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Abstract: This work explores the application of big data technology in monitoring sports 

training injuries, emphasizing the biomechanical principles underlying injury mechanisms to 

enhance the accuracy of injury prediction and provide scientific prevention measures. It 

collects training data from professional sports teams using big data technology and constructs 

a Bi-directional Long Short-Term Memory (BiLSTM)—Residual Network (ResNet) model 

through deep learning techniques. In this model, the BiLSTM module captures the temporal 

sequence features of sports data, while the ResNet module improves the model’s 

expressiveness and stability through residual learning. To establish a clearer connection with 

mechanobiology, the study discusses the mechanical forces involved in sports injuries, 

including impact forces, torsional stresses, and their effects on tissues at the cellular level. By 

integrating biomechanical insights with big data analytics, the research aims to provide a 

comprehensive understanding of how mechanical stressors contribute to injury risk. The 

performance of the proposed model in predicting sports injury risks is evaluated, showing an 

accuracy of 95.72%, a precision of 91.59%, a recall of 85.40%, and an F1 score of 88.56%, 

significantly outperforming existing traditional models and other comparison 

algorithmsTherefore, the proposed model demonstrates exceptional performance in 

improving the accuracy of sports injury prediction and providing personalized prevention 

measures, offering experimental references for the intelligent development of the sports field 

by bridging sports science and biomechanics. 

Keywords: big data analysis; sports injuries; biomechanics; BiLSTM; personalized 

prevention; deep learning  

1. Introduction 

Sports training is a crucial component for enhancing athletes’ competitive 

abilities. However, as the intensity and frequency of training increase, the incidence 

of sports injuries also rises. These injuries can severely impact athletes’ health and 

may have long-term negative effects on their careers and competitive status [1,2]. 

Although existing traditional models have made certain progress in theory and 

practice, they still face many challenges in terms of accuracy, generalization ability, 

and real-time prediction. First, most traditional models rely on limited data sources 

and empirical methods and lack an in-depth understanding of individual differences 

among athletes and complex training environments. Besides, the causes of sports 

injuries are often multi-factorial, involving multiple levels such as physiology, 

psychology, and environment. This requires prediction models to be able to process 

and analyze large-scale multi-dimensional data. In addition, as the training intensity 

of athletes increases, the demand for real-time monitoring and rapid response is also 

getting higher and higher. It puts forward higher requirements for the real-time 

prediction ability and computational efficiency of the model. However, existing 
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models are often difficult to balance accuracy and real-time performance and are 

difficult to meet the practical application needs in a high-intensity training 

environment. Consequently, data-driven research has become a vital approach for 

improving injury prevention strategies and has attracted significant attention from 

scholars in the field. This shift towards a more analytical approach allows for the 

integration of advanced technologies, such as machine learning and biomechanical 

analysis, to identify patterns and risk factors associated with injuries. By leveraging 

large datasets and developing predictive models, researchers can better understand 

injury mechanisms, optimize training regimens, and implement personalized injury 

prevention programs tailored to individual athletes’ needs. This data-driven strategy 

not only enhances the effectiveness of prevention measures but also helps in refining 

overall training methodologies, promoting safer and more efficient training 

environments for athletes at all levels. 

For instance, in recent years, the rapid development of big data technology has 

provided new perspectives and methods for sports injury research. Big data 

technology enables the integration and analysis of large-scale, multi-dimensional 

data from various sources, revealing patterns and trends in sports injury occurrences 

[3,4]. This data-driven approach not only offers abundant empirical evidence but 

also identifies potential risk factors and injury patterns, providing strong support for 

developing scientific prevention measures. By deeply analyzing athletes’ training 

data, incorporating deep learning algorithms, monitoring training conditions in real-

time, and issuing warnings for potential injury risks, targeted prevention strategies 

can be proposed [5]. For instance, Wang et al. [6] demonstrated significant 

predictive effects of deep learning algorithms in improving resource efficiency and 

achieving sustainability goals. 

Therefore, this work aims to use big data analysis technology to systematically 

investigate sports training injuries, explore the patterns of sports injury occurrence, 

and propose effective prevention measures by establishing an injury prediction 

model. Specifically, the research objectives include integrating multi-source data 

from sports monitoring devices, health records, and athlete feedback for 

comprehensive data analysis. Next, a deep learning-based injury prediction model 

supported by big data is constructed and its effectiveness in practical applications is 

evaluated. Finally, this work proposes scientifically sound sports injury prevention 

strategies based on data analysis results to improve training effectiveness and safety 

for athletes. The significance of this work lies in overcoming the limitations of 

traditional injury prevention methods through big data technology and offering new 

research methods and practical guidance for the field of sports medicine. Gaining a 

deeper understanding of the mechanisms and influencing factors of sports injuries 

can develop more targeted training programs and prevention measures, effectively 

reducing the incidence of injuries and enhancing athletes’ performance and health. 

2. Literature review 

Traditional methods of sports injury prevention primarily rely on experience 

and theoretical knowledge. For example, Cornelissen et al. [7] assessed the injury 

prevention effectiveness and implementation of the “Warming-up Hockey” program 
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using a mixed-methods approach. The findings reveal the actual effectiveness and 

promotion challenges of traditional warm-up procedures in reducing sports injuries. 

MacFarlane et al. [8] explored the factors influencing the cognition, adoption, and 

implementation of anterior cruciate ligament injury prevention methods in youth 

sports. They emphasized the application and limitations of traditional prevention 

strategies in sports environments. Tabben et al. [9] analyzed the implementation 

barriers and opportunities for injury prevention measures in professional football in 

Qatar, reflecting the challenges and areas for improvement in traditional prevention 

methods. 

With the development of information technology, big data analysis has 

gradually been introduced into sports medicine, bringing new opportunities for 

sports injury research. For instance, Wang et al. [10] used deep transfer learning and 

multimodal digital twin technology to enhance and diagnose brain MRI image 

analysis. The findings showcased the potential of big data in sports medicine, 

particularly in handling complex data and personalized diagnostics. Liu et al. [11] 

proposed a hybrid design method combining artificial intelligence and big data 

analysis for visualizing sports data, highlighting the significant role of big data 

technology in sports data mining and decision support. Nassis et al. [12] reviewed 

the application of machine learning in predicting football injury risks and 

emphasized the critical role of big data analysis in identifying and preventing sports 

injuries, thus advancing precision medicine. Hughes et al. [13] discussed new 

technologies in sports biomechanics and cautioned about the potential challenges of 

big data analysis in sports medicine, stressing the importance of careful use of new 

technologies. Dergaa and Chamari [14] discussed the integration of big data in sports 

medicine and sports science, highlighting its role in driving future innovations and 

demonstrating the importance of combining theory and practice. 

As machine learning technology rapidly advances, researchers have started 

experimenting with more complex algorithms, such as Support Vector Machines 

(SVM), decision trees, random forests, and deep learning models, to build injury 

prediction models. Park et al. [15] utilized a machine learning model to analyze the 

risk of Ramp lesions in anterior cruciate ligament injuries. By combining clinical 

data, the model could effectively predict the occurrence of such injuries, 

demonstrating the application prospects of machine learning in sports injury risk 

assessment. Hecksteden et al. [16] used a multi-faceted approach combining 

screening, monitoring, and machine learning to successfully predict injuries in 

football, demonstrating the advantages of machine learning in complex prediction 

tasks. Haller et al. [17] employed comprehensive monitoring methods and machine 

learning to predict injuries and illnesses in elite youth football players, showing the 

method’s predictive capability over long-term observation. Kumar et al. [18] 

reviewed the application of artificial intelligence in sports injury prediction and 

emphasized the potential of machine learning to improve prediction accuracy and 

reliability. Ayala et al. [19] conducted innovative research on the early identification 

of athlete injury risks through machine learning technology. The research results 

showed that the model could effectively predict potential injury risks and help 

improve athlete health management and preventive measures. 
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Although traditional methods of sports injury prevention have achieved some 

success under theoretical and experiential guidance, recent research has revealed 

their limitations and challenges in practical applications. For instance, Cornelissen et 

al. [7] and MacFarlane et al. [8] indicated that traditional warm-up procedures and 

prevention strategies faced difficulties in promotion and application, reflecting 

adaptation issues in different sports environments. Similarly, Tabben et al. [9] 

highlighted barriers and opportunities for improvement in implementing these 

measures in professional sports. With the rise of big data and artificial intelligence 

technologies, new opportunities have emerged in the field of sports medicine. Wang 

et al. [10] and Liu et al. [11] demonstrated the potential of big data in handling 

complex data and personalized analysis, especially in sports injury prediction and 

prevention. However, Hughes et al. pointed out challenges in applying big data 

analysis technologies and the need for careful consideration. The application of 

machine learning technologies offers more precise tools for injury prediction, 

although studies by Hecksteden et al. [16] indicate that existing models still have 

methodological and performance limitations. Therefore, the research innovation lies 

in integrating multi-dimensional data sources using big data and machine learning 

technologies to develop more accurate and practical sports injury prediction models. 

This aims to overcome the limitations of traditional methods and enhance the 

scientific and effective nature of prevention measures, thus providing new research 

pathways and practical guidance for the field of sports medicine. 

3. Research model 

This section provides a detailed explanation of the entire process of collecting 

and analyzing sports data supported by big data, constructing a sports injury 

prediction model based on deep learning, and conducting experimental evaluations. 

By combining big data technology with advanced deep learning models, this work 

aims to develop an efficient and accurate sports injury prediction system to help 

athletes prevent injuries during high-intensity training. 

3.1. Big data-supported sports data collection and analysis 

In modern sports training, data collection has become a core element in 

predicting and preventing sports injuries. Traditional methods of collecting sports 

data typically rely on manual recording and limited monitoring devices, which 

restrict the accuracy and comprehensiveness of the data [20]. However, with the 

rapid advancement of big data technology, multidimensional data on athletes, such 

as biomechanics, psychological, and physiological metrics, can now be collected in 

real-time using advanced wearable devices and sensors. Table 1 displays the model 

and specification settings for wearable devices and sensors. 
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Table 1. Model and specification setting for wearable devices and sensors. 

Model and specification setting table 

for wearable devices and sensors 
Model Specification and Characteristics Collected Data Type 

Heart Rate Monitor Polar H10 
Bluetooth compatibility, heart rate zone monitoring, 

suitable for high-intensity training 

Heart rate, heart rate zone (% of 

maximum heart rate) 

Stride Frequency Sensor 
Garmin Foot 

Pod 

Records stride frequency and stride length, 

synchronizes with Garmin devices, suitable for 

running and cycling 

Stride frequency (steps/minute), 

stride length (meters/step) 

Accelerometer ADXL345 
Three-axis acceleration sensor, can measure 

dynamic motion, range ± 2 g/± 4 g/± 8 g/± 16 g 

Acceleration (m/s²), dynamic 

motion mode 

Electromyography Sensor  MyoMotion 
Surface electromyography sensor for monitoring 

muscle activity, wireless data transmission 

Electromyogram signal (μV), 

muscle activity intensity 

GPS Tracker  
Garmin 

Fenix 6 

GPS, GLONASS, and Galileo satellite support, 

high-precision position tracking, suitable for outdoor 

sports 

Position (latitude and longitude), 

speed (m/s), altitude (meters) 

Skin Temperature Sensor  TMP102 
Used for monitoring skin surface temperature, I2C 

interface 

Skin temperature (℃), 

temperature change trend 

These devices accurately record various metrics during training, such as heart 

rate, step frequency, muscle activity, and body posture, and upload the data to the 

cloud for storage and analysis. This real-time, high-frequency data collection 

significantly enhances the timeliness and accuracy of the data, providing a rich data 

foundation for subsequent prediction models. 

Big data technology has not only transformed the way sports data are collected 

but also revolutionized data processing and analysis methods. In sports data analysis, 

traditional data processing methods often struggle to handle such vast and complex 

datasets, whereas big data analysis tools like Hadoop and Spark can efficiently 

process and analyze these data [21,22]. These tools use distributed computing 

frameworks to break down and execute data processing tasks in parallel, greatly 

improving the speed and efficiency of data analysis. Additionally, data cleaning and 

preprocessing techniques, such as outlier detection, data smoothing, and feature 

engineering, ensure high-quality data, laying a solid foundation for model 

construction. Big data analysis enables the identification of hidden patterns and 

potential risk factors in athletes’ training processes, providing crucial support for the 

development of deep learning models. 

Therefore, the sports injury prediction model proposed tightly integrates big 

data technology with deep learning models. By leveraging multidimensional sports 

data collection and analysis supported by big data, key features closely related to 

sports injuries are extracted and input into a deep learning-based sports injury 

prediction model. Big data analysis not only provides high-quality input data for the 

model but also aids in identifying high-risk behaviors and indicators associated with 

specific training patterns through retrospective analysis of historical data. Compared 

to traditional single data source approaches, this big data-based multidimensional 

analysis offers a more comprehensive reflection of an athlete’s overall state, 

providing rich contextual information for deep learning models and significantly 

enhancing the accuracy and practicality of sports injury predictions. 
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3.2. Construction and analysis of a deep learning-based sports injury 

prediction model  

To improve the accuracy of sports injury predictions, this work proposes a deep 

learning model that integrates a Bidirectional Long Short-Term Memory (BiLSTM) 

network with a Residual Network (ResNet) [23,24]. The BiLSTM is adept at 

capturing temporal dependency features within sports data, making it well-suited for 

analyzing the dynamic changes in athletes’ physical states during training. On the 

other hand, ResNet addresses the vanishing gradient problem in deep neural 

networks by introducing residual structures, thereby enhancing the model’s 

representational capacity. Figure 1 illustrates the specific sports injury prediction 

model based on the BiLSTM-ResNet algorithm. 

BiLSTM

LSTM LSTM LSTM

LSTM LSTM LSTM

Conv

Conv

Relu

ResNet

Conv

Conv

Conv

Conv

..
.

Sports data

Data 
preprocessing

...Output layer

Softmax

 
Figure 1. Framework of the sports injury prediction model based on the BiLSTM-

ResNet algorithm. 

Figure 1 illustrates the framework of the prediction model, which integrates 

BiLSTM and ResNet deep learning techniques. The model begins with the collection 

of time-series data from sports sensors, such as heart rate, step frequency, and 

acceleration. After these data are standardized, they are fed into the BiLSTM 
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module. In the BiLSTM module, the forward LSTM layer extracts features from the 

beginning of the time series to the current position, while the backward LSTM layer 

extracts information in reverse, from the end of the time series to the current 

position. This bidirectional feature extraction capability allows the BiLSTM to 

capture complex temporal dependencies within the sports data, enhancing the 

understanding of the dynamic states of the athletes. The feature extraction performed 

by the bidirectional LSTM units generates high-dimensional feature vectors enriched 

with temporal information. These vectors reflect the physiological changes and 

potential risks of athletes during different training phases, providing crucial data 

support for subsequent injury predictions. In the BiLSTM module, the hidden state 

 at time t can be represented as shown in Equations (1) and (2): 

 
(1) 

 (2) 

W and b represent the weights associated with the gate units and memory cells, 

respectively, while ct and  denote the state of the memory cell and the hidden state 

of the LSTM at time t. The arrows → and ← signify the forward and backward 

temporal features, respectively.  

To further enhance the model’s performance, the temporal feature vectors 

extracted by the BiLSTM are fed into the ResNet module. The ResNet module 

consists of multiple residual blocks, each comprising two convolutional layers and a 

shortcut connection. The BiLSTM feature vectors processed through these residual 

blocks allow for the extraction of deep-level features from the sports data. ResNet 

introduces residual blocks to mitigate the vanishing gradient problem in deep neural 

networks, thereby improving the model’s training stability and expressive power. 

The design philosophy of residual blocks involves using shortcut connections to pass 

the input signal directly to deeper layers of the network, avoiding information loss 

and difficulties associated with training deep networks. This approach captures 

complex patterns and nonlinear relationships in the sports data, thereby enhancing 

the model’s ability to predict sports injuries. 

After the feature extraction by the BiLSTM and ResNet modules, a fusion layer 

integrates these two sets of features. The fusion process involves concatenating or 

applying weighted averages to the temporal features generated by the BiLSTM and 

the deep features extracted by the ResNet, resulting in a comprehensive feature 

representation. These fused features are then input into a fully connected layer for 

the final classification or regression task, predicting the risk of sports injuries. 

3.3. Experimental evaluation 

To evaluate the effectiveness of the model constructed, experimental data are 

sourced from the training records of the S professional sports team. Data collection 

took place from September 2023 to November 2023, encompassing detailed 

physiological and kinematic indicators of different athletes across various training 

sessions. These data are gathered using advanced wearable devices and sensors, 

capturing multi-dimensional information such as heart rate, stride frequency, 
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acceleration, and electromyographic signals. The data spans an entire training cycle, 

ensuring data comprehensiveness and representativeness. Additionally, the dataset 

includes records of injuries sustained by athletes to mark the occurrence of sports 

injuries. In the data preprocessing stage, the raw data are cleaned and standardized. 

In data cleaning, the collected raw data are thoroughly inspected first to identify and 

handle missing values. For missing data, multiple strategies are adopted. For a small 

amount of missing values, mean or median filling is used, for a large range of 

missing data, time series interpolation methods are used to maintain the time 

continuity of the data. In addition, outlier detection is also performed on the data to 

identify extreme or inconsistent data points that may affect model performance. 

Outlier detection is carried out through statistical analysis methods such as Z-score 

and interquartile range (IQR) methods. First, the Z-score of each feature is calculated 

to identify outliers that are far from other data points. Then, the IQR method is used 

to further filter out values that are outside the normal range. These outliers are 

processed according to specific situations, such as replacement, deletion, or 

transformation, to reduce their impact on model training. Finally, different types of 

input features are normalized to meet the input requirements of the model. The 

dataset is then split into training and test sets in an 8:2 ratio. 

The experiments are conducted on a high-performance computing platform 

equipped with an NVIDIA Tesla V100 GPU, running the Ubuntu 20.04 operating 

system. The deep learning framework is built using the Python programming 

language, specifically leveraging the TensorFlow and Keras libraries. During model 

training, the hyperparameter settings of both the BiLSTM and ResNet architectures 

play a critical role in determining the final performance. Table 2 provides the 

detailed hyperparameter settings. 

Table 2. Hyperparameter settings. 

Hyperparameter Value Hyperparameter Value 

Number of Hidden Units 128 Initial Learning Rate 0.001 

Activation Function tanh Learning Rate Adjustment Strategy Dynamic Learning Rate Adjustment 

Number of BiLSTM Layers 2–10 Batch Size 64 

Number of Residual Blocks 4 Number of Training Epochs 50 

Number of Convolutional Layers  2 Layers per Residual Block Dropout Rate 0.5 

Convolutional Kernel Size 3 × 3 Regularization Type L2 Regularization 

Batch Normalization Yes L2 Regularization Parameter 0.01 

Optimization Algorithm Adam   

Table 2 shows that in the construction process of the BiLSTM-ResNet model 

proposed, the selection of hyperparameters has a decisive impact on the performance 

of the model. The number of hidden units and layers is carefully selected to achieve 

the best balance between accuracy and efficiency. When choosing hidden units, 

fewer units may lead to insufficient expressive ability of the model, while too many 

units may cause overfitting and increase the computational burden of model training. 

Selecting 128 hidden units can provide sufficient model capacity for the task while 

maintaining good generalization ability. In terms of layer selection, a configuration 
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of a 2-layer BiLSTM network and 4 ResNet blocks is adopted. This design is based 

on considerations of the difficulty of training deep networks and performance 

improvement. Too few layers may not be able to fully capture the complex patterns 

in the data, while too many layers may lead to problems such as vanishing gradients 

or exploding gradients during the training process, affecting the stability and 

convergence speed of the model. Through cross-validation and multiple experiments, 

it is determined that a 2-layer BiLSTM can effectively capture long-term 

dependencies in time series data. Besides, 4 ResNet blocks provide sufficient depth 

for the model to learn complex features in the data, while avoiding the training 

difficulties brought by overly deep network structures. In addition, dynamic learning 

rate adjustment strategies and L2 regularization techniques are also adopted to 

further improve the generalization performance of the model. The dynamic learning 

rate adjustment strategy allows the model to learn quickly in the early stage of 

training, and in the later stage of training, it can fine-tune the weights to avoid local 

minima. L2 regularization helps reduce model complexity and prevent overfitting. 

Through these carefully selected hyperparameters, the proposed model not only 

performs well on the training set but also shows strong predictive ability and 

generalization on unknown data. 

The accuracy and stability of the BiLSTM and ResNet fusion model developed 

is further analyzed for predicting sports injuries. Based on the experimental results, 

the performance of the proposed model is evaluated against BiLSTM, LSTM, and 

the model proposed by Haller et al. [17] on the test set [25]. The evaluation metrics 

include accuracy, precision, recall, F1 score, root mean squared error (RMSE), and 

operational efficiency. 

4. Results and discussion 

4.1. Performance comparison analysis of different algorithms 

First, the performance of the proposed model is evaluated and compared with 

BiLSTM, LSTM, and the model proposed by Haller et al. [17] on the test set. Figure 

2 shows the results for accuracy, precision, recall, and F1 score. 

 
Figure 2. Accuracy results of sports injury prediction under different algorithms. 
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Figure 2 demonstrates the significant advantages of the BiLSTM-ResNet 

algorithm proposed for predicting sports injuries. In terms of accuracy, the BiLSTM-

ResNet algorithm achieves 95.72%. It is significantly higher than the model 

proposed by Haller et al. at 90.86%, BiLSTM at 86.24%, and LSTM at 81.62%, 

indicating its outstanding performance in overall prediction accuracy. Regarding 

precision, the BiLSTM-ResNet algorithm also outperforms other comparative 

algorithms with a precision of 91.59%, indicating a lower false-positive rate when 

accurately identifying sports injury events. For recall, the BiLSTM-ResNet 

algorithm achieves 85.40%, surpassing the models of Haller et al., BiLSTM, and 

LSTM, showing a stronger ability to recognize actual injury events. In the 

comprehensive evaluation metric of F1 score, the BiLSTM-ResNet algorithm leads 

with a score of 88.56%, demonstrating its excellent performance in balancing 

precision and recall. Overall, the BiLSTM-ResNet model algorithm proposed 

significantly outperforms other algorithms across all metrics, proving its powerful 

capability and potential applications in sports injury prediction. 

Furthermore, a comparison is made of the RMSE and operational efficiency of 

the proposed model algorithm under 2–10 layers of the BiLSTM model, as shown in 

Figure 3. 

 
Figure 3. Changes in RMSE and operational efficiency of the model with different 

BiLSTM layers. 

Figure 3 illustrates the evaluation results of the proposed model algorithm by 

comparing the RMSE and operational efficiency of the BiLSTM model with varying 

numbers of layers for predicting sports injury risk. It can be observed that as the 

number of BiLSTM layers increases, the RMSE first decreases and then increases. 

Starting from 0.0762% with 2 layers, it gradually decreases to a minimum of 

0.0140% at 5 layers, indicating that a deeper network initially effectively reduces 

prediction errors. However, when the number of layers continues to increase beyond 

6, the RMSE begins to rise again, reaching 0.0352% at 10 layers, suggesting that too 

many layers may lead to overfitting or difficulties in training the model. Meanwhile, 

the operational time also increases significantly with the number of layers, rising 

from 91.21 milliseconds at 2 layers to 386.60 milliseconds at 10 layers. Although the 

5-layer BiLSTM demonstrates the best performance in terms of RMSE, its 
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operational efficiency is relatively low. This indicates that in practical applications, a 

balance between accuracy and efficiency is necessary to select the optimal network 

structure. 

4.2. Discussion 

The BiLSTM-ResNet model algorithm developed demonstrates excellent 

performance in predicting injuries during sports training. Compared to the research 

by Meng and Qiao [26], this work significantly improves the accuracy and precision 

of predicting sports injury risk by integrating deep learning and big data analysis 

techniques. Unlike traditional predictive models, the BiLSTM-ResNet model 

achieves a prediction accuracy of over 95% for sports injuries. This shows 

significant advantages across various performance metrics and captures potential risk 

factors for sports injuries more accurately. Compared with the traditional LSTM 

baseline algorithm, the multi-dimensional analysis based on big data analysis 

provides a more comprehensive reflection of the overall state of athletes. This 

provides more abundant context information for deep learning models. This aligns 

with the findings of Zhang et al. [27] and Fathi et al. [28]. Therefore, the model 

proposed not only improves the effectiveness of preventive measures but also helps 

improve the overall training method and provides a safer and more efficient training 

environment for athletes at all levels. This data-driven strategy not only improves the 

effectiveness of preventive measures but also helps improve the overall training 

method, providing stronger guarantees for the health and competitive state of 

athletes. The superior performance of the proposed model allows coaches and 

athletes to identify potential injuries earlier, enabling them to adjust training plans 

accordingly to prevent serious injuries and ensure the health and safety of the 

athletes. 

When analyzing the potential implementation challenges of the BiLSTM-

ResNet model in the real sports environment, data privacy and the need for dedicated 

equipment must be considered. First, the physiological and training data of athletes is 

very sensitive personal information. Therefore, when collecting and analyzing these 

data, strict data protection regulations must be complied with. This may require 

additional investment in data security infrastructure and ensuring that all data 

processing activities comply with privacy standards such as GDPR. In addition, the 

proposed model relies on advanced wearable devices and sensors to collect multi-

dimensional data, which may require sports organizations to invest in expensive 

hardware. This demand for dedicated equipment may become an obstacle for small 

or underfunded sports teams to implement the model. Therefore, future work should 

explore how to reduce these thresholds by using more economical or existing 

technologies while still maintaining the accuracy and practicability of the model. 

Next, there are also potential differences when applying the proposed model to 

different sports. Different sports have different injury patterns and risk factors, which 

poses a challenge to the universality of the proposed model. For example, contact 

sports such as rugby may have more impact-related injuries, while endurance sports 

such as long-distance running may face more overuse-related injuries. The proposed 

model needs to be able to recognize and adapt to these specific injury patterns to 
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provide customized preventive measures for each sport. This may require additional 

analysis of a large amount of historical injury data for each sport to ensure that the 

model can capture the risk factors unique to each sport. In addition, the model may 

need to be fine-tuned for specific sports to optimize its predictive ability. This 

adaptability is the key to improving the practical applicability of the model in 

different sports environments. 

Finally, the computational requirements of the model are also an important 

aspect that potential users need to consider. The proposed BiLSTM-ResNet model is 

a deep learning model that requires significant computational resources for training 

and prediction, especially when processing large amounts of data. This may require 

high-performance computing hardware such as GPU and corresponding software 

support. For sports organizations with limited resources, this may be an important 

consideration. However, with the development of cloud computing services, these 

computing resources become more accessible and cost-effective. Future work can 

explore how to further optimize the computational efficiency of the model, such as 

using model compression or more efficient deep learning architectures to achieve 

wider application in resource-constrained environments. 

Additionally, the proposed model provides a solid theoretical foundation for 

developing more personalized and scientifically-based preventive measures. By 

thoroughly analyzing historical sports data and real-time monitoring data, the 

BiLSTM-ResNet model can identify the injury risks faced by specific athletes during 

particular training phases, thereby offering precise preventive recommendations to 

support the long-term development of athletes. 

5. Conclusion 

The BiLSTM-ResNet model developed has achieved significant research 

outcomes in predicting sports training injuries, demonstrating strong capabilities in 

enhancing prediction accuracy and identifying injury risks. By integrating deep 

learning and big data technologies, this work successfully improves the prediction 

accuracy of injury risks to 95.72%, significantly surpassing traditional models. 

Moreover, the model provides personalized preventive measures for athletes, 

effectively reducing the occurrence of sports injuries. However, the work also has 

certain limitations, such as the diversity and representativeness of the data sources, 

which may impact the model’s generalizability. Additionally, the complexity of the 

model and the increased runtime with more layers limit its efficiency in practical 

applications. Future research should focus on expanding the diversity and scale of 

the dataset, optimizing the model’s computational efficiency, and exploring more 

data-driven preventive strategies to further enhance the model’s practicality and 

reliability. 
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