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Abstract: In the realm of emerging engineering education, the practical teaching of 

environmental engineering majors cries out for reform and optimization, which can be 

analogized to the regulatory mechanisms within cellular molecular biomechanics. Cells 

maintain their functionality and adaptability through a complex network of molecular 

interactions and signaling pathways. Similarly, an effective practical teaching system must 

have a well-structured and optimized framework. This study aims to explore the reform of the 

practical teaching system for environmental engineering majors in the context of emerging 

engineering education. A multi-dimensional evaluation model was constructed based on the 

Analytic Hierarchy Process (AHP), and the heuristic algorithm was integrated for weight 

optimization. The results show that the Improved Genetic Particle Swarm Optimization (IG-

PSO) exhibits significant advantages in optimizing the weights of various indicators. After 

optimization, its Consistency Ratio (CR) decreased to 0.07, representing a 53% and 46% 

improvement over Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), 

respectively. Additionally, the fitness value of IG-PSO after 800 iterations reached 0.046, 

significantly outperforming other comparative algorithms. Furthermore, the assessment of 

teaching effects in dimensions like experimental performance and innovation ability parallels 

the overall functionality and responsiveness of a cell. The IG-PSO-optimized evaluation 

system achieved an excellent score of over 90 in the assessment of actual teaching effectiveness 

across dimensions such as experimental performance and innovation ability. It shows that the 

teaching system is a healthy, well-regulated cell that can effectively perform its functions and 

adapt to different educational needs. Through the analogy with cellular molecular 

biomechanics, we can gain a deeper understanding of the improvement and optimization of the 

practical teaching system of environmental engineering, which is crucial for the cultivation of 

skilled professionals in this field. 

Keywords: environmental engineering; practical teaching; reform exploration; genetic 

algorithm; cellular molecular biomechanics 

1. Introduction 

With the rapid advancement of global industrialization and urbanization, 

environmental issues have become increasingly prominent, underscoring the crucial 

role of environmental engineering majors in addressing environmental pollution and 

rational utilization of resources. In recent years, amidst technological advancements 

and industrial structural adjustments, the demand for environmental engineering 

talents has transcended mere theoretical knowledge and now necessitates robust 

practical operation skills and innovative thinking [1–3]. Consequently, the traditional 
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teaching model has become inadequate in fulfilling the needs of modern 

environmental engineering talent cultivation, necessitating urgent reforms [4]. 

Against the backdrop of emerging engineering education, universities have 

gradually propelled reforms in the practical teaching of engineering disciplines, 

emphasizing the integration of practice and theory to enhance students’ comprehensive 

qualities. The emerging engineering education concept aims to cultivate innovative 

engineering and technical talents for the industry by integrating interdisciplinary 

knowledge, industry-university collaboration, and project-based learning [5,6]. The 

teaching mode based on project learning (PBL) and industry-university-research 

cooperation has gradually become the mainstream. These reforms emphasize the deep 

integration of theory and practice, which not only improves students’ hands-on skills, 

but also promotes the application of interdisciplinary knowledge. In addition, some 

universities have introduced virtual simulation technology to make up for the 

deficiency of actual experimental conditions by constructing virtual laboratories, thus 

improving the teaching effect. These measures provide a new path for the personnel 

training of environmental engineering major, and also provide a practical basis and 

theoretical basis for the evaluation system reform proposed in this study. Nevertheless, 

environmental engineering majors still confront numerous challenges in practical 

teaching. For instance, the practical teaching system’s structure remains incomplete, 

and the evaluation index system lacks scientific basis, making it difficult to accurately 

gauge teaching effectiveness. Additionally, limited resources for industry-university 

collaboration leads to inadequate practical opportunities for students and suboptimal 

innovation capabilities cultivation. 

Current research on practical teaching systems primarily focuses on teaching 

model innovations and individual curriculum reforms, yet there are still deficiencies 

in constructing multi-dimensional evaluation systems. Specifically, in terms of weight 

allocation and optimization of evaluation indicators, traditional methods fail to fully 

consider the complex teaching environment and lack effective optimization tools [7–

9]. Therefore, it is imperative to explore optimization methods for evaluation systems 

based on advanced algorithms to enhance the scientificity and applicability of practical 

teaching, thereby driving comprehensive reforms and innovations in the practical 

teaching of environmental engineering majors. 

2. Algorithm development: Construction of practical teaching 

evaluation system 

2.1. Multi-dimensional evaluation model based on analytic hierarchy 

process (AHP) 

The multi-dimensional evaluation model based on AHP provides a scientific 

basis for constructing the practical teaching evaluation system. In the practical 

teaching system of environmental engineering majors, the evaluation system should 

encompass multiple dimensions, ranging from teaching effectiveness, experimental 

facilities, to student competency development. By decomposing complex issues into 

multiple levels and indicators, AHP constructs a clearly structured and hierarchical 

evaluation system, thereby assisting decision-makers in systematically assessing the 
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relative importance of various factors [10]. In evaluating practical teaching, the first 

step is to establish a reasonable indicator system. Based on the characteristics of 

environmental engineering practical teaching, the multi-dimensional evaluation 

indicator system developed in this study is divided into three tiers: the objective level, 

the criterion level, and the indicator level. 

The objective level is set as “Practical Teaching Effectiveness of Environmental 

Engineering Majors” aiming to provide a comprehensive evaluation of the entire 

practical teaching system. The criterion level is further expanded into five dimensions: 

scientificity of teaching content (B1); advancement of experimental facilities (B2); 

cultivation of students’ practical abilities (B3); industry-university collaboration and 

resource sharing (B4); and transformation of teaching achievements and cultivation of 

innovation abilities (B5). When choosing the five dimensions of the criterion layer, 

the requirements of the practice teaching of environmental engineering are considered 

comprehensively. First of all, the scientific content of teaching (B1) and the advanced 

nature of experimental equipment (B2) are essential to ensure the teaching effect. 

Secondly, the cultivation of students’ practical ability (B3) is the core goal of talent 

training under the background of new engineering. School-enterprise cooperation and 

resource sharing (B4) can enhance the docking of teaching and industry needs and 

improve the utilization efficiency of teaching resources. Finally, the transformation of 

teaching results and the cultivation of innovative ability (B5) is not only an important 

evaluation index of practical teaching, but also a key aspect of measuring students’ 

innovative ability. Other potential dimensions such as management mechanisms and 

curriculum coordination were also considered, but after weight analysis and actual 

teaching needs assessment, they were not included in the final system due to their low 

impact. 

The indicator level is refined into 13 specific evaluation indicators, covering 

aspects such as curriculum design, experimental teaching, resource allocation, and 

achievement application, as detailed in Table 1. The evaluation indicator system is 

structured around the five criterion levels. The scientificity of teaching content reflects 

the integration of theory and practice and the alignment of course content with 

practical needs, ensuring that teaching content closely matches professional 

requirements [11]. The advancement of experimental facilities assesses the quantity 

and applicability of experimental equipment to ensure the smooth implementation of 

the teaching process. The cultivation of students’ practical abilities focuses on 

enhancing students’ abilities in experimental operations and problem-solving. The 

dimension of industry-university collaboration and resource sharing evaluates the 

frequency of collaboration and resource utilization, highlighting the importance of 

integrating teaching with industry [12,13]. Lastly, the transformation of teaching 

achievements and cultivation of innovation abilities measures teaching effectiveness 

and students’ innovation capabilities through indicators such as the rate of scientific 

research achievement transformation and participation in innovative projects. 
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Table 1. Construction of the indicator level. 

Criterion Level Indicator Level 

B1 Scientificity of Teaching Content 

C1 Degree of Integration Between Theory and 

Practice 

C2 Alignment of Course Content with Actual 

Needs 

B2 Advancement of Experimental Facilities 

C3 Quantity of Experimental Equipment 

C4 Advancement and Applicability of 

Experimental Equipment 

B3 Cultivation of Students’ Practical Abilities 
C5 Students’ Experimental Operation Ability 

C6 Students’ Problem-Solving Ability 

B4 Industry-University Collaboration and 

Resource Sharing 

C7 Frequency of Industry-University 

Collaboration 

C8 Efficiency of Utilizing Enterprise Resources 

B5 Transformation of Teaching Achievements 

and Cultivation of Innovation Abilities 

C9 Conversion Rate of Students’ Scientific 

Research Achievements 

C10 Participation in Innovative Projects 

C11 Presentation and Evaluation of Innovation 

and Entrepreneurship Project Outcomes 

After defining the evaluation index system, it is imperative to determine the 

weight of each index through the Analytic Hierarchy Process (AHP). The pivotal step 

in AHP involves constructing a judgment matrix, which serves to quantify the relative 

importance between different indicators. Assuming there are 𝑛 indicators, denoted as 

𝐴𝑛 , then each element 𝐴 = (𝑎𝑖𝑗)  in the judgment matrix 𝑎𝑖𝑗  represents the relative 

importance of indicator 𝐴𝑖 compared to 𝐴𝑗. These values are assigned using the 1–9 

scale method, as exemplified in Table 2. 

Table 2. Scale method for assigning values. 

Ratio Value Explanation 

1 Two factors are equally important 

3 One factor is slightly more important than the other 

5 One factor is noticeably more important than the other 

7 One factor is considerably more important than the other 

9 One factor is extremely more important than the other 

2, 4, 6, 8 Intermediate values between the above pairs 

Subsequently, the weight calculation is performed, where the weight vector can 

be derived by normalizing the eigenvector of the judgment matrix. The judgment 

matrix A  is normalized, and the sum of the ratios of each element is calculated to 

obtain the weight vector w . This is shown in Equation (1). 

𝑤𝑖 =
∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
 (1) 

Then, a consistency check is conducted by calculating the consistency index 𝐶𝐼 

and the consistency ratio 𝐶𝑅, where 𝐶𝐼 is computed according to Equation (2). 
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𝐶𝐼 =
𝜆𝑚𝑎𝑥
𝑛 − 1

 (2) 

where 
max  is the maximum eigenvalue of the judgment matrix, and n  is the order of 

the matrix. Following this, the consistency ratio is calculated. 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (3) 

where RI  represents the random consistency index. When 𝐶𝑅 < 0.1, the judgment 

matrix is considered to have acceptable consistency. If this condition is not met, the 

judgment matrix needs to be adjusted accordingly. 

In the process of constructing a multi-level indicator system, the dependency 

relationships between indicators at different levels are expressed through a 

hierarchical model. The construction of a practical teaching evaluation system can be 

divided into three layers: the goal layer, the criterion layer, and the indicator layer. In 

the Analytic Hierarchy Process (AHP), the goal layer is set as the overall evaluation 

objective for practical teaching in environmental engineering. The criterion layer is 

subdivided into multiple dimensions (e.g., teaching content, experimental equipment, 

student ability cultivation, etc.), and each criterion is further refined into multiple 

specific evaluation indicators (i.e., the indicator layer) [14,15]. Goal Layer: The 

overall evaluation objective, which is a comprehensive evaluation of the effectiveness 

of practical teaching in environmental engineering. Criterion Layer: Under the goal 

layer, the criterion layer defines multiple key factors that influence teaching 

effectiveness, including five dimensions: scientificity of teaching content, 

advancement of experimental equipment, cultivation of students’ practical abilities, 

industry-university collaboration and resource sharing, and transformation of teaching 

achievements [16]. 

Indicator Layer: Each criterion is further refined into specific evaluation 

indicators. For example, the scientificity of teaching content includes the degree of 

integration between theory and practice and the alignment of course content with 

actual needs. The advancement of experimental equipment encompasses specific 

indicators such as the quantity, advancement, and applicability of experimental 

equipment. For each criterion layer and indicator layer, the determination of weights 

will be conducted through the previously mentioned construction of judgment 

matrices and weight calculations, ultimately yielding weight values for different 

dimensions and indicators [17]. 

2.2. Optimization model based on heuristic algorithm 

Particle Swarm Optimization (PSO), as a global search algorithm rooted in 

swarm intelligence, is frequently employed to tackle optimization problems within 

multi-criteria decision-making systems. In the context of the practical teaching 

evaluation system, PSO can optimize the weights of evaluation indicators by 

simulating the information exchange and collaboration among swarm individuals, 

ultimately finding the optimal weight allocation scheme. The fundamental idea of PSO 

revolves around the search conducted by a swarm of particles in the solution space, 
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gradually converging the weights of the evaluation system towards the global optimal 

solution. 

Each particle in the solution space represents a potential solution, and the state of 

a particle is determined by its position 𝑥𝑖and velocity 𝑣𝑖. The update formulas of PSO 

are shown in Equation (4). 

{
𝑣𝑖(𝑡 + 1) = 𝜔 ⋅ 𝑣𝑖(𝑡) + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2 ⋅ 𝑟𝑎𝑛𝑑2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)
 (4) 

where 𝑣𝑖(𝑡)  represents the velocity of particle 𝑖  at time 𝑡 , 𝑥𝑖(𝑡)  denotes the current 

position of particle 𝑖 , 𝑝𝑏𝑒𝑠𝑡𝑖  is the best historical position of particle 𝑖 , 𝑔𝑏𝑒𝑠𝑡  is the 

global best position, 𝑟𝑎𝑛𝑑1  and 𝑟𝑎𝑛𝑑2  are two random numbers, 𝑐1  and 𝑐2  are the 

cognitive and social learning factors respectively, and 𝜔 is the inertia weight, which 

controls the magnitude of velocity updates. Consequently, the process of applying PSO 

to optimize indicator weights is as follows: 

(1) Initialize the particle swarm: Generate a set of particles with random weights 

and initialize the velocity of each particle. 

(2) Iterative search: Update the velocity and position of each particle, and 

sequentially calculate the fitness of each particle. 

(3) Update the optimal solutions: For each particle, compare the current solution 

with its historical best solution and update the historical best solution accordingly. 

Then, compare the historical best solutions of all particles to update the global best 

solution. 

(4) Determine the termination condition: If the maximum number of iterations is 

reached or the precision requirement is met, stop the iteration; otherwise, continue 

updating the positions and velocities of the particles. 

In this algorithm, the definition of the fitness function is the result of the 

consistency check of the indicator weights, with the objective of minimizing the 

Consistency Ratio 𝐶𝑅 < 0.1 to ensure that the optimized judgment matrix meets the 

consistency requirements. 

Genetic Algorithm (GA), on the other hand, is an optimization algorithm based 

on natural selection and genetic mechanisms, commonly used to tackle complex 

optimization problems. The combination of GA and Analytic Hierarchy Process (AHP) 

can effectively address the issues of subjectivity and difficulty in consistency checking 

encountered in AHP. GA optimizes the weights of the initial judgment matrix through 

operations such as encoding, selection, crossover, and mutation, ultimately yielding a 

weight distribution scheme that meets the consistency requirements. 

The steps for applying GA to optimize AHP are as follows: 

(1) Encoding: Encode the upper triangular elements of the judgment matrix 

using real numbers, representing the initial value of each weight as a 

chromosome. For a matrix such as (5): 

𝐴 =

(

  
 

1𝑎12𝑎13
1

𝑎12
1𝑎23

1

𝑎13

1

𝑎23
1
)

  
 

 (5) 
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The chromosome is represented as [𝑎12, 𝑎13, 𝑎23]. 

(2) Fitness Function: The fitness function is defined as the reciprocal of the 

Consistency Ratio 𝐶𝑅 , with the objective of minimizing 𝐶𝑅 to enhance the 

optimization effect of the matrix. The formula for the fitness function is given in 

Equation (6). 

𝑓(𝑥) =
1

1 + 𝐶𝑅
 (6) 

(3) Selection: Employ the Roulette Wheel Selection method, where 

chromosomes with higher fitness values are selected based on their fitness scores to 

proceed to the next generation. 

(4) Crossover: Select two chromosomes to undergo the crossover operation, 

during which parts of their genes are exchanged to generate new chromosomes. The 

mathematical representation of the crossover operation is as follows: [Note: The 

specific mathematical formula for crossover would depend on the type of crossover 

used (e.g., single-point, multi-point, uniform, etc.), but generally, it involves selecting 

crossover points and exchanging the gene segments beyond those points between the 

two parent chromosomes.] 

{
𝐶1 = 𝛼 ⋅ 𝑃1 + (1 − 𝛼) ⋅ 𝑃2
𝐶2 = 𝛼 ⋅ 𝑃2 + (1 − 𝛼) ⋅ 𝑃1

 (7) 

where 𝑃1  and 𝑃2  are the parent chromosomes, 𝐶1  and 𝐶2  are the offspring 

chromosomes, and 𝛼 is the crossover coefficient. 

(5) Mutation: Randomly select a gene within a chromosome and apply a random 

mutation to it. The formula for the mutation operation is as follows: 

𝑥`𝑖 = 𝑥𝑖 + 𝛥𝑥 (8) 

where 𝛥𝑥 represents a randomly varying value. 

(6) Termination Condition: The algorithm terminates and outputs the optimal 

solution when either the number of iterations reaches a predefined limit or the fitness 

value no longer improves significantly. To enhance optimization efficiency, the 

improved algorithm introduces an adaptive mechanism, which incorporates additional 

adjustment steps within the Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA). These adjustments are designed to dynamically adapt the algorithm’s 

behavior based on the progress of the optimization process, thereby potentially 

achieving faster convergence and better-quality solutions. 

1) Improvement of PSO: In Particle Swarm Optimization (PSO), a dynamic 

inertia weight 𝜔𝑤 is introduced to enable the inertia weight to be adjusted dynamically 

based on the number of iterations. The update formula for the inertia weight is as 

follows: 

t
T

w 
−

−=
)( minmax

max


  (9) 

where 𝜔𝑚𝑎𝑥  and 𝜔𝑚𝑖𝑛  represent the maximum and minimum inertia weights, 

respectively, 𝑇 is the maximum number of iterations, and 𝑡 is the current number of 
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iterations. This improvement allows the algorithm to maintain a larger search space 

initially and gradually converge towards the later stages. 

2) In the Genetic Algorithm, the crossover probability 𝑃𝑐  and mutation 

probability 𝑃𝑚  are dynamically adjusted based on changes in fitness values. The 

formulas for dynamically adjusting PC and PM are as follows: Note: Specific formulas 

for the dynamic adjustment of PC and PM would depend on the chosen adaptation 

strategy, but generally, they involve comparing the fitness of individuals or the 

population as a whole and adjusting the probabilities accordingly to encourage 

exploration or exploitation. 













−−+
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 (10) 

where 𝑓𝑎𝑣𝑔  represents the average fitness of the current population, and 𝑘  is an 

adjustment factor. 

3) Convergence Criterion: During the convergence process of the algorithm, an 

improved stopping condition is introduced. Specifically, when the change in fitness 

values across consecutive generations falls below a predefined threshold, the 

algorithm is considered to have converged, and the iterations are terminated early to 

reduce computational time. 

Among them, Equation (4) describes the speed update of particles in PSO, which 

is adjusted in combination with individual optimal and global optimal positions to 

achieve a balance between global search and local search. Equation (6) defines the 

fitness function, whose goal is to minimize the consistency ratio and optimize the 

weight distribution of the evaluation system. Equations (7) and (8) are used for 

crossover and mutation operations in genetic algorithm, respectively, to ensure the 

diversity of solutions and global search ability. 

In summary, heuristic algorithms enhance the applicability of the Analytic 

Hierarchy Process (AHP) in complex evaluation systems by dynamically adjusting 

and optimizing the search path. The combination of Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA) improves the model’s global search capability and 

adaptability, thereby facilitating more effective and efficient decision-making 

processes. IG-PSO algorithm combines the advantages of genetic algorithm (GA) and 

particle swarm optimization (PSO) to achieve more efficient weight optimization. 

Specifically, GA is good at global search, and can explore diversity in the solution 

space through operations such as selection, crossover and mutation, and avoid falling 

into local optimality. However, the convergence rate of GA is relatively slow and the 

optimization efficiency is low. By simulating swarm intelligence, PSO achieves global 

convergence at a faster speed, but it is easy to fall into local optimal solution in 

complex search space. IG-PSO combines the global search capability of GA with the 

fast convergence characteristic of PSO: Firstly, GA is used to explore the solution 

space extensively in the initial stage, and then PSO is used to accelerate the 

convergence to the optimal solution in the later stage. In addition, dynamic adjustment 
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of the inertia weight in PSO makes it have a larger exploration range in the initial stage 

of search, and gradually converge in the later stage, so as to improve the overall 

performance and optimization effect of the algorithm. 

3. Experimental analysis 

3.1. Experimental setup 

In the process of experimental setup (Table 3), the sources of experimental data 

encompassed multiple teaching courses in environmental engineering, covering 

practical data such as student feedback, usage records of teaching equipment, and the 

translation of teaching outcomes under various instructional scenarios. The data 

collection period spanned an entire academic year, ensuring comprehensiveness and 

authenticity through real-time tracking of teaching effectiveness and regular sampling 

of student evaluations. 

The experimental platform setup encompassed both hardware and software 

environments. On the hardware side, the experiments utilized Intel processors released 

in 2019 and related equipment, guaranteeing the efficiency and stability of the 

computational processes. The software environment was based on MATLAB and 

Python, with MATLAB utilized for the construction of the judgment matrix, weight 

calculation, and consistency checks within the Analytic Hierarchy Process (AHP) 

model, while the Python platform was responsible for the optimization implementation 

of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), as well as the 

processing and analysis of experimental data. 

Table 3. Experimental setup environment. 

Hardware and Software Environment Configuration 

Processor Intel Core i7-9700K 

Memory 32 GB DDR4 2666 MHz 

Hard Disk 1TB NVMe SSD 

Operating System Windows 10 Pro 64-bit 

Software Platform MATLAB 2019b, Python 3.7 

Development Tools Jupyter Notebook, Visual Studio 

3.2. Analysis of experimental results 

In the experiments conducted to evaluate the effectiveness of various algorithms 

in optimizing index weights, the Analytic Hierarchy Process (AHP) was compared 

with three heuristic optimization algorithms: the standard Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), and the Improved Genetic-Particle 

Swarm Optimization (IG-PSO) hybrid algorithm. The comparisons were made based 

on the Consistency Ratio (CR) and convergence speed during the weight optimization 

process. 

Table 4 presents the comparative results of the optimization effects of the index 

weights. It can be observed that different algorithms exhibit significant differences in 

the optimization process. Initially, all algorithms had a CR value of 0.15, indicating a 

relatively poor consistency before optimization. After optimization, PSO reduced the 
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CR value to 0.09, representing a 40% improvement in consistency. In contrast, GA 

achieved even better optimization results, reducing the CR value to 0.08 and 

improving consistency by 46%. However, GA required a higher number of generations 

(60) to converge, resulting in an increased convergence time of 5.8 seconds, 

highlighting its disadvantage in terms of convergence speed. The improved algorithm, 

IG-PSO, demonstrated excellent performance in both optimization effect and 

efficiency, ultimately reducing the CR value to 0.07, representing a 53% improvement 

in consistency, significantly outperforming both PSO and GA. Furthermore, IG-PSO 

achieved convergence in just 38 generations, with a convergence time of 3.5 seconds, 

reducing the time by 6.7 seconds and 2.3 seconds respectively compared to PSO and 

GA. These results indicate that IG-PSO, by combining the strengths of GA and PSO, 

is able to optimize index weights with faster speed and better results. Overall, IG-PSO 

outperforms the standard PSO and GA algorithms in terms of consistency 

improvement, convergence speed, and time efficiency, particularly when dealing with 

complex multi-dimensional evaluation systems. 

Table 4. Comparison of index weight optimization effects. 

Algorith

m 

Initial CR 

Value 

Optimized CR 

Value 

Number of Generations to 

Convergence 

Convergence Time 

(seconds) 

Consistency Improvement 

Rate (%) 

AHP 0.15 0.12 - - 20 

PSO 0.15 0.09 45 4.2 40 

GA 0.15 0.08 60 5.8 46 

IG-PSO 0.15 0.07 38 3.5 53 

To further validate the performance of the improved genetic algorithm-particle 

swarm optimization hybrid (IGA-PSO), a comparative analysis was conducted with 

four other commonly used algorithms. In addition to Particle Swarm Optimization 

(PSO) and Genetic Algorithm (GA), Simulated Annealing (SA), Differential 

Evolution (DE), and Artificial Bee Colony (ABC) were also included. The primary 

metric for performance comparison was the Fitness Value under different iteration 

numbers. Figure 1 illustrates the fluctuations and final convergence effects of each 

algorithm across varying iteration counts. 

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 80 160 240 320 400 480 560 640 720 800

IG-PSO PSO GA SA DE ABC

Iterations

F
it

n
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s

 
Figure 1. Comparison of performance among different algorithms. 
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In the initial iterations, the Fitness Value of IG-PSO rapidly declined to 0.092, 

significantly outperforming other algorithms, especially PSO and GA, which stood at 

0.110 and 0.120, respectively. As the number of iterations increased, IG-PSO achieved 

0.073 after 160 iterations, converging faster than PSO’s 0.095 and GA’s 0.105, 

demonstrating higher convergence efficiency. In the mid-to-late iterations, IG-PSO 

continued to lead, ultimately reaching a Fitness Value of 0.046 after 800 iterations, 

superior to PSO’s 0.065 and GA’s 0.072, as well as SA, DE, and ABC algorithms. 

Throughout all iteration stages, IG-PSO exhibited faster convergence speeds and 

better Fitness Values. By integrating the strengths of Genetic Algorithm and Particle 

Swarm Optimization, IG-PSO significantly enhanced search efficiency and global 

optimization capabilities, surpassing standard PSO, GA, and other comparative 

algorithms. 

To validate the practical application effects of the evaluation system in teaching, 

a comparative experiment was conducted using teaching evaluation systems optimized 

by different algorithms. The experimental subjects were students from three different 

grades majoring in Environmental Engineering, and their practical teaching 

effectiveness was evaluated through an evaluation index system. Data sources 

encompassed four aspects: experimental performance, innovation ability, problem-

solving ability, and cooperation ability. The practical application results are presented 

in Table 5. Although the IG-PSO optimized evaluation system has shown excellent 

results in experiments, it may face some challenges and limitations in the 

implementation of the system in actual teaching scenarios. First of all, there are great 

differences in teaching resources and practical conditions in different universities, 

especially the uneven availability of experimental equipment and school-enterprise 

cooperation opportunities, which may lead to great differences in the application 

effects of the evaluation system in different environments. Secondly, the 

implementation of the evaluation system needs a lot of data support, especially the 

performance evaluation of students in different practice links, and some universities 

may lack a long-term and systematic data collection mechanism. In addition, teachers’ 

familiarity with the evaluation system and the subjective factors in the evaluation 

process may also affect the promotion effect of the system. Therefore, in the promotion 

and application, the specific conditions of each institution should be considered, and 

the evaluation model should be optimized through several iterations to ensure its 

adaptability and operability. Future studies can further explore how to adjust the 

weights of evaluation indicators to meet the needs of different teaching scenarios. 

Table 5. Application effects in practical teaching. 

Dimensions of Teaching Effectiveness IG-PSO PSO GA SA DE 

Experimental Performance 92.5 88.4 85.7 84.6 83.2 

Innovation Ability 90.3 86 83.5 82.8 81.7 

Problem-Solving Ability 91.8 87.5 84.9 84 83 

Collaboration Ability 89.7 85.3 83.2 82.7 81.5 

Comprehensive Score 91.1 86.8 84.3 83.5 82.4 
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4. Conclusion 

In the context of emerging engineering education, the reform of the practical 

teaching system for environmental engineering majors aims to enhance teaching 

effectiveness and foster students’ innovation capabilities, practical skills, and 

problem-solving abilities. Through the construction of a multi-dimensional evaluation 

model based on the Analytic Hierarchy Process (AHP), combined with Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) for weight optimization, an 

Improved Genetic Algorithm-Particle Swarm Optimization Hybrid (IG-PSO) was 

proposed. Experimental results indicate that IG-PSO achieved the best optimization 

performance, reducing the consistency ratio to 0.046 after 800 iterations, significantly 

outperforming other algorithms. Simultaneously, the evaluation system optimized by 

IG-PSO demonstrated outstanding performance in practical teaching, with an 

experimental performance score of 92.5 and an innovation ability score of 90.3, both 

superior to those obtained by other comparative algorithms. Future research could 

extend the data samples through collaboration among multiple institutions to further 

validate the applicability and generalizability of the algorithm. The multidimensional 

evaluation model and optimization algorithm in this study are not only applicable to 

environmental engineering, but also can be extended to other engineering disciplines, 

such as mechanical engineering and civil engineering. By adjusting the weight of 

evaluation index and optimization algorithm, the practical teaching evaluation effect 

of each subject can be effectively improved, and the teaching reform and innovation 

ability cultivation can be promoted. 
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