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Abstract: Running-related injuries are a significant concern for recreational and competitive 

athletes, often resulting from complex biomechanical interactions. Traditional injury 

assessment methods are limited in their ability to capture dynamic, real-time data, necessitating 

the need for more advanced predictive tools. This study proposes an innovative machine-

learning approach to predict running-related injuries by analyzing biomechanical data collected 

from 84 active runners. The data included joint angles, ground reaction forces, stride length, 

muscle activation, and foot pressure, captured through wearable sensors during laboratory-

controlled and outdoor running sessions. An ensemble model combining Gradient-Boosted 

Decision Trees (GBDT), Long Short-Term Memory (LSTM) networks, and Support Vector 

Machines (SVM) was developed to predict injury risk. The results indicate that ground reaction 

force, foot pressure, and stride length were the most significant predictors of injury. The 

proposed ensemble model achieved an accuracy of 88.37%, outperforming individual models 

such as GBDT (83.74%) and LSTM (81.29%). The findings suggest that integrating machine 

learning techniques with biomechanical analysis can significantly enhance the prediction and 

prevention of running-related injuries. This research offers valuable insights into developing 

personalized injury prevention strategies, potentially reducing injury occurrence among 

athletes. 

Keywords: biomechanical data; joint angles; ground reaction force; foot pressure; 

biomechanical analysis; running-related injuries 

1. Introduction 

Running is a globally popular form of physical activity due to its accessibility, 

cardiovascular benefits, and ability to promote physical and mental well-being [1]. 

However, it is also associated with a high prevalence of musculoskeletal injuries, 

particularly among long-distance runners and competitive athletes [2,3]. Studies 

suggest that up to 79% of runners will experience some form of injury each year, with 

common issues including stress fractures, plantar fasciitis, and knee injuries [4,5]. 

These injuries often arise from biomechanical imbalances and repetitive stress, making 

early detection and intervention crucial for minimizing long-term damage and 

improving athletic performance [6,7]. 

The biomechanics of running—comprising variables such as stride length, 

ground reaction forces, joint angles, and muscle activation—play a significant role in 

injury risk [8,9]. Runners with improper form or inefficient mechanics are at a higher 

risk of injury, as these factors can increase the forces exerted on the musculoskeletal 

system during repetitive motions [10]. Over the years, traditional methods of assessing 
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running mechanics have relied on laboratory-based analyses, video assessments, and 

clinical evaluations [11–14]. While these techniques provide valuable insights, they 

are often limited by their dependence on static or retrospective data and unsuitable for 

real-time injury prevention [15,16]. 

Recent technological advancements in wearable sensors, real-time data capture, 

and machine learning offer new opportunities to address these limitations [17]. 

Wearable sensors can continuously monitor key biomechanical parameters during 

running, enabling the collection of vast amounts of data across diverse environments 

[18,19]. This real-time data can be analyzed using machine learning techniques to 

uncover complex patterns and relationships that may not be evident through traditional 

analysis methods [20,21]. Machine learning models, particularly those designed to 

handle large datasets and time-series data, can provide predictive insights into injury 

risk, offering a more dynamic and personalized approach to injury prevention [22]. 

Despite these advancements, existing models for predicting running-related 

injuries still face challenges in accurately identifying the key biomechanical factors 

contributing to injury [23]. Many studies use linear or rule-based models, which may 

oversimplify the complex interactions between variables such as ground reaction 

forces, joint angles, and muscle activation timing [24]. Moreover, current predictive 

models often struggle to adapt to the high variability in individual running patterns, 

which can fluctuate based on experience level, running environment, and physical 

conditioning [25]. As a result, there remains a need for more robust predictive tools 

that can account for the nonlinear relationships and temporal dependencies inherent in 

biomechanical data [26,27]. 

This study seeks to address these gaps by proposing an innovative machine-

learning approach that integrates multiple algorithms to enhance the prediction of 

running-related injuries. By combining Gradient-Boosted Decision Trees (GBDT), 

Long Short-Term Memory (LSTM) networks, and Support Vector Machines (SVM) 

in an ensemble model, this research aims to leverage the strengths of each method to 

analyze complex biomechanical data. GBDT is particularly effective at identifying 

nonlinear relationships and ranking feature importance, while LSTM networks are 

well-suited for handling sequential, time-series data. SVMs, on the other hand, offer 

strong classification performance for high-dimensional datasets. Together, these 

models form a comprehensive framework capable of processing structured 

biomechanical variables and dynamic running data. 

The study was conducted on a cohort of 84 active runners from various urban 

regions in China, recruited to represent a range of running experience levels, from 

recreational to competitive athletes. Data collection occurred over six months, 

ensuring that seasonal variations in running patterns were captured. Biomechanical 

data, including joint angles, foot strike patterns, vertical ground reaction forces, and 

muscle activation timings, were collected using wearable sensors during laboratory-

controlled treadmill runs and outdoor track sessions. These data were then analyzed 

through the proposed ensemble machine-learning model to predict the likelihood of 

running-related injuries. 

The objectives of this study are threefold: 

• To identify the key biomechanical factors contributing to running-related injuries 

across different experience levels. 
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• To develop a predictive model capable of integrating multiple sources of 

biomechanical data and accurately assessing injury risk in real time. 

• To evaluate the performance of the ensemble model by comparing its accuracy, 

precision, recall, and F1 score against other machine learning models such as 

GBDT, LSTM, SVM, Random Forest, and Decision Trees. 

By addressing these objectives, this study aims to advance the understanding of 

how biomechanical variables influence injury risk and to provide a more effective tool 

for injury prevention in runners. The findings can benefit athletes, coaches, sports 

medicine professionals, and physiotherapists by offering data-driven insights that can 

inform personalized training programs and rehabilitation strategies. Following the 

Introduction section, the paper is structured as follows: Methodology (2.0) outlines the 

study design, participant selection, and biomechanical data collection. The Proposed 

Machine Learning Approach (2.5) details the development of an ensemble model 

using GBDT, LSTM, and SVM for injury prediction. Result Analysis (3.0) covers 

statistical tests, including T-tests, ANOVA, and regression, alongside machine 

learning results like feature importance and model accuracy. Finally, the Conclusion 

(4.0) summarizes key findings, highlights influential biomechanical factors, and 

suggests future applications for injury prevention. 

The article is presented as follows: Section 2 presents the theoretical framework, 

Section 3 presents the methodology, Section 4 presents the analysis, and Section 5 

concludes the paper. 

2. Methodology 

2.1. Study design 

The study was conducted in China, focusing on 84 active runners recruited from 

various urban regions with a robust running culture. The study spanned six months 

from 1 March 2023, to 31 August 2023, ensuring seasonal variations in running 

patterns were captured. Participants were selected using a stratified sampling to ensure 

a balanced representation across different running experience levels, from recreational 

to competitive athletes. The inclusion criteria required participants to have maintained 

a minimum running distance of 20 km per week for at least six months before the 

study, with no existing injuries or musculoskeletal disorders that could compromise 

their running mechanics. 

The study cohort included a balanced gender distribution, allowing for analysis 

of biomechanical differences between male and female runners. Age group 

subdivisions were also incorporated, capturing a wide range of biomechanical 

variations across younger and older runners. Participants underwent tests in controlled 

laboratory environments and outdoor tracks to reflect real-world running conditions. 

In the laboratory sessions, participants were fitted with wearable sensors and ran on a 

treadmill at various speeds, while outdoor sessions involved track running to simulate 

different terrains and intensities. 

The biomechanical data collected during this period included joint angles, foot 

strike patterns, vertical ground reaction forces, and muscle activation throughout the 

running cycle. Additionally, detailed questionnaires were administered to gather 
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contextual data, including participants’ running history, injury records, and training 

habits. This data collection framework ensured a rich dataset for the machine learning 

model to analyze the complex factors contributing to running-related injuries. Ethical 

approval was obtained from the relevant research ethics committees in China, and all 

participants provided informed consent before participating. This carefully designed 

study allowed for comprehensive data gathering and set a solid foundation for the 

subsequent machine learning analysis. 

2.2. Participants 

The study involved a total of 84 participants, all of whom were active runners 

recruited from various regions across China with running solid communities. The 

participants were selected through a stratified sampling to ensure a diverse 

representation of running experience, age, and gender. Of the 84 participants, 46 were 

male and 38 were female, aged 18 to 50. To ensure comprehensive coverage, 

participants were further grouped into three age categories: 18–25 years (28 

participants), 26–35 years (31 participants), and 36–50 years (25 participants). This 

age distribution allowed for a thorough investigation of potential biomechanical 

differences across younger, middle-aged, and older runners. 

In terms of running experience, participants were classified into three categories: 

recreational runners (32 participants), who ran less than 30 kilometers per week; 

intermediate runners (34 participants), who ran between 30 and 50 kilometers per 

week; and advanced runners (18 participants), who regularly exceeded 50 kilometers 

per week. This categorization ensured the study could analyze biomechanical 

variations between runners of different training intensities and experience levels. All 

participants ran consistently for at least six months before the study and were free from 

any significant musculoskeletal injuries or conditions that could influence their natural 

running biomechanics. 

The study maintained a near-equal distribution of male and female participants 

to account for gender-specific variations in biomechanical patterns. This balance was 

essential to ensure that the machine learning models would capture any differences in 

running mechanics between men and women, such as variations in joint angles, muscle 

activation patterns, and injury risks. Additionally, the study recorded participants’ 

body mass index (BMI) and height to provide further context for analyzing 

biomechanical variables. The average BMI for participants was 22.8, with heights 

ranging from 155 cm to 190 cm. 

2.3. Assessment and apparatus 

The study involved a multi-phase assessment process to comprehensively assess 

the biomechanical factors contributing to running-related injuries (Table 1). This 

included a Baseline Assessment, Track Assessment, and Laboratory Assessment, with 

specific tools and methods to evaluate each aspect of the participants’ physical and 

biomechanical performance. 

2.3.1. Baseline assessment 

The baseline assessment began with a detailed evaluation of participants’ 

physical and musculoskeletal health. A musculoskeletal assessment measured joint 
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mobility, muscle strength, and functional stability. The flexibility of key joints such 

as the ankles, knees, and hips were measured using a goniometer, while muscle 

strength was quantified through hand-held dynamometers, which provided precise 

measurements of isometric strength in the quadriceps, hamstrings, and calf muscles. 

These tests were essential for identifying any muscular imbalances, such as quadriceps 

dominance or weakened calf muscles, which could predispose participants to injury. 

Participants also completed a detailed musculoskeletal health questionnaire, 

which collected data on their previous injuries, frequency of muscle pain, and general 

joint stiffness. This questionnaire provided qualitative insights into the participants’ 

injury history and pain experiences, offering context for the biomechanical data 

collected later. Anthropometric measurements such as height, weight, and body mass 

index (BMI) were also recorded using a digital stadiometer and digital scale to help 

contextualize the biomechanical data concerning each participant’s physical attributes. 

2.3.2. Track assessment 

Participants ran on a standard 400 m outdoor track in the track assessment to 

simulate real-world running conditions. The participants had wearable sensors 

attached to the waist, thighs, and ankles. These sensors measured stride length, 

cadence, joint angles, and foot strike patterns as participants ran at varying speeds. 

This setup allowed for real-time monitoring of how musculoskeletal and 

biomechanical variables changed under different conditions. 

Also, pressure-sensitive mats were strategically placed along the track to measure 

pressure distribution across the foot during the running cycle. This data provided 

insights into the participants’ foot strike patterns, particularly the loading patterns 

during foot strike and push-off phases, which are critical for understanding the 

potential for injuries such as plantar fasciitis or stress fractures. 

High-speed video cameras were positioned around the track to capture the 

participants’ movements from multiple angles, allowing for a post-run video analysis 

of their running form. This footage helped identify biomechanical deviations or 

misalignments that could contribute to injury, such as knee valgus or overpronation. 

2.3.3. Laboratory assessment 

The laboratory assessment provided a controlled environment for precise and 

detailed biomechanical analysis. Participants ran on a treadmill with embedded force 

plates, measuring ground reaction forces during each foot strike. The force plates 

captured data on vertical, anterior-posterior, and medial-lateral forces, allowing for an 

in-depth analysis of how the body absorbed impact and distributed forces during 

running. 

A 3D motion capture system was used to track joint movements and limb 

coordination in real-time. Reflective markers were placed on key anatomical 

landmarks, such as the hips, knees, and ankles. The system recorded participants’ joint 

angles, rotations, and limb movements with millimeter accuracy. This data assessed 

the participants' running biomechanics and identified any abnormalities, such as 

excessive knee rotation or hip drop. 

In addition to the force plates and motion capture system, electromyography 

(EMG) sensors were used to monitor muscle activation patterns in the quadriceps, 

hamstrings, and calf muscles. These sensors provided real-time data on muscle 
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function, identifying abnormal activation patterns that could indicate muscle fatigue 

or imbalances. Plantar pressure sensors were also used during the treadmill runs to 

provide detailed information on foot pressure distribution during the running cycle, 

helping to identify areas prone to injury due to excessive pressure or impact. 

Table 1. Apparatus used for each phase of the study. 

Assessment Type Specific Evaluation Apparatus Used Data Collected 

Baseline 

Assessment 

Anthropometric 

Measurements 
Digital Stadiometer, Digital Scale Height, Weight, Body Mass Index (BMI) 

Musculoskeletal Health 

Assessment 
Goniometer, Dynamometers 

Joint Mobility, Muscle Strength (Quadriceps, 

Hamstrings, Calf) 

Musculoskeletal Health 

Questionnaire 
Standardized Questionnaire 

Injury History, Pain Frequency, Joint Stiffness, 

Training Habits 

Flexibility and Strength 

Testing 
Sit-and-Reach Test, Single-Leg Squats Lower Body Flexibility, Strength Levels 

Track Assessment 

Gait Analysis 
Wearable Sensors (Thighs, Waist, 

Ankles) 

Stride Length, Cadence, Joint Angles, Foot Strike 

Patterns 

Pressure Distribution Pressure-Sensitive Mats 

Foot Pressure Distribution During Running, 

Hotspots for Injury Risk (e.g., excessive pressure 

areas) 

Real-Time Motion 

Capture 
High-Speed Video Cameras 

Visual Data of Running Movements, Stride 

Mechanics 

Laboratory 

Assessment 

Ground Reaction Force 

(GRF) Measurement 

Treadmill with Embedded Force 

Plates 

Vertical, Anterior-Posterior, and Medial-Lateral 

Ground Reaction Forces 

Joint Movement and 

Coordination 

3D Motion Capture System (Vicon 

Nexus), Reflective Markers 
Joint Angles, Rotations, Limb Coordination 

Muscle Activation 

Patterns 
Electromyography (EMG) Sensors 

Muscle Activation in Quadriceps, Hamstrings, and 

Calf Muscles 

Foot Pressure Analysis Plantar Pressure Sensors 
Foot Pressure Distribution During Foot Strike and 

Push-Off Phases 

2.4. Experimental design 

The experiment was designed to explore the relationship between biomechanical 

factors and running-related injuries using an innovative machine-learning model 

tailored explicitly for this study. The primary goal was to gather detailed 

biomechanical data across various running conditions, preprocess this data, and apply 

the machine learning approach to predict injury risks and patterns with high accuracy. 

The experimental framework included several phases, where data collection, 

preprocessing, and model training were systematically integrated to ensure robust, 

actionable insights. 

2.4.1. Participant preparation and setup 

Before the experiment began, participants were briefed on the protocol, and 

informed consent was obtained. The experiment was conducted and controlled across 

outdoor track environments and laboratory settings. Each participant was fitted with 

various sensors for real-time data collection, including motion capture markers, 

muscle activity sensors, and force measurement devices. This preparation ensured that 

the key biomechanical variables were captured effectively. 
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2.4.2. Experimental procedure 

The experiment was conducted in three phases—baseline, track, and 

laboratory—each designed to capture a specific set of biomechanical data. The 

experimental sessions took place over multiple days to prevent participant fatigue and 

ensure high data quality. 

1) Baseline Phase: Participants underwent a full musculoskeletal assessment in 

the initial phase, including flexibility and strength measurements. This baseline data 

was essential for understanding their general physical health and how it related to their 

running mechanics. A musculoskeletal health questionnaire was also administered to 

record participants’ injury histories and training habits. 

2) Track Phase: Participants were asked to run on an outdoor track at three 

different speeds: slow (jogging pace), moderate (training pace), and fast (race pace). 

Each participant completed a series of 800 m runs at varying speeds. Wearable sensors 

captured real-time gait data, including joint angles, footstrike patterns, and stride 

length. Pressure-sensitive mats were placed along the track to measure foot pressure 

distribution at key points during the running cycle. 

To ensure the track conditions did not affect the results, the experiment was 

conducted under consistent weather and surface conditions and monitored closely for 

any deviations. High-speed cameras were positioned around the track to capture 

detailed video footage of each participant’s gait, which was later analyzed for 

biomechanical deviations. 

3) Laboratory Phase: Participants ran on a treadmill equipped with embedded 

force plates to precisely measure the ground reaction forces generated during running. 

The treadmill runs were conducted at the same three speeds used in the track phase. A 

3D motion capture system also recorded joint movements, while electromyography 

(EMG) sensors measured muscle activation patterns. This phase provided a controlled 

environment for capturing data on how forces and joint movements change with speed, 

fatigue, and physical exertion. 

The treadmill was calibrated to ensure all force measurements were accurate and 

reproducible across participants. This phase allowed for a detailed breakdown of each 

participant’s biomechanics under consistent running conditions, providing high-

resolution data for further analysis. 

2.4.3. Machine learning model application 

The experimental data collected across all phases were preprocessed, normalized, 

and used for feature extraction, targeting key biomechanical variables such as joint 

angles, ground reaction forces, muscle activation timing, and foot pressure distribution. 

The machine learning model for this study was based on an ensemble learning 

approach, optimized to handle the complexity of biomechanical data and accurately 

predict injury risk. 

The ensemble model combined the strengths of: 

• Gradient-Boosted Decision Trees (GBDT): GBDT was used to identify nonlinear 

relationships between biomechanical variables such as stride length, ground 

reaction forces, and injury patterns. This model excels in handling structured data 

and capturing complex variable interactions. 
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• Long Short-Term Memory (LSTM) Neural Networks: Since running data is 

sequential, LSTM networks were employed to process the time-series data from 

the motion capture system and EMG sensors. This allowed the model to learn 

how variations in running mechanics over time contribute to injury risk, 

providing a deeper temporal understanding of biomechanics. 

• Support Vector Machines (SVM): SVMs were used as part of the ensemble to 

classify injury risk based on the multidimensional feature space of biomechanical 

data. SVM is effective for high-dimensional data, helping to distinguish between 

normal and abnormal movement patterns associated with injuries. 

The ensemble model was designed to synergize these methods, allowing it to 

leverage their complementary strengths. By integrating decision trees for feature 

importance, LSTM for sequential data processing, and SVM for classification, the 

model could predict the likelihood of injury and identify the key biomechanical factors 

contributing to that risk. 

2.4.4. Experiment control and monitoring 

All participants followed the same running protocol across the track and 

laboratory phases to maintain consistency. Environmental factors such as weather and 

surface conditions were controlled as much as possible during the track runs. 

Temperature, humidity, and lighting were kept constant in the laboratory phase. 

Participants were given adequate rest periods between sessions to prevent fatigue and 

ensure that the data collected was not compromised by physical exhaustion. 

Throughout the experiment, data were continuously monitored for anomalies, such as 

sensor malfunctions or irregularities in running patterns. These checks ensured that 

the data collected were of the highest quality, supporting the machine learning model’s 

predictive accuracy. 

2.4.5. Post-Experiment data integration and analysis 

After the experimental sessions From Figure 1, all phases’ data were integrated 

into a single dataset. This dataset was processed to ensure consistency across the 

different collection methods (track vs. laboratory) and prepare for machine learning 

model training. The ensemble learning model was applied to the data to identify key 

biomechanical patterns associated with injury risks. The results were then validated 

using cross-validation techniques, ensuring the model’s predictions were reliable and 

generalizable. 

 
Figure 1. Proposed ML model. 
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2.5. Proposed machine learning approach 

In this study, we propose an innovative machine-learning approach to predict 

running-related injuries based on biomechanical factors. The approach integrates 

multiple machine learning algorithms into an ensemble model, leveraging the 

strengths of each method to process complex, high-dimensional data while focusing 

on the unique temporal dynamics of running biomechanics. The proposed model 

combines Gradient-Boosted Decision Trees (GBDT) for feature importance analysis, 

Long Short-Term Memory (LSTM) networks for time-series data processing, and 

Support Vector Machines (SVM) for classification. This ensemble architecture allows 

the model to effectively handle structured biomechanical and sequential time-series 

data collected from sensors during the study. 

1) Feature Extraction (FE): The first step in our machine-learning approach 

involves extracting relevant features from the biomechanical data. Key features 

include joint angles (𝜃𝑗), ground reaction forces (𝐹𝑔), muscle activation timing (𝑡𝑚), 

stride length (𝑆𝑙), cadence (𝐶𝑑), and foot pressure distribution (𝑃𝑓). These features 

are crucial for capturing the biomechanical variations among the participants. The data 

preprocessing pipeline includes the normalization of these variables using the min-

max scaling method: 

𝑥norm =
𝑥 − 𝑥min

𝑥max − 𝑥min
  (1) 

where 𝑥 is the original feature value, 𝑥min is the minimum value of the feature, and 

𝑥max is the maximum value. This scaling ensures that all features have the same range, 

preventing any one feature from dominating the model due to its scale. 

2) Gradient-Boosted Decision Trees (GBDT): GBDT (Figure 2) is employed in 

the model to determine the importance of each biomechanical feature in predicting 

injury risk. The algorithm iteratively builds decision trees, with each tree attempting 

to correct the errors of the previous ones. The GBDT loss function is given by: 

𝐿(𝜃) = ∑  

𝑁

𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))
2

  (2) 

where 𝑦𝑖 represents the actual injury outcome, 𝑓(𝑥𝑖; 𝜃) is the predicted value from the 

model, and 𝜃 are the model parameters. By minimizing this loss function, the model 

iteratively improves its predictions, placing greater weight on biomechanical features 

that contribute more to injury risks, such as high-ground reaction forces or abnormal 

joint angles. The output from GBDT is used to rank the importance of biomechanical 

factors, helping identify the key variables driving injury risk, which are then passed 

into the next layer of the model. 
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Figure 2. GBDT structure. 

3) Long Short-Term Memory (LSTM) Networks: Running biomechanics 

involves dynamic, sequential data that change over time, which makes LSTM 

networks (Figure 3) ideal for modeling these temporal dependencies. LSTM networks 

are designed to capture long-term dependencies and patterns from the sequential 

biomechanical data, such as changes in muscle activation and joint movement over 

multiple strides. The LSTM network processes the time-series data as follows: 

ℎ𝑡 = 𝜎(𝑊ℎ  ×  [ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (3) 

𝑐𝑡 = 𝑓𝑡  ×  𝑐𝑡−1 + 𝑖𝑡  ×  𝑐̃𝑡 (4) 

𝑜𝑡 = 𝜎(𝑊𝑜  ×  ℎ𝑡 + 𝑏𝑜) (5) 

where ℎ𝑡 is the hidden state at time step 𝑡, 𝑥𝑡 is the input at the time step 𝑡𝑡 and 𝑊ℎ 

and 𝑏ℎ are the weight and bias terms. The cell state 𝑐𝑡 is updated based on the forget 

gate 𝑓𝑡, input gate 𝑖𝑡, and candidate cell state 𝑐̃𝑡, enabling the network to retain and 

update relevant biomechanical information over time. By capturing the sequential 

nature of running data, the LSTM network identifies how variations in biomechanical 

patterns across multiple strides contribute to injury risk. The output from the LSTM 

layer feeds into the final classification model. 

 
Figure 3. LSTM architecture. 
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4) Support Vector Machines (SVM): The SVM component (Figure 4) of the 

ensemble is used to classify participants into injury-risk categories based on the 

biomechanical data processed by GBDT and LSTM. The SVM algorithm finds the 

hyperplane that best separates the data into two classes: those at risk of injury and 

those not at risk. The decision boundary is defined by: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏  (6) 

where 𝑤 is the weight vector, 𝑥 is the input feature vector, and 𝑏 is the bias term. The 

SVM seeks to maximize the margin between the two classes, ensuring that the 

classification is robust to variations in the biomechanical data. The optimal hyperplane 

is found by minimizing the following objective function: 

min
1

2
∥ 𝑤 ∥2  subject to 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖 (7) 

where 𝑦𝑖 is the class label for the 𝑖-th participant (injury or no injury). The SVM is 

beneficial for high-dimensional data, such as the biomechanical dataset in this study, 

and provides a highly accurate classification of injury risk based on the combined 

features. 

 
Figure 4. SVM architecture. 

5) Ensemble Model: The final prediction of injury risk is made by aggregating 

the outputs from the GBDT, LSTM, and SVM models. Each model contributes its 

prediction, and a weighted voting mechanism determines the outcome. The overall 

prediction 𝑦̂ is given by: 

𝑦̂ = 𝛼1 ⋅ 𝑦̂GBDT + 𝛼2 ⋅ 𝑦̂LSTM + 𝛼3 ⋅ 𝑦̂SVM (8) 

where 𝛼1, 𝛼2 , and 𝛼3  are the weights assigned to the predictions from the GBDT, 

LSTM, and SVM models, respectively, and 𝑦̂ is the final predicted injury risk. The 

weights are optimized based on cross-validation results to ensure the best performance 

of the ensemble model. 

The performance of the proposed machine learning approach is evaluated using 

standard metrics such as accuracy, precision, recall, and the F1-score. Additionally, 

the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) 

curve is used to assess the model’s capability in distinguishing between injury-prone 
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and injury-free participants. Cross-validation minimizes overfitting and ensures the 

model generalizes well to new, unseen data. 

3. Result analysis 

3.1. Statistical analysis 

Table 2. Descriptive statistics. 

Variable Mean Standard Deviation Minimum Maximum 

Age (years) 30.72 8.91 18.39 49.73 

BMI (kg/m2) 22.83 2.34 18.67 27.42 

Stride Length (m) 1.36 0.22 1.12 1.77 

Ground Reaction Force (N) 245.67 35.98 197.63 302.45 

Joint Angle (Knee, degrees) 31.47 5.72 24.15 39.84 

Cadence (steps/min) 168.39 10.94 150.28 183.61 

Foot Pressure (kPa) 87.63 12.89 70.27 109.47 

Muscle Activation Time (ms) 236.84 48.12 177.53 312.91 

Ankle Dorsiflexion (degrees) 12.63 3.57 8.92 18.71 

Hip Flexion (degrees) 42.16 6.28 33.47 53.84 

Vertical Displacement (cm) 7.42 1.81 4.53 10.86 

Knee Extension (degrees) 26.89 4.91 20.37 33.56 

The study sample’s descriptive statistics (Table 2) provide an overview of key 

demographic and biomechanical variables. The average age of the participants was 

30.72 years, with a standard deviation of 8.91, indicating a moderately wide age range 

from 18.39 to 49.73 years. The average body mass index (BMI) was 22.83 kg/m2, 

within a range of 18.67 to 27.42, reflecting a generally healthy population. Regarding 

running mechanics, the average stride length was 1.36 m with a standard deviation of 

0.22 m, showing variability among participants, with stride lengths ranging from 1.12 

to 1.77 m. Ground reaction forces averaged 245.67 N with a standard deviation of 

35.98 N, spanning from 197.63 N to 302.45 N, suggesting differences in how 

participants interacted with the ground during running. 

The knee joint angle averaged 31.47 degrees with some variability (standard 

deviation of 5.72 degrees), ranging from 24.15 to 39.84 degrees. Cadence, or the 

number of steps per minute, averaged 168.39 steps/min, with a standard deviation of 

10.94, ranging between 150.28 and 183.61 steps/min. Foot pressure during the running 

cycle averaged 87.63 kPa, ranging from 70.27 to 109.47 kPa. Muscle activation time 

was recorded at an average of 236.84 ms, with considerable variation (standard 

deviation of 48.12 ms), spanning from 177.53 to 312.91 ms. Ankle dorsiflexion, an 

essential measure of ankle mobility, averaged 12.63 degrees, with participants ranging 

between 8.92 and 18.71 degrees. Hip flexion averaged 42.16 degrees with a range of 

33.47 to 53.84 degrees, while vertical displacement during running averaged 7.42 cm, 

ranging from 4.53 to 10.86 cm. Finally, knee extension averaged 26.89 degrees, 

ranging from 20.37 to 33.56 degrees. 
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Table 3. Independent t-tests: Comparison of biomechanical variables between male 

and female participants. 

Variable Mean (Male) Mean (Female) t-value p-value 

Stride Length (m) 1.41 1.30 2.57 0.012 

Ground Reaction Force (N) 261.34 227.56 3.14 0.002 

Joint Angle (Knee, degrees) 32.58 30.13 1.82 0.072 

Cadence (steps/min) 170.84 165.47 1.76 0.081 

Foot Pressure (kPa) 91.26 83.14 2.48 0.015 

Muscle Activation Time (ms) 243.73 228.19 1.63 0.107 

The independent t-tests (Table 3) comparing male and female participants 

revealed significant differences in several biomechanical variables. Stride length was 

significantly longer in males (1.41 m) compared to females (1.30 m), with a t-value of 

2.57 and a p-value of 0.012, indicating a statistically significant difference. Ground 

reaction force was also significantly higher in males (261.34 N) than in females 

(227.56 N), with a t-value of 3.14 and a p-value of 0.002. Foot pressure was notably 

higher in males (91.26 kPa) compared to females (83.14 kPa), with a t-value of 2.48 

and a p-value of 0.015. Although males showed slightly larger knee joint angles (32.58 

degrees) compared to females (30.13 degrees), this difference did not reach statistical 

significance (t = 1.82, p = 0.072). Cadence was also slightly higher in males (170.84 

steps/min) than in females (165.47 steps/min), though this difference was not 

statistically significant (t = 1.76, p = 0.081). The comparison for muscle activation 

time showed a non-significant difference between males (243.73 ms) and females 

(228.19 ms) (t = 1.63, p = 0.107). 

Table 4. Paired t-tests: Pre- and Post-Injury biomechanical comparison for injured 

participants. 

Variable Mean (Pre-Injury) Mean (Post-Injury) t-value p-value 

Stride Length (m) 1.42 1.33 2.39 0.019 

Ground Reaction Force (N) 258.91 241.38 2.67 0.009 

Joint Angle (Knee, degrees) 33.14 29.92 3.24 0.002 

Cadence (steps/min) 171.56 165.84 2.17 0.034 

Foot Pressure (kPa) 89.21 84.67 1.78 0.081 

Muscle Activation Time (ms) 241.47 233.63 1.93 0.061 

The paired t-tests (Table 4) comparing pre- and post-injury biomechanical data 

for injured participants revealed several significant changes. Stride length decreased 

significantly after injury, from 1.42 m to 1.33 m (t = 2.39, p = 0.019), indicating a 

shorter stride post-injury. Ground reaction force also significantly decreased post-

injury, from 258.91 N to 241.38 N (t = 2.67, p = 0.009), and the knee joint angle 

showed a significant reduction from 33.14 degrees to 29.92 degrees (t = 3.24, p = 

0.002). Cadence decreased from 171.56 steps/min to 165.84 steps/min following 

injury, with a t-value of 2.17 and a p-value of 0.034, indicating a significant reduction. 

Foot pressure decreased slightly from 89.21 kPa to 84.67 kPa, but this difference was 
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not statistically significant (t = 1.78, p = 0.081). Finally, muscle activation time 

showed a non-significant reduction from 241.47 ms to 233.63 ms (t = 1.93, p = 0.061). 

Table 5. One-Way ANOVA: Comparison of biomechanical variables across experience levels. 

Variable Mean (Recreational) Mean (Intermediate) Mean (Advanced) F-value p-value 

Stride Length (m) 1.28 1.35 1.48 6.17 0.003 

Ground Reaction Force (N) 221.73 245.14 262.41 8.26 0.001 

Joint Angle (Knee, degrees) 29.64 31.28 34.53 5.19 0.007 

Cadence (steps/min) 162.37 168.91 174.23 4.72 0.010 

Foot Pressure (kPa) 82.91 87.13 92.48 4.11 0.018 

Muscle Activation Time (ms) 229.64 236.91 244.58 3.94 0.023 

The one-way ANOVA (Table 5) comparing biomechanical variables across 

different experience levels (Recreational, Intermediate, and Advanced runners) 

revealed significant differences in several key areas. Stride length was significantly 

different across the groups, with advanced runners having the longest strides (mean: 

1.48 m), followed by intermediate (1.35 m) and recreational runners (1.28 m), with an 

F-value of 6.17 and a p-value of 0.003. Ground reaction force also showed significant 

differences, with advanced runners exhibiting the highest values (262.41 N), compared 

to intermediate (245.14 N) and recreational runners (221.73 N), indicated by an F-

value of 8.26 and a p-value of 0.001. Knee joint angle varied significantly, with 

advanced runners showing a mean angle of 34.53 degrees, intermediate runners at 

31.28 degrees, and recreational runners at 29.64 degrees (F = 5.19, p = 0.007). 

Cadence followed a similar trend, with advanced runners having the highest cadence 

(174.23 steps/min), followed by intermediate (168.91 steps/min) and recreational 

runners (162.37 steps/min), with an F-value of 4.72 and a p-value of 0.010. Foot 

pressure was significantly higher among advanced runners (92.48 kPa) compared to 

intermediate (87.13 kPa) and recreational runners (82.91 kPa), as shown by an F-value 

of 4.11 and a p-value of 0.018. Lastly, muscle activation time also exhibited significant 

differences, with advanced runners having the most extended muscle activation times 

(244.58 ms), compared to intermediate (236.91 ms) and recreational runners (229.64 

ms) (F = 3.94, p = 0.023). 

Table 6. Post-hoc analysis: Tukey’s HSD test. 

Variable Comparison Mean Difference p-value 

Stride Length (m) 

Advanced vs. Recreational 0.20 0.002 

Advanced vs. Intermediate 0.13 0.037 

Intermediate vs. Recreational 0.07 0.245 

Ground Reaction Force (N) 

Advanced vs. Recreational 40.68 0.001 

Advanced vs. Intermediate 17.27 0.064 

Intermediate vs. Recreational 23.41 0.014 

Joint Angle (Knee, Degrees) 

Advanced vs. Recreational 4.89 0.005 

Advanced vs. Intermediate 3.25 0.041 

Intermediate vs. Recreational 1.64 0.298 
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The post-hoc Tukey’s HSD test (Table 6) further explored group differences. For 

stride length, advanced runners showed a significant difference compared to 

recreational runners (mean difference = 0.20 m, p = 0.002) and intermediate runners 

(mean difference = 0.13 m, p = 0.037), but the difference between intermediate and 

recreational runners was not significant (p = 0.245). Advanced runners showed a 

significant difference in ground reaction force compared to recreational runners (mean 

difference = 40.68 N, p = 0.001), while the difference between advanced and 

intermediate runners approached significance (p = 0.064). Intermediate runners 

differed significantly from recreational runners (mean difference = 23.41 N, p = 0.014). 

In terms of knee joint angle, advanced runners differed significantly from recreational 

runners (mean difference = 4.89 degrees, p = 0.005) and intermediate runners (mean 

difference = 3.25 degrees, p = 0.041), while the difference between intermediate and 

recreational runners was not statistically significant (p = 0.298). 

Table 7. Chi-square test: Relationship between experience level and injury 

occurrence. 

Experience Level Injured Not Injured Total 

Recreational 15 17 32 

Intermediate 9 25 34 

Advanced 3 15 18 

Total 27 57 84 

Table 8. Chi-square test statistics. 

Statistic Value 

Chi-square value 8.49 

Degrees of freedom 2 

p-value 0.014 

The Chi-square test (Tables 7 and 8) was used to assess the relationship between 

experience level (Recreational, Intermediate, and Advanced runners) and injury 

occurrence (Injured vs. Not Injured). The results indicate a significant association 

between these variables, with a Chi-square value of 8.49, degrees of freedom = 2, and 

a p-value of 0.014, suggesting that injury occurrence varies significantly across the 

different experience levels. The Table shows that recreational runners had the highest 

number of injuries, with 15 out of 32 participants (46.88%) reporting injuries, while 

17 did not. Among intermediate runners, 9 participants were injured (26.47%), and 25 

were not. Advanced runners had the lowest injury rate, with only 3 out of 18 

participants (16.67%) reporting injuries and 15 remaining injury-free. These results 

indicate that recreational runners are more likely to experience injuries than 

intermediate and advanced runners, possibly due to differences in running technique, 

experience, and conditioning. Advanced runners, who may have developed better 

biomechanics and injury prevention strategies, appear to be at a lower risk of injury. 
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Table 9. Pearson correlation analysis: Relationships Between biomechanical variables. 

Variable 
Stride 

Length 

Ground Reaction 

Force 

Joint Angle 

(Knee) 
Cadence 

Foot 

Pressure 

Muscle Activation 

Time 

Stride Length (m) 1.00 0.47 0.29 −0.51 0.38 −0.23 

Ground Reaction Force (N) 0.47 1.00 0.52 −0.33 0.61 0.19 

Joint Angle (Knee, degrees) 0.29 0.52 1.00 −0.21 0.43 0.37 

Cadence (steps/min) −0.51 −0.33 −0.21 1.00 −0.41 0.28 

Foot Pressure (kPa) 0.38 0.61 0.43 −0.41 1.00 0.35 

Muscle Activation Time 

(ms) 
−0.23 0.19 0.37 0.28 0.35 1.00 

The Pearson correlation analysis (Table 9) provides insights into the study’s 

relationships between various biomechanical variables. Stride length showed a 

moderate positive correlation with ground reaction force (r = 0.47), indicating that 

participants with longer strides tend to generate higher ground reaction forces. 

Additionally, a weaker positive correlation exists between stride length and knee joint 

angle (r = 0.29), suggesting that larger joint angles may contribute to a longer stride. 

Ground reaction force was also positively correlated with foot pressure (r = 0.61), 

highlighting that greater forces during foot strike lead to higher pressure on the foot. 

A moderate positive correlation was observed between ground reaction force and knee 

joint angle (r = 0.52), meaning that participants generating higher forces tend to have 

larger knee joint angles. 

On the other hand, cadence showed a negative correlation with several variables. 

There was a moderate negative correlation between cadence and stride length (r = 

−0.51), meaning that participants with higher step rates tend to have shorter strides. 

Similarly, foot pressure (r = −0.41) and ground reaction force (r = −0.33) had negative 

correlations with cadence, suggesting that faster step rates are associated with lower 

force and pressure during running. Finally, muscle activation time had a weak negative 

correlation with stride length (r = −0.23) but positive correlations with joint angle (r 

= 0.37) and foot pressure (r = 0.35). This implies that participants with longer muscle 

activation times tend to have higher joint angles and foot pressure during the running 

cycle. 

Table 10. Multiple linear regression analysis: Predictors of injury severity. 

Predictor Variable Unstandardized Coefficient (B) Standard Error Standardized Coefficient (Beta) t-value p-value 

Stride Length (m) 1.37 0.43 0.34 3.18 0.002 

Ground Reaction Force (N) 0.19 0.07 0.29 2.64 0.010 

Joint Angle (Knee, 

degrees) 
0.84 0.29 0.27 2.89 0.005 

Cadence (steps/min) −0.57 0.21 −0.22 −2.71 0.008 

Foot Pressure (kPa) 0.42 0.11 0.31 3.82 0.001 

Muscle Activation Time 

(ms) 
0.13 0.06 0.18 2.21 0.032 
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Table 11. Model summary. 

Statistic Value 

R-squared 0.61 

Adjusted R-squared 0.58 

F-statistic 14.27 

p-value (Model) <0.001 

The multiple linear regression analysis (Tables 10 and 11) was conducted to 

determine how various biomechanical factors predict injury severity. The model 

explains 61% of the variance in injury severity (R-squared = 0.61), indicating that the 

predictors included in the model strongly influence the outcome. The model is 

statistically significant, as reflected by an F-statistic of 14.27 and a p-value less than 

0.001, suggesting that the overall model reliably predicts injury severity. 

Several biomechanical variables were found to be significant predictors of injury 

severity: 

• Stride length positively influenced injury severity, with a standardized coefficient 

(Beta) of 0.34. The unstandardized coefficient (B = 1.37) indicates that, for every 

1 m increase in stride length, injury severity increases by 1.37 units, with this 

effect being statistically significant (p = 0.002). 

• Ground reaction force was also a significant predictor (B = 0.19, Beta = 0.29, p 

= 0.010), indicating that greater forces exerted during running are associated with 

higher injury severity. A 1 N increase in ground reaction force increases injury 

severity by 0.19 units. 

• Knee joint angle positively impacted injury severity (B = 0.84, Beta = 0.27, p = 

0.005). This suggests that greater knee flexion during running increases the 

likelihood of injury severity. 

• Cadence was negatively associated with injury severity (B = −0.57, Beta = −0.22, 

p = 0.008), implying that higher step rates may reduce injury severity. 

Specifically, injury severity decreases by 0.57 units for each additional step per 

minute. 

• Foot pressure was among the strongest predictors, with a standardized coefficient 

of 0.31 and a significant unstandardized coefficient of 0.42 (p = 0.001). Higher 

foot pressure during running is linked to increased injury severity. 

• Muscle activation time also positively correlated with injury severity (B = 0.13, 

Beta = 0.18, p = 0.032). Longer muscle activation times slightly increase the 

likelihood of higher injury severity. 

The adjusted R-squared value of 0.58 suggests that after accounting for the 

number of predictors, the model still explains a substantial portion of the variation in 

injury severity. These findings underscore the importance of biomechanical factors 

such as ground reaction force, stride length, and foot pressure in predicting the severity 

of running-related injuries, while higher cadence may serve as a protective factor. 
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3.2. Machine learning analysis 

Table 12. Feature importance ranking (GBDT). 

Feature Importance Score Rank 

Ground Reaction Force (N) 0.312 1 

Foot Pressure (kPa) 0.245 2 

Stride Length (m) 0.183 3 

Joint Angle (Knee, degrees) 0.141 4 

Cadence (steps/min) 0.079 5 

Hip Flexion (degrees) 0.061 6 

Vertical Displacement (cm) 0.046 7 

Ankle Dorsiflexion (degrees) 0.043 8 

Muscle Activation Time (ms) 0.040 9 

 
Figure 5. Feature rank. 

Figure 5 and Table 12 list the feature ranks; the Gradient-Boosted Decision 

Trees (GBDT) feature importance ranking highlights that ground reaction force 

(importance score = 0.312) is the most influential factor in predicting injury risk. Foot 

pressure follows closely with a score of 0.245, and stride length ranks third with 0.183. 

Knee joint angle has an importance score of 0.141, placing it fourth, while cadence 

ranks fifth with a score of 0.079. Hip flexion (0.061), vertical displacement (0.046), 

ankle dorsiflexion (0.043), and muscle activation time (0.040) have a lower influence, 

rounding out the list of critical biomechanical predictors. 

Table 13. Accuracy comparison. 

Model Accuracy (%) 

Gradient-Boosted Decision Trees (GBDT) 83.74 

Long Short-Term Memory (LSTM) 81.29 

Support Vector Machines (SVM) 78.91 

Random Forest (RF) 80.56 

Decision Tree (DT) 76.48 

Proposed Ensemble Model 88.37 
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Figure 6. Accuracy comparison. 

Table 14. Precision, recall, and F1-score comparison. 

Model Precision (%) Recall (%) F1 Score (%) 

Gradient-Boosted Decision Trees (GBDT) 82.45 84.67 83.54 

Long Short-Term Memory (LSTM) 80.17 82.94 81.53 

Support Vector Machines (SVM) 77.32 79.58 78.44 

Random Forest (RF) 79.63 81.18 80.39 

Decision Tree (DT) 75.19 76.84 75.99 

Proposed Ensemble Model 87.84 89.12 88.47 

 

Figure 7. Precision, recall, and F1-score analysis. 

The accuracy comparison (Figure 6 and Table 13) shows that the Proposed 

Ensemble Model achieved the highest accuracy at 88.37%, outperforming individual 

models such as GBDT (83.74%), LSTM (81.29%), RF (80.56%), SVM (78.91%), and 

Decision Tree (DT) (76.48%). Regarding precision, recall, and F1 score (Figure 7 and 

Table 14), the Proposed Ensemble Model also outperformed other models, with a 

precision of 87.84%, recall of 89.12%, and an F1 score of 88.47%. GBDT followed 

with a precision of 82.45%, recall of 84.67%, and F1 score of 83.54%. LSTM achieved 

an F1 score of 81.53%, while Random Forest scored 80.39%. SVM and DT had lower 

F1 scores, at 78.44% and 75.99%, respectively. 
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Figure 8. Confusion matrix. 

 

Figure 9. AUC results. 

The confusion matrix (Figure 8) for the Proposed Ensemble Model shows that 

out of 92 actual injured participants, 82 were correctly classified as injured (True 

Positives), while 10 were misclassified as not injured (False Negatives). Of the 92 

non-injured participants, 84 were correctly identified as not injured (True Negatives), 

and 8 were incorrectly classified as injured (False Positives). The model performed 

well, with only 18 misclassifications out of 184 cases. In the AUC–ROC curve 

comparison (Figure 9), the Proposed Ensemble Model had the highest AUC value at 

0.912, indicating a superior ability to distinguish between injured and non-injured 

participants. GBDT followed with an AUC of 0.872, Random Forest with 0.856, and 

LSTM with 0.847. SVM and Decision Tree had lower AUC values, at 0.821 and 0.799, 

respectively. This confirms that the Proposed Ensemble Model offers this study’s best 

overall classification performance. 

4. Conclusion and future work 

This study presents a novel approach to predicting running-related injuries by 

integrating machine learning techniques with biomechanical analysis. The ensemble 

model combining GBDT, LSTM, and SVM demonstrated superior predictive 

accuracy and effectiveness compared to individual models. The analysis identified 
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ground reaction force, foot pressure, and stride length as the most critical 

biomechanical factors influencing injury risk. These findings highlight the potential 

of using real-time data from wearable sensors and advanced machine-learning 

algorithms to enhance injury prediction and prevention in runners. The proposed 

model provides accurate injury risk assessments and offers a more comprehensive 

understanding of the interplay between biomechanical factors during running. The 

ability to capture temporal dependencies in biomechanical data through LSTM 

networks and the feature importance ranking provided by GBDT allows for a more 

nuanced analysis of injury risks. 

Furthermore, applying this approach in real-world settings—both on outdoor 

tracks and in controlled laboratory environments—demonstrates its versatility and 

practicality for broader athletic populations. Future research should explore expanding 

the model to incorporate additional variables, such as environmental conditions and 

training load, to refine injury predictions further. Additionally, developing real-time 

feedback systems based on this model could provide athletes with actionable insights 

during training, enabling them to make adjustments that reduce their injury risk. 

Overall, this research contributes to the growing body of evidence supporting the 

use of machine learning in sports science and provides a foundation for future 

innovations in injury prevention strategies. 
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