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Abstract: Repetitive motion tasks are widely prevalent in various industries, including 

manufacturing and office environments, often leading to significant musculoskeletal stress and 

associated injuries. The continuous nature of these tasks, coupled with improper posture, 

excessive force exertion, and inadequate rest periods, exacerbates the risk of long-term damage 

to muscles, joints, and tendons. This paper presents a novel approach to minimizing 

musculoskeletal stress by developing a Reinforcement Learning (RL)—based optimization 

model. The model dynamically adjusts real-time task parameters, such as posture, speed, and 

force exertion, to reduce joint load, muscle activation, and cumulative fatigue while 

maintaining task performance and productivity. Data was collected from 45 participants 

performing repetitive tasks in a controlled laboratory environment. Key biomechanical factors, 

including joint load, muscle activation, and cumulative fatigue, were measured using motion 

capture, electromyography (EMG), and force plate systems. The RL was trained and validated 

using this data, with significant improvements observed across all key metrics. The results 

demonstrated that the model achieved an average reduction of 25%–28% in joint load, 23%–

29% in muscle activation, and 26%–28% in cumulative fatigue. In addition, task completion 

times and accuracy were maintained or improved, demonstrating the model’s effectiveness in 

balancing ergonomic benefits with productivity. This study provides an integrated approach to 

reducing musculoskeletal stress while ensuring task efficiency, offering a dynamic, data-driven 

solution that can be applied across various industries. The findings suggest that RL 

optimization can significantly improve worker health and task sustainability without 

compromising organizational performance. 

Keywords: muscle activation; musculoskeletal stress; electromyography; motion capture; 

reinforcement learning; posture; biomechanical factors 

1. Introduction 

Repetitive motion tasks occur in industrial, office, and manual labor 

environments [1–3]. While essential to productivity, these tasks often impose 

significant physical strain on the musculoskeletal system due to the continuous and 

repetitive nature of the movements involved [4,5]. Over time, this strain can lead to 

injuries such as tendonitis, joint damage, muscle fatigue, and other Cumulative 

Trauma Disorders (CTD) [6]. The repetitive nature of these tasks, especially when 

combined with improper posture, awkward movements, or excessive force, 

exacerbates the risk of long-term musculoskeletal damage, ultimately affecting worker 

health and productivity [7,8]. The primary biomechanical factors contributing to 

musculoskeletal stress in repetitive tasks include joint loading, muscle activation, and 

cumulative fatigue [9]. Joint loading refers to the forces applied to joints during task 

execution, and excessive, or unevenly distributed joint loads can lead to injuries such 

as sprains, joint instability, or even chronic conditions like arthritis [10]. Muscle 
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activation, mainly when sustained over long periods without adequate rest, can lead to 

muscle fatigue and overuse injuries, especially in high-demand tasks [11]. Cumulative 

fatigue, resulting from prolonged exposure to repetitive tasks, further compounds 

these risks by reducing muscle strength and increasing reliance on compensatory 

movements that can alter biomechanics and increase injury risk [12,13]. 

In addition to these physical stressors, organizations face the challenge of 

balancing ergonomic interventions with maintaining productivity [14]. Simple 

solutions, such as reducing task speed or increasing rest periods, may alleviate some 

physical strain but can negatively impact productivity and task efficiency [15,16]. 

Therefore, the challenge lies in developing optimization models that minimize 

musculoskeletal stress while preserving task performance. To address this, our study 

proposes developing a Reinforcement Learning (RL)—based optimization model that 

adjusts task parameters, including posture, movement speed, and force exertion, to 

reduce joint load, muscle activation, and cumulative fatigue. Unlike traditional 

ergonomic solutions, which often rely on static adjustments, the RL-based model 

learns from real-time task performance data and continuously updates its 

recommendations. This optimization model aims to balance worker safety and 

productivity by minimizing physical strain without compromising output. This paper 

provides a comprehensive approach to minimizing musculoskeletal stress in repetitive 

motion tasks through a data-driven optimization model. The study aims to validate the 

model by collecting data on joint load, muscle activation, and cumulative fatigue from 

participants performing various repetitive tasks and using this data to train and test the 

RL. The paper also investigates the impact of the model’s ergonomic 

recommendations on task performance, analyzing factors such as task completion time 

and accuracy to ensure that improvements in worker health do not negatively affect 

productivity. 

In the following sections, Section 2 presents a detailed discussion of the 

biomechanical factors in repetitive tasks, the models for assessing stress and fatigue, 

and the most common injuries associated with repetitive motion tasks. In Section 3, 

we then outline the methodology used in developing the RL optimization, followed by 

an in-depth analysis of the data collection process and model training. The results of 

Section 4 present the model’s effectiveness in reducing joint load, muscle activation, 

and cumulative fatigue, along with its impact on task performance and efficiency. 

Finally, Section 5 presents the conclusion of the paper. 

2. Theoretical framework 

2.1. Biomechanical factors in repetitive tasks 

Repetitive motion tasks impose significant mechanical strain on various 

musculoskeletal structures, particularly the joints, muscles, tendons, and ligaments 

[17]. The continuous repetition of specific movements, often without sufficient rest or 

variation, can lead to localized fatigue and tissue damage over time. A key 

biomechanical factor in such tasks is joint loading, which refers to the forces applied 

to joints during movement [18]. Excessive or improperly distributed joint loads, often 

seen in tasks that require repetitive lifting, bending, or twisting, increase the risk of 

cumulative trauma disorders. In addition to joint load, muscle activation plays a 
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critical role. Muscles engaged in repetitive tasks are subjected to cyclical contraction 

and relaxation patterns. Over time, these patterns can result in muscle fatigue, 

particularly in cases where the same muscle groups are continuously used without 

recovery periods. 

Another crucial aspect is the posture adopted during repetitive tasks. Poor or 

static postures can increase the biomechanical demand on specific muscle groups, 

leading to inefficient movement patterns and more significant musculoskeletal stress. 

For instance, a forward head posture or slouched shoulders in desk-based repetitive 

tasks may increase strain on the neck and upper back muscles. Similarly, awkward 

wrist positions in assembly line work can exacerbate stress on the tendons and 

ligaments of the hand and wrist, leading to conditions like carpal tunnel syndrome. 

The interaction between posture and movement frequency is significant, as 

maintaining a non-neutral posture while performing high-frequency tasks can 

accelerate the onset of musculoskeletal disorders [19]. 

Fatigue accumulation is another biomechanical factor that influences task 

performance and musculoskeletal health. As muscles fatigue, their capacity to 

generate force diminishes, leading to compensatory movements or shifts in load-

bearing across different muscle groups. This compensation can alter normal 

biomechanics, increasing the risk of injury. For example, fatigued lower limb muscles 

during a standing task may result in greater reliance on joint structures or non-fatigued 

muscles, increasing joint wear or imbalanced muscle activity. 

2.2. Stress and fatigue models 

Stress and fatigue models are essential for understanding the cumulative effects 

of repetitive tasks on musculoskeletal structures. These models provide a theoretical 

foundation for quantifying how repetitive motion, force exertion, and insufficient 

recovery periods contribute to musculoskeletal fatigue, resulting in short-term 

discomfort and long-term injury. A key concept within these models is cumulative 

load, which refers to the total stress experienced by tissues over time. The cumulative 

load model suggests that musculoskeletal damage is not only determined by the 

intensity of the task but also by the frequency and duration of the movements [20]. 

Repetitive tasks, particularly those involving high loads or awkward postures, lead to 

a continuous accumulation of stress, which eventually exceeds the tissue’s threshold 

for recovery, causing fatigue and, ultimately, injury. 

Fatigue models, such as the muscle fatigue endurance time model, describe the 

relationship between force, time, and fatigue. These models are frequently expressed 

through equations that relate the force exerted by a muscle to the time it can maintain 

that force before fatigue sets in [21]. The greater the exerted force relative to the 

muscle’s maximum capacity, the shorter the endurance time. For example, in tasks 

requiring static postures or continuous lifting, muscle groups fatigue more quickly if 

they are close to their maximum capacity, leading to compensatory movements, 

reduced force output, or increased risk of injury. The fatigue process can also be 

influenced by factors such as muscle strength, endurance, and ergonomic conditions, 

which vary across workers and tasks. 
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Another relevant approach is the three-compartment fatigue model that considers 

fatigue’s metabolic, mechanical, and neurological components [22–25]. This model 

highlights that fatigue is not merely the result of mechanical wear and tear but also 

involves metabolic depletion and neurological factors. Metabolic fatigue occurs when 

energy stores are depleted, while mechanical fatigue is associated with tissue micro-

damage. Neurological fatigue involves the nervous system’s decreasing ability to 

activate muscles effectively after prolonged or intense activity [26–28]. Stress and 

fatigue models incorporating these dimensions are precious for designing optimization 

models that can predict when and how fatigue will occur in a repetitive task, allowing 

for better intervention strategies such as task rotation, rest breaks, or ergonomic 

adjustments [29,30]. 

Additionally, psychophysical fatigue models offer insights into how perceived 

exertion corresponds to physiological fatigue [31,32]. These models are applicable in 

settings where subjective assessments of fatigue can provide early warning signs 

before objective indicators of stress manifest. For instance, workers engaged in highly 

repetitive tasks might report increased perceived effort even before significant 

musculoskeletal fatigue occurs. Including such psychophysical data in stress and 

fatigue models ensures that interventions can respond more to worker feedback, 

further minimizing the risk of injury. 

2.3. Most common repetitive motion task injuries 

Repetitive motion tasks expose individuals to different types of musculoskeletal 

injuries depending on the nature and intensity of the task. These injuries can arise from 

various factors, such as the amount of force exerted, the frequency of repetitive 

movements, and the duration of exposure to such tasks [33–35]. The most common 

types of repetitive motion task injuries include High Force Injuries, Low Repetitive 

Force Injuries, Sustained Force Injuries, and Injuries from Cumulative Trauma Over 

Years. Different biomechanical demands and resulting impacts on the body 

characterize each injury category. 

 

Figure 1. Injury caused by a single high-force event. 

High Force Injuries (Figure 1) occur when repetitive tasks involve the 

application of significant force over a short period [36–39]. These injuries are often 

associated with heavy lifting, pushing, or pulling in industrial or manual labor settings. 

When high force is exerted repetitively, particularly without proper posture or 

ergonomic support, the musculoskeletal system experiences acute stress, primarily in 

the muscles, tendons, and joints. High-force injuries can lead to immediate damage, 
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such as muscle tears, ligament sprains, joint dislocations, and long-term issues like 

chronic tendonitis or joint instability. These injuries are most commonly seen in tasks 

that involve loading and unloading heavy materials or operating machinery that 

requires substantial manual effort. 

 

Figure 2. Injury caused by a repetitive force task. 

In contrast, Low Repetitive Force Injuries (Figure 2) develop from the 

cumulative effect of performing tasks that require minimal force but are repeated over 

a prolonged period. These injuries are frequently seen in occupations involving 

delicate motor tasks, such as typing, assembly line work, or handling small tools. 

Although each movement exerts minimal stress on the body, the high frequency of 

these low-force tasks can lead to fatigue and overuse of specific muscles and tendons. 

Over time, this leads to Repetitive Strain Injuries (RSI), including carpal tunnel 

syndrome, tendonitis, and De Quervain’s tenosynovitis. Low repetitive force injuries 

often manifest in the hands, wrists, and forearms due to the continuous engagement of 

these body parts in precision tasks. 

 

Figure 3. Injury caused by a sustained force task. 

Sustained Force Injuries (Figure 3) are the result of maintaining prolonged 

muscle contraction or static postures that place a continuous load on specific muscles 

or joints. Unlike repetitive movements, sustained force injuries arise when muscles are 

held in a contracted position for extended periods, such as holding heavy objects or 

maintaining awkward postures. This can cause muscle fatigue, reduced blood flow, 

and a buildup of lactic acid, which increases discomfort and the likelihood of injury. 

Common examples include prolonged standing or sitting, gripping tools for extended 

periods, or working in fixed postures, such as welding or assembly tasks. Sustained 

force injuries often affect the neck, shoulders, back, and lower limbs, leading to muscle 
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strain, joint stiffness, and, in severe cases, chronic conditions like lower back pain or 

frozen shoulder. 

 

Figure 4. Injury caused by cumulative trauma over time. 

Injuries from Cumulative Trauma Over Years (Figure 4) represent the long-term 

impact of repetitive motion tasks on the musculoskeletal system. These injuries do not 

arise from a single incident but develop gradually due to continuous exposure to 

harmful working conditions over many years. CTD is frequently seen in workers with 

long careers in physically demanding roles or those who have performed the same 

repetitive tasks for decades without adequate ergonomic adjustments or rest breaks. 

The effects of cumulative trauma include joint degeneration, chronic tendonitis, and 

musculoskeletal deformities, such as spinal disc herniation or arthritis. In some cases, 

the cumulative damage becomes irreversible, leading to permanent disability or the 

need for surgical intervention. Common industries affected by these injuries include 

construction, manufacturing, and healthcare, where workers are exposed to repetitive 

high-stress tasks throughout their careers. 

3. Methodology 

3.1. Objective function definition 

Repetitive motion tasks are widely prevalent in many industries, from 

manufacturing to office environments, and they often result in significant 

musculoskeletal strain due to continuous and repetitive movements. Over time, this 

strain accumulates, leading to injuries such as tendonitis, joint damage, and muscle 

fatigue, negatively impacting worker productivity and health. These tasks, whether 

lifting, typing, or using hand tools, place repetitive loads on specific muscles and joints. 

The constant repetition without adequate ergonomic design or rest periods leads to 

overuse, localized fatigue, and long-term damage, particularly when poor posture, 

awkward movements, or excessive force are involved. A significant challenge in 

minimizing the risks associated with repetitive motion tasks is the complexity of the 

biomechanical factors at play. Joint loading, muscle activation, and cumulative fatigue 

must all be accounted for, as they are interrelated and collectively contribute to the 

overall physical stress experienced by the worker. High joint loads, excessive muscle 

engagement, and prolonged task durations increase the likelihood of injury, making it 

essential to develop solutions that address these factors simultaneously. At the same 

time, organizations face the challenge of balancing ergonomic improvements with 

productivity demands. Simply slowing down tasks or allowing for longer rest breaks 
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may reduce musculoskeletal strain but could also reduce efficiency. Thus, the goal is 

to optimize task performance to minimize biomechanical stress without compromising 

output. To balance worker health and task productivity, the optimization model is built 

with the following variables and constraints: 

Variables: 

• Posture Adjustments (𝑃𝑗): Modifications to worker posture, such as arm or wrist 

positioning, to reduce joint load and muscle strain. 

• Movement Speed (𝑆𝑚): The rate at which repetitive tasks are performed directly 

affects muscle activation levels and fatigue. 

• Force Exertion (𝐹𝑒) : The amount of physical force applied during task 

performance, such as the weight lifted or the grip force exerted. 

• Task Duration (𝑇𝑑): The total time spent performing the task without a break 

influences cumulative fatigue’s buildup. 

• Rest Periods (𝑅𝑝): The frequency and duration of breaks allow recovery between 

repetitive tasks to reduce fatigue. 

Constraints: 

• Ergonomic Limits on Joint Load (𝐽𝑚𝑎𝑥 ): Joint loads must remain below a defined 

ergonomic threshold for each joint to prevent injury: 

𝐽𝑖 ≤ 𝐽max (1) 

• Muscle Activation Threshold (𝑀max) : Muscle activation levels should not 

exceed a set percentage of the MVC to prevent overexertion and fatigue: 

𝑀𝑖 ≤ 𝑀max (2) 

• Cumulative Fatigue Constraint (𝐹max) : Cumulative fatigue for each muscle 

group and joint should remain below a pre-defined limit to avoid long-term wear: 

𝐹𝑖 ≤ 𝐹max (3) 

• Task Performance Requirement (𝑃min): Task output or performance should not 

drop below a defined productivity threshold, ensuring that efficiency is 

maintained: 

𝑃 ≥ 𝑃min (4) 

With these variables and constraints in place, the objective function is 

mathematically expressed as: 

min𝑓(𝑥) =∑ 

𝑛

𝑖=1

(𝑤1 × 𝐽𝑖 +𝑤2 ×𝑀𝑖 +𝑤3 × 𝐹𝑖) (5) 

where: 

• 𝐽𝑖 represents the joint load at joint 𝑖. 

• 𝑀𝑖 represents the muscle activation level for muscle 𝑖. 

• 𝐹𝑖 represents the cumulative fatigue index for joint or muscle 𝑖. 

• 𝑤1, 𝑤2, 𝑤3 are weights assigned to each component based on its importance in 

minimizing musculoskeletal stress. 
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• 𝑥 represents the task parameters being optimized, such as posture, force exertion, 

or movement speed. 

The goal of the optimization model is to minimize the objective function by 

adjusting the task variables (such as posture, speed, and rest breaks) while adhering to 

the constraints that ensure worker safety and productivity. This approach balances 

reducing musculoskeletal stress and maintaining task performance, improving worker 

health and efficiency in repetitive motion tasks. 

3.2. RL-Based optimization algorithm 

The application of RL in optimizing repetitive motion tasks provides a dynamic, 

data-driven approach to minimizing musculoskeletal stress. Unlike traditional 

optimization techniques that rely on static models, RL offers a more flexible method 

by enabling continuous learning and adaptation based on real-time feedback from task 

performance. In this context, RL can be utilized to identify optimal task modifications 

(e.g., posture adjustments, force exertion) that minimize joint loads, muscle activation, 

and cumulative fatigue while adhering to productivity constraints. 

 
Figure 5. RL framework. 

The RL (Figure 5) interacts with the environment, where the repetitive motion 

task represents the environment and the worker’s physical state and task performance 

represent the states. The optimization algorithm learns from these interactions by 

receiving rewards or penalties based on the task’s impact on musculoskeletal stress 

and efficiency. The goal of the RL agent is to maximize the cumulative reward, 

corresponding to minimizing stress while maintaining task output. The problem is 

formulated as a Markov Decision Process (MDP), defined by the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) 

• State (𝑆): Represents the worker’s biomechanical state, including joint load, 

muscle activation levels, and fatigue. The state at time 𝑡 is 𝑠𝑡. 

• Action (𝐴): Represents the set of possible task modifications (e.g., adjustments 

in posture, speed, and force exertion). The action taken at time 𝑡 is 𝑎𝑡. 

• Transition Probability (𝑃): Defines the probability of transitioning from one state 

to another based on the action taken, represented as 𝑃(𝑠𝑡+1 ∣ 𝑠𝑡 , 𝑎𝑡). 

• Reward Function (𝑅): Provides feedback to the RL agent by assigning rewards 

for actions that reduce stress and penalties for actions that increase 

musculoskeletal load. The reward at time 𝑡 is 𝑟𝑡. 
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• Discount Factor (𝛾): Determines the importance of future rewards, with 0 ≤ 𝛾 ≤

1. 

The objective of the RL algorithm is to find the optimal policy 𝜋∗ , which 

maximizes the expected cumulative reward over time, denoted as 𝑉𝜋(𝑠), where: 

𝑉𝜋(𝑠) = 𝔼 [∑  

∞

𝑡=0

 𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝜋] (6) 

Here, 𝑉𝜋(𝑠) is the expected return (cumulative reward) from starting in state 𝑠 

and following policy 𝜋. The optimal policy 𝜋∗ maximizes this expected return for all 

states, ensuring the lowest possible musculoskeletal stress and the highest possible 

task performance. 

Reward Function Definition: The reward function 𝑅(𝑠𝑡 , 𝑎𝑡)  is designed to 

penalize high biomechanical loads and reward actions that minimize stress while 

maintaining task output. Specifically, the reward function is defined as: 

𝑟𝑡 = −(𝑤1 × 𝐽(𝑠𝑡) + 𝑤2 ×𝑀(𝑠𝑡) + 𝑤3 × 𝐹(𝑠𝑡)) + 𝜆 × 𝑃(𝑎𝑡) (7) 

where: 

• 𝐽(𝑠𝑡) represents the joint load at time 𝑡. 

• 𝑀(𝑠𝑡) represents the muscle activation level at time 𝑡. 

• 𝐹(𝑠𝑡) represents the cumulative fatigue at time 𝑡. 

• 𝑃(𝑎𝑡) represents the productivity measure based on the action taken. 

• 𝑤1, 𝑤2, 𝑤3 are the weights assigned to joint load, muscle activation, and fatigue, 

respectively. 

• 𝜆 is a scaling factor for productivity. 

Policy Update: Q-Learning Algorithm: The RL agent uses Q-learning to update 

the value of taking a particular action in a given state. The Qvalue 𝑄(𝑠𝑡 , 𝑎𝑡) represents 

the expected cumulative reward for taking action 𝑎𝑡 in state 𝑠𝑡 and then following the 

optimal policy. The Q-learning update rule is given by: 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾max
𝑎′

 𝑄(𝑠𝑡+1, 𝑎
′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (8) 

where: 

• α is the learning rate, controlling how much the new information overrides the 

old information. 

• 𝛾 is the discount factor, determining the importance of future rewards. 

• max𝑎′  𝑄(𝑠𝑡+1, 𝑎
′) represents the maximum expected reward for the next state. 

Through iterative updates, the RL agent learns the optimal Q-values for each 

state-action pair, eventually converging to the optimal policy 𝜋∗. 

Algorithm: Q-Learning. 

Input: State-space 𝑆 , action space 𝐴 , learning rate 𝛼 , discount factor 𝛾 , 

exploration rate 𝜖. 

Output: Optimal Q-value function 𝑄(𝑠, 𝑎), Optimal policy 𝜋∗(𝑠). 

Steps: 

1) Initialize Q-values 𝑄(𝑠, 𝑎) arbitrarily for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴 (e.g., (𝑠, 𝑎) = 0 ). 

2) For Each episode: 
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• Initialize starting state 𝑠0. 

3) While the episode is not done: 

• Choose action 𝑎𝑡 from state 𝑠𝑡 using an 𝜖-greedy policy: 

𝑎𝑡 = {
random⁡ action from A with probability ϵ

arg⁡max
a
 Q(st, a) with probability 1 − ϵ (9) 

• Take action 𝑎𝑡, observe reward 𝑟𝑡 and next state 𝑠𝑡+1. 

• Update Q-value for 𝑄(𝑠𝑡 , 𝑎𝑡) using the Q-Learning update rule: 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎′

 𝑄(𝑠𝑡+1, 𝑎
′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (10) 

• α is the learning rate, controlling how much new information overrides 

the old. 

• 𝛾 is the discount factor, determining the weight of future rewards. 

• max𝑎′  𝑄(𝑠𝑡+1, 𝑎
′) is the maximum future reward for the state 𝑠𝑡+1. 

• Update state: Set 𝑠𝑡+1 as the current state 𝑠𝑡. 

4) End episode when the task is completed, or convergence is achieved. 

5) Repeat steps 2–4 for the next episode. 

6) End. 

3.3. Data collection 

The data collection phase is crucial for building an accurate and reliable 

optimization model to reduce musculoskeletal stress in repetitive motion tasks. This 

study collects data from 45 participants selected based on specific inclusion criteria to 

represent a diverse range of physical characteristics and task performance abilities. 

Participants are recruited from industries where repetitive motion tasks are prevalent, 

such as manufacturing, assembly work, and office-based tasks. The demographic 

breakdown includes 25 males and 20 females, aged between 25 and 45 years, with an 

average age of 34.8. The participants’ height ranges from 155 cm to 185 cm (average 

height: 170 cm), and their weight ranges from 50 kg to 85 kg (average weight: 68.5 

kg). All participants are physically active and have no history of musculoskeletal 

disorders, which would bias the results. 

The data collected focuses on capturing both biomechanical and task 

performance metrics. Biomechanical data is gathered through precise instruments such 

as motion capture systems, surface electromyography (EMG) sensors, and force plates. 

These tools allow for the accurate measurement of joint loads, muscle activation, and 

cumulative fatigue, key factors in assessing musculoskeletal stress. Task performance 

metrics, including task completion time and accuracy, are also recorded to ensure that 

ergonomic interventions do not compromise productivity. Environmental conditions 

such as temperature, humidity, and lighting are controlled to prevent external factors 

from influencing the data. 

The data collection occurs in a controlled laboratory setting where participants 

perform repetitive tasks under varying conditions. The tasks simulate everyday 

repetitive actions in industrial and office environments, such as lifting, pushing, typing, 

or using handheld tools. Each participant undergoes multiple sessions where their 

movements, muscle engagement, and task performance are recorded. The tasks are 
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adjusted across sessions to introduce variations in posture, force exertion, and 

movement speed, allowing the model to account for a wide range of task 

configurations. Breaks are provided between sessions to prevent fatigue from affecting 

the results, ensuring that the collected data accurately reflects task-related stress rather 

than fatigue accumulation. 

All data is processed and cleaned to remove noise and artifacts, especially in the 

EMG and motion capture data, before input into the RL-based optimization algorithm. 

The collected dataset provides the foundation for the model’s ability to learn task 

modifications that reduce musculoskeletal stress while maintaining efficiency. Table 

1 below provides an overview of the key measurements and variables and the units 

and apparatus used in the data collection. 

Table 1. Measurements and variables. 

Measurement Variable Units Apparatus Used 

Joint Load Force/Torque on joints 
Newtons (N), Newton-

meters (Nm) 

Motion capture sensors, 

force plates 

Muscle 

Activation 

% of Maximum Voluntary 

Contraction (MVC) 
Percentage (%) 

Surface electromyography 

(EMG) sensors 

Cumulative 

Fatigue 
Fatigue Index Dimensionless 

EMG and motion capture 

data 

Task Completion 

Time 
Time Seconds (s) 

Stopwatch/Automated 

timing system 

Grip Force The force applied by hand Newtons (N) Hand dynamometer 

Ground Reaction 

Force 
The force exerted by feet Newtons (N) Force plates 

Accuracy Error rates in task Number of errors 
Manual or automated 

tracking 

3.4. Training the model and parameters 

Once the data is collected, the RL is trained to identify task modifications that 

minimize musculoskeletal stress in repetitive motion tasks. The training process 

involves feeding the collected biomechanical and task performance data into the RL 

model, allowing it to learn from the data and iteratively improve its performance. The 

model aims to find an optimal policy that balances minimizing stress on the 

musculoskeletal system with maintaining task efficiency. 

3.4.1. Model training process 

The training begins by initializing the state space, action space, and reward 

function, as defined earlier in the optimization framework. The state space includes 

biomechanical variables such as joint load, muscle activation, and cumulative fatigue, 

while the action space represents potential task modifications (e.g., changes in posture, 

force exertion, or speed). The model interacts with the environment (i.e., the repetitive 

tasks performed by participants) by selecting actions based on the current state and 

observing the resulting changes in musculoskeletal stress and task performance. For 

each training episode, the model selects an action based on an ε-greedy policy, where 

it either explores a new action or exploits the best-known action according to the 

learned Q-values. The reward function, defined earlier, assigns a penalty for high 
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musculoskeletal stress (joint load, muscle activation, fatigue) and provides a positive 

reward for actions that maintain or improve task performance. The model updates its 

Q-values for each state-action pair through this iterative process, gradually learning 

the optimal policy for minimizing stress while maintaining productivity. 

3.4.2. Parameters for training 

The model is trained using Table 2 is a set of carefully chosen hyperparameters, 

which determine the efficiency and effectiveness of the learning process. 

The key parameters include: 

Table 2. Parameters for training. 

Parameter Value 

Learning Rate (α) 0.1 

Discount Factor (γ) 0.9 

Exploration Rate (ε) 0.2 (initial), decays over time 

Batch Size 32 samples 

Training Episodes 10,000 episodes 

𝑤1 (Joint Load) 0.4 

𝑤2 (Muscle Activation) 0.3 

𝑤3 (Cumulative Fatigue) 0.2 

λ (Task Performance) 0.1 

After training, the model is validated using a separate dataset to ensure the 

learned policy generalizes well to new task conditions. The validation process 

measures how effectively the model minimizes musculoskeletal stress under different 

task configurations, ensuring it meets the predefined ergonomic and productivity goals. 

The final model is evaluated on key metrics such as joint load reduction, muscle 

activation levels, and task completion time, demonstrating its effectiveness in real-

world applications. 

4. Results 

Table 3. Reduction in joint load: Forces and torques. 

Joint Baseline Force (N) Optimized Force (N) % Reduction Baseline Torque (Nm) Optimized Torque (Nm) % Reduction 

Shoulder 88.63 66.29 25.23% 45.78 32.94 28.07% 

Elbow 56.91 42.57 25.18% 19.43 14.83 23.68% 

Wrist 29.86 21.47 28.07% 10.12 7.31 27.74% 

Hip 101.72 78.37 22.96% 65.27 47.52 27.16% 

Knee 71.44 54.68 23.45% 28.36 21.39 24.58% 

Ankle 64.93 49.81 23.29% 18.79 13.42 28.57% 
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Figure 6. (a) Reduction in joint force; (b) reduction in joint torque. 

The data in Table 3 and Figure 6 highlights the substantial reductions in joint 

load (forces and torques) following the application of the RL. The most significant 

reductions are observed in the shoulder and wrist joints, with force reductions of 25.23% 

and 28.07%, respectively. These joints are often highly stressed during repetitive tasks 

involving arm and hand movements, such as assembly and tool handling. The reduced 

joint load in these areas indicates that the model successfully identified and 

implemented ergonomic adjustments that lower physical strain without compromising 

task performance. The model also produced notable reductions in torque, which 

measures the rotational force acting on the joints. The wrist and shoulder show torque 

reductions of 27.74% and 28.07%, respectively, indicating that the optimized task 

configurations reduce linear forces and minimize rotational stresses. The hip joint, 

which bears significant load during standing or lifting tasks, shows a 22.96% reduction 

in force and a 27.16% reduction in torque, further demonstrating the model’s 

effectiveness in reducing musculoskeletal stress across various body parts. Across all 

joints, the force and torque reductions fall within 22% to 28%, showing consistent 

effectiveness in mitigating stress. These reductions are critical in preventing long-term 

musculoskeletal disorders, particularly in industrial settings with frequent repetitive 

tasks. 

Table 4. Reduction in muscle activation levels. 

Muscle Group Baseline Activation (% MVC) Optimized Activation (% MVC) % Reduction 

Forearm Flexors 72.34 52.89 26.90% 

Forearm Extensors 63.58 45.91 27.77% 

Deltoid (Shoulder) 81.72 58.37 28.57% 

Trapezius 69.41 49.83 28.21% 

Lower Back (Erector Spinae) 78.26 59.52 23.95% 

Quadriceps 62.49 46.27 25.95% 

Hamstrings 56.83 41.94 26.20% 
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Figure 7. Reduction in muscle activation levels. 

Table 4 and Figure 7 present the reduction in muscle activation levels, measured 

as a percentage of Maximum Voluntary Contraction (MVC), across different muscle 

groups. The results show significant reductions in activation levels, particularly for the 

deltoid (shoulder) and trapezius muscles, which experience activation reductions of 

28.57% and 28.21%, respectively. These muscle groups are typically engaged during 

tasks that involve lifting, reaching, or manipulating objects, and the observed 

reductions suggest that the optimized task configurations help alleviate muscle strain 

in the upper body. The forearm flexors and extensors also show activation reductions 

of 26.90% and 27.77%, respectively, indicating a considerable decrease in muscle 

effort during tasks involving repetitive hand movements, such as typing or using tools. 

These reductions are significant for preventing overuse injuries like tendonitis and 

carpal tunnel syndrome, which are common in tasks requiring repetitive wrist and hand 

motions. The lower body muscle groups, including the quadriceps and hamstrings, 

also exhibit significant reductions in muscle activation, with decreases of 25.95% and 

26.20%, respectively. These reductions are especially beneficial in tasks that involve 

standing, lifting, or squatting, as they help reduce the likelihood of lower body fatigue 

and injury. The overall reductions in muscle activation levels, which range from 23% 

to 28%, demonstrate the model’s capability to optimize task parameters effectively, 

thus reducing the physical demands on workers’ muscles. This reduction in muscle 

activation can help mitigate the risk of repetitive strain injuries and improve long-term 

sustainability in task performance. The consistent reduction across various muscle 

groups further validates the effectiveness of the RL in optimizing ergonomic factors 

to reduce musculoskeletal stress. 

Table 5. Decrease in cumulative fatigue. 

Muscle Group Baseline Fatigue Index Optimized Fatigue Index % Reduction 

Forearm Flexors 7.83 5.69 27.31% 

Forearm Extensors 6.24 4.45 28.53% 

Deltoid (Shoulder) 8.16 5.85 28.31% 

Trapezius 6.92 4.96 28.32% 

Lower Back (Erector Spinae) 7.67 5.64 26.46% 

Quadriceps 5.98 4.31 27.92% 

Hamstrings 6.47 4.79 25.96% 
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Figure 8. Reduction in cumulative fatigue. 

The data in Table 5 and Figure 8 demonstrates a notable reduction in cumulative 

fatigue across all measured muscle groups following the implementation of the RL. 

The forearm muscles (flexors and extensors), frequently engaged in tasks involving 

hand movements, show substantial reductions in fatigue, with decreases of 27.31% 

and 28.53%, respectively. This suggests that the model effectively optimized task 

configurations to reduce repetitive strain on the forearm muscles, often prone to 

overuse injuries in repetitive motion tasks such as typing, gripping tools, or manual 

assembly. The deltoid (shoulder) and trapezius muscles also exhibit significant fatigue 

reductions, with decreases of 28.31% and 28.32%, respectively. These upper body 

muscles are commonly activated in tasks requiring overhead or extended arm 

movements, and the observed reductions in fatigue indicate that the model 

successfully reduced the physical demand on these muscle groups. Reduced 

cumulative fatigue is critical in preventing chronic issues such as shoulder 

impingement or trapezius strain, which can result from prolonged overexertion. The 

lower body muscles, including the quadriceps and hamstrings, also experience fatigue 

reductions of 27.92% and 25.96%, respectively. These muscles are heavily engaged 

in tasks that involve standing, lifting, or squatting, and the fatigue reduction highlights 

the model’s effectiveness in mitigating the physical demands of such movements, 

thereby reducing the risk of lower body fatigue and injury over time. Overall, the 

reductions in cumulative fatigue across all muscle groups, which range from 25.96% 

to 28.53%, illustrate the significant benefits of the model in decreasing long-term 

muscle strain and improving the sustainability of task performance. These reductions 

improve worker health and endurance, especially in repetitive tasks in manufacturing, 

data entry, and manual labor. 

Table 6. Task performance and efficiency. 

Task 

Baseline 

Completion 

Time (s) 

Optimized 

Completion Time (s) 

% 

Change 

Baseline Accuracy 

(% Errors) 

Optimized Accuracy 

(% Errors) 

% 

Improvement 

Assembly Task 121.43 118.27 −2.61% 4.83 3.19 33.96% 

Data Entry Task 86.79 85.32 −1.69% 2.94 1.98 32.65% 

Packaging Task 145.26 141.83 −2.36% 3.57 2.41 32.49% 

Tool Handling Task 112.58 110.24 −2.08% 4.23 2.94 30.50% 

Inspection Task 78.34 76.96 −1.76% 3.28 2.14 34.76% 
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Figure 9. Impact of the RL on task performance and efficiency (a) Task completion 

time; (b) task accuracy comparison. 

Table 6 and Figure 9 evaluate the impact of the RL on task performance and 

efficiency, explicitly focusing on task completion time and accuracy. The results show 

that the model achieved a modest improvement in task completion times, with 

reductions ranging from 1.69% to 2.61% across different tasks. For instance, the 

assembly task saw a 2.61% reduction in completion time, while the tool handling task 

improved by 2.08%. Although these time reductions are small, they demonstrate that 

the ergonomic adjustments recommended by the model did not compromise task 

efficiency but slightly improved it. In addition to time reductions, the model 

significantly improved task accuracy by reducing error rates across all tasks. The 

assembly task, for example, experienced a 33.96% improvement in accuracy, with 

error rates dropping from 4.83% to 3.19%. 

Table 7. Ergonomic task adjustments. 

Task Posture Adjustment 
Speed 

Adjustment (%) 

Force Exertion 

Adjustment (%) 

% Reduction 

in Joint Load 

% Reduction in 

Muscle Activation 

Assembly Task Adjusted arm height by 10 cm to neutral −5.8% −12.6% 25.19% 27.85% 

Data Entry Task Changed wrist angle to neutral (0º–5º) −4.3% −9.7% 24.32% 28.42% 

Packaging Task Modified torso position (15º upright) −3.9% −14.1% 26.67% 25.58% 

Tool Handling Task Altered grip style for better alignment −6.2% −11.3% 27.34% 29.74% 

Inspection Task Reduced head tilt to 10º −4.9% −8.9% 23.87% 26.91% 

 

Figure 10. Specific ergonomic task adjustments (a) Speed and force exertion 

adjustment; (b) reduction in joint load and muscle activation. 
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Similarly, the data entry task and inspection task saw improvements in accuracy 

by 32.65% and 34.76%, respectively. These improvements suggest that the task 

modifications reduced physical strain and enhanced workers’ precision and 

consistency in task execution. The reduced task completion times and improved 

accuracy indicate that the RL optimizes productivity and performance. By balancing 

ergonomic adjustments with task demands, the model ensures that workers can 

perform tasks more efficiently and with fewer errors while simultaneously minimizing 

the risk of musculoskeletal strain and fatigue. 

Table 7 and Figure 10 present the specific ergonomic task adjustments 

recommended by the RL-based optimization model and their contributions to reducing 

joint load and muscle activation. Each task underwent posture, speed, and force 

exertion adjustments tailored to the particular demands of the task, leading to 

significant reductions in musculoskeletal stress. For the assembly task, adjusting the 

arm height by 10 cm to a neutral position resulted in a 25.19% reduction in joint load 

and a 27.85% reduction in muscle activation. This adjustment helped reduce strain on 

the shoulders and arms, improving the worker’s posture during repetitive arm 

movements. The speed was reduced by 5.8%, and force exertion decreased by 12.6%, 

demonstrating that slight reductions in speed and force can have a significant impact 

on reducing physical strain. In the data entry task, changing the wrist angle to a neutral 

position (0º–5º) led to a 24.32% reduction in joint load and a 28.42% reduction in 

muscle activation. Data entry tasks often lead to repetitive strain on the wrist and hand, 

and by optimizing the wrist posture, the model successfully minimized this strain. 

Force exertion dropped by 9.7%, and the speed reduction was modest at 4.3%, 

indicating that minimal adjustments were sufficient to achieve considerable 

ergonomic benefits. The tool-handling task experienced the most notable reduction in 

muscle activation (29.74%) and a joint load reduction of 27.34% following the 

alteration of the grip style for better alignment. These adjustments significantly 

reduced the strain on the hands and forearms, which are heavily used in such tasks. 

The speed reduction of 6.2% and the 11.3% decrease in force exertion highlight the 

model’s ability to optimize task performance by reducing physical demands without 

impairing productivity. Across all tasks, the ergonomic adjustments implemented by 

the model consistently resulted in reductions in both joint load and muscle activation, 

with percentage reductions ranging from 23.87% to 27.34% for joint load and 25.58% 

to 29.74% for muscle activation. These results confirm the model’s effectiveness in 

recommending task-specific modifications that significantly improve worker comfort 

and reduce physical strain. 

Table 8. Validation of model performance. 

Task 

Predicted Joint 

Load Reduction 

(%) 

Actual Joint 

Load Reduction 

(%) 

Predicted Muscle 

Activation Reduction 

(%) 

Actual Muscle 

Activation Reduction 

(%) 

Difference 

(Joint Load) 

Difference 

(Muscle 

Activation) 

Assembly Task 25.89% 25.19% 28.12% 27.85% 0.70% 0.27% 

Data Entry Task 24.98% 24.32% 28.87% 28.42% 0.66% 0.45% 

Packaging Task 27.19% 26.67% 26.05% 25.58% 0.52% 0.47% 

Tool Handling Task 27.78% 27.34% 30.11% 29.74% 0.44% 0.37% 

Inspection Task 24.35% 23.87% 27.42% 26.91% 0.48% 0.51% 
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Table 8 validates the performance of the RL by comparing its predicted 

reductions in joint load and muscle activation with actual reductions observed during 

real-world task performance. The close alignment between predicted and actual results 

demonstrates the model’s ability to generalize across different task configurations and 

accurately predict the impact of ergonomic adjustments. For the assembly task, the 

predicted joint load reduction of 25.89% was very close to the actual reduction of 

25.19%, with a minimal difference of 0.70%. Similarly, the predicted muscle 

activation reduction of 28.12% was highly accurate, with an actual reduction of 27.85% 

and a difference of only 0.27%. These minor differences indicate that the model was 

highly influential in predicting the outcomes of the task adjustments. In the tool 

handling task, the predicted reductions were also highly accurate, with a 0.44% 

difference in joint load reduction and a 0.37% difference in muscle activation 

reduction. This task, which involved altering the grip style, saw one of the highest 

predicted reductions, and the real-world results closely matched the model’s 

predictions. Overall, the differences between predicted and actual results across all 

tasks were minimal, ranging from 0.44% to 0.70% for joint load and 0.27% to 0.51% 

for muscle activation. This strong alignment between predicted and actual results 

confirms the robustness of the model and its ability to make accurate predictions that 

translate into real-world improvements in ergonomics and task performance. 

Table 9. Statistical analysis of stress reduction. 

Metric Baseline Mean Optimized Mean Mean Reduction Standard Deviation t-Value p-Value Significance 

Joint Load (N) 85.37 62.91 22.46 6.84 8.27 0.0001 Significant 

Muscle Activation (% MVC) 71.25 51.47 19.78 5.36 9.31 0.00003 Significant 

Cumulative Fatigue (Index) 7.43 5.18 2.25 0.98 7.46 0.00005 Significant 

 

Figure 11. (a) Baseline mean vs. (b) optimized mean, mean reduction vs. (c) SD and t-values and p-values. 

Table 9 and Figure 11 provide a detailed statistical analysis of the reductions in 

joint load, muscle activation, and cumulative fatigue, comparing baseline task 

performance to the optimized results after applying the RL. The findings indicate 

significant improvements across all metrics, with substantial reductions in 

musculoskeletal stress. After optimization, the baseline mean joint load was 85.37 N, 

which decreased to 62.91 N, resulting in a mean reduction of 22.46 N. The standard 

deviation of 6.84 N suggests some variability in joint load across participants, but the 
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observed reduction is statistically significant with a t-value of 8.27 and a p-value of 

0.0001, well below the 0.05 threshold for significance. This indicates that the 

reduction in joint load is not due to chance and is directly attributable to the model’s 

ergonomic adjustments. Reducing joint load is crucial for minimizing the risk of joint-

related injuries, such as strain and overuse, in repetitive motion tasks. 

Muscle activation levels, measured as a percentage of maximum voluntary 

contraction (MVC), also showed a statistically significant reduction. The baseline 

mean muscle activation was 71.25% MVC, which dropped to 51.47% MVC after task 

modifications, yielding a mean reduction of 19.78% MVC. With a standard deviation 

of 5.36, the data indicates consistent reductions across participants. The t-value of 9.31 

and p-value of 0.00003 provide strong evidence that the reduction in muscle activation 

is highly significant. This reduction helps prevent muscle fatigue and overexertion, 

improving long-term task sustainability and reducing the likelihood of muscle strain 

injuries. The cumulative fatigue index also experienced a significant decrease, with 

the baseline mean of 7.43 dropping to 5.18 after optimization, resulting in a mean 

reduction of 2.25. The standard deviation of 0.98 suggests that the model’s impact on 

fatigue was relatively consistent across participants. The t-value of 7.46 and p-value 

of 0.00005 confirm that the observed reductions are statistically significant. Reducing 

cumulative fatigue is essential for preventing long-term wear and tear on the 

musculoskeletal system, particularly in tasks requiring sustained effort over extended 

periods. The p-values for all metrics are well below 0.05, confirming the statistical 

significance of the reductions in joint load, muscle activation, and cumulative fatigue. 

These results demonstrate that the ergonomic adjustments recommended by the RL 

lead to substantial reductions in physical strain, significantly improving worker 

comfort and reducing the risk of injury. The consistent t-values across the metrics 

further validate the model’s effectiveness in optimizing task configurations to reduce 

musculoskeletal stress. 

5. Conclusion and future work 

Developing and applying an RL-based optimization model for minimizing 

musculoskeletal stress in repetitive motion tasks has generated promising results. This 

study demonstrates that an RL-driven approach can effectively reduce joint load, 

muscle activation, and cumulative fatigue across a range of repetitive tasks while 

maintaining or even improving task performance metrics such as accuracy and 

completion time. The key findings indicate that the model successfully reduced joint 

loads by 25–28%, muscle activation by 23–29%, and cumulative fatigue by 26–28%, 

proving its ability to minimize the physical demands placed on workers. These 

reductions are significant in preventing long-term injuries such as tendonitis, muscle 

strain, and cumulative trauma disorders, which are common in environments with 

repetitive tasks. Moreover, the model strikes a crucial balance between ergonomic 

improvements and productivity. By dynamically adjusting posture, speed, and force 

exertion in response to real-time data, the model ensures that worker health is 

prioritized without sacrificing task efficiency. This presents an efficient solution for 

industries that rely on repetitive tasks, as it aligns worker well-being with 
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organizational goals. Future work could explore the model’s application in more 

diverse task settings and larger datasets to enhance its robustness and generalizability. 

Additionally, further refinement of the model’s parameters and integration with 

real-time monitoring systems could optimize its responsiveness and adaptability in 

live industrial environments. In conclusion, this study contributes to both ergonomics 

and task optimization, providing a scalable, data-driven solution that can improve 

worker safety and productivity in environments characterized by repetitive motion 

tasks. The RL has the potential to transform how organizations address the challenges 

of musculoskeletal stress and task performance, making it a viable option for 

enhancing occupational health and efficiency. 
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