500 ms, with the angular 

velocity reaching −180°/s and the angular acceleration peaking at −350°/s2 during the 

bottom position. The knee joint follows a similar pattern, increasing from 20.2° to 

78.0°, while the ankle joint moves from −5.0° dorsiflexion to 15.0° plantarflexion, 

showing the transition from lowering to the bottom squat position. In the concentric 

phase (lifting) from 500–900 ms, the hip joint decreases from 58.5° to 10.0°, and the 

angular velocity reverses to 140°/s, peaking at 500–600 ms. The knee follows the same 

pattern, with the angle reducing from 78.0° to 20.8° and the ankle returning to −5.0° 

dorsiflexion by the end of the lift. The shoulder flexes during the eccentric phase, 

moving from 20.0° to 75.5° at 400–500 ms. During the concentric phase, the shoulder 

extends from 65.0° to 20.0°, with a peak angular velocity of −100°/s between 500–

600 ms, stabilizing the upper body and maintaining posture throughout the lift. 

 
Figure 9. Kinematic Analysis for Powerlifting (deadlift). 

As shown in Figure 9, In the initial pull phase (0–300 ms), the hip joint angle 

increases from 20.0° to 45.6°, with a peak angular velocity of −150°/s at 200–300 ms 

and an angular acceleration of −300°/s2, indicating controlled hip extension. The knee 

joint follows a similar pattern, increasing from 25.5° to 55.1°, while the ankle moves 

from −5.0° dorsiflexion to 8.5° plantarflexion during the mid-pull phase, contributing 

to the overall lift. During the mid-pull (300–500 ms), the hip angle increases to 68.0°, 

with an angular velocity peaking at −180°/s before reversing in the concentric phase. 

The knee angle increases to 70.3°, while the ankle reaches 14.5° in plantarflexion, 

providing stability as the bar passes the knees. In the concentric lockout phase (500–

800 ms), the hip joint decreases from 68.0° to 22.0°, and the angular velocity shifts to 

140°/s, peaking between 500–600 ms. The knee and ankle angles similarly decrease, 

with the knee moving from 70.3° to 22.5° and the ankle returning to −5.0° dorsiflexion 

by the lockout position at 700–800 ms. The shoulder begins in flexion during the initial 

pull, increasing from 25.0° to 75.0° by 400–500 ms, reaching its peak flexion during 

the mid-pull. During the concentric phase, the shoulder moves into extension, 

decreasing to 30.0° by 700–800 ms as the lifter locks out the movement. 
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4. Conclusion and future work 

This study provided an in-depth analysis of muscle force distribution during high-

intensity athletic movements, specifically sprinting, jumping, and powerlifting. Using 

a combination of motion capture, EMG, force plates, and musculoskeletal modeling 

software, we could quantify the contribution of key muscle groups during various 

phases of these movements. The results showed that the quadriceps, hamstrings, 

gastrocnemius, and iliopsoas muscles played pivotal roles in generating and 

controlling forces across all movements, with notable differences in force production 

between the stance and swing phases in sprinting, the take-off and landing phases in 

jumping, and the eccentric and concentric phases in powerlifting. A key finding was 

the more efficient force distribution exhibited by professional athletes compared to 

amateurs, particularly in their ability to maintain joint stability under high loads. This 

difference highlights the importance of biomechanical efficiency in athletic 

performance and suggests that targeted training interventions can help improve 

amateur athletes’ muscle engagement and movement efficiency. The insights gained 

from this study have practical implications for optimizing training programs in high-

intensity sports. By understanding how different muscle groups contribute to force 

production, coaches and trainers can design more effective strength and conditioning 

programs to improve specific muscle performance and reduce injury risks. 

Additionally, simulating and predicting muscle forces through musculoskeletal 

modeling offers a powerful tool for biomechanical research and athletic performance 

analysis. 
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