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Abstract: Intracranial aneurysms are abnormal expansions caused by weak arterial walls, 

which can lead to subarachnoid hemorrhage and high mortality rates in severe cases. Its clinical 

treatment commonly involves transcatheter arterial embolization. Compared with mainstream 

coil materials, the use of emerging temperature-sensitive embolic agents has higher occlusion 

rates, and reduces stress on the aneurysm wall, with lower toxicity and better treatment 

outcomes. However, due to the irreversibility of the coagulation process, there is a risk of 

unintended embolization of distal branches, limiting their clinical applicability. In order to 

obtain the applicable conditions of the temperature-sensitive embolic agent and further 

improve its applicability, this study employed the Euler two-phase flow model to simulate the 

embolization process of these agents. Based on the simulation results and geometric features 

of the cases, a decision tree model was established. Cross-validation revealed an overall success 

rate of 78.57% for predicting treatment applicability, with a sensitivity of 71.4%, specificity of 

81.0%, and an F1 score of 62.5%. This decision tree model can serve as an auxiliary tool in the 

clinical treatment of intracranial aneurysms, allowing for the selection of cases suitable for 

temperature-sensitive embolization based on patients’ specific geometric features obtained 

from imaging, thereby enhancing the success rate of surgical procedures. 

Keywords: intracranial aneurysm; temperature-sensitive embolic agents; Euler two-phase 

flow; decision tree model; geometric features 

1. Introduction 

Intracranial Aneurysm (IA) is an abnormal dilatation caused by a weakness in the 

arterial wall, with sizes ranging from less than 0.5 mm to more than 25 mm [1]. 

Clinically, IAs are mainly classified into four types based on their geometric 

morphology: saccular aneurysms, microaneurysms, giant intracranial aneurysms, and 

fusiform intracranial aneurysms [2]. Currently, clinical treatment methods for IA can 

be broadly categorized into minimally invasive endovascular embolization and open 

surgical clipping. The goal of both methods is to remove the aneurysm from the blood 

circulation and prevent its rupture while providing a durable therapeutic effect [3]. 

Notably, open surgery is invasive and carries a higher risk of complications. In 

contrast, endovascular treatment is less traumatic, significantly reducing the treatment 

mortality rate and offering better clinical outcomes [4,5]. 

Currently, the challenges of IA treatment are focused on reducing recurrence 

rates and complications. These challenges not only affect the recovery and prognosis 

of patients, but also bring significant difficulties in clinical treatment [6]. In the history 
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of endovascular treatment of IA, with the continuous development of minimally 

invasive interventional techniques, a variety of endovascular therapeutic 

techniques, such as flow diversion and intracapsular flow disrupters, have 

gradually emerged [7,8]. However, these technologies have their limitations. For 

example, flow diversion may encounter severe tortuosity during deployment, leading 

to suboptimal results, and require patients to undergo prolonged dual antiplatelet 

therapy, which increases the risk of bleeding. Meanwhile, intracapsular flow disrupters 

are limited by aneurysm-specificity, which affects their generalizability [6]. In terms 

of embolic materials, a variety of materials for transcatheter arterial embolization have 

emerged, such as metal coils, injectable embolic agents, hydrogels, and new-

generation embolic agents [3]. Although metal coils are a commonly used treatment, 

they are associated with a number of known complications such as bleeding, spring 

coil displacement, compaction, and recanalization. In contrast, liquid embolic agents 

(e.g., Onyx) have demonstrated better occlusion in filling the aneurysm lumen and are 

able to reduce the risk of rupture by reducing the stress on the aneurysm wall [9–11]. 

In response to these limitations of existing methods, temperature-sensitive embolic 

agents have been proposed as a new therapeutic option. Not only do temperature-

sensitive embolic agents offer the advantages of liquid embolic agents, their good 

biocompatibility and low toxicity give them the potential to further minimize 

complications. As more and more temperature-sensitive embolic agents are developed 

and progressively attempted to be applied in embolization therapy for IA, they may 

provide new ideas and directions to address current therapeutic challenges [12–14]. 

However, temperature-sensitive embolic agents also face various technical 

limitations in practical applications, and thus have not been widely used in the 

embolization treatment of IA, such as the irreversibility of the embolic agent during 

the solidification process. Specifically, once the solidified polymer is delivered into 

the aneurysm, it cannot be repositioned or retrieved [11]. The risk of potential 

embolism of distal branches is similar to that of liquid embolic agents. Murayama et 

al. found in several studies that the rate of embolic material migrating to the parent 

vessel when using the Onyx liquid embolization system ranged from 9% to 33%, 

which could lead to occlusion of the parent vessel and trigger ischemic stroke [15]. 

Furthermore, blood flow within intracranial aneurysms is complex, making it highly 

likely for embolization failures to occur during the surgical process. Numerous 

hemodynamic studies have shown that Computational Fluid Dynamics (CFD) 

simulations are helpful in understanding the detailed blood flow characteristics of 

intracranial aneurysms [16–21]. These simulations can accurately describe the 

hemodynamics and arterial wall mechanical behavior, helping physicians in 

understanding the changes in the aneurysm under different blood flow and pressure 

conditions [22]. Successful simulations can predict the future expansion trends and 

potential rupture risks of the aneurysm, providing a basis for optimizing surgical and 

interventional treatment plans [23–25]. Therefore, conducting CFD simulations 

preoperatively to obtain virtual treatment outcomes for embolization therapy is 

necessary.  

In the CFD computational methods, the Eulerian two-phase flow model has been 

validated by multiple studies in simulating the diffusion phenomena of embolic agents 

in blood, demonstrating its reliability and rationality. Ostrowski et al. analyzed a 
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numerical computational fluid dynamics model of pulsatile blood flow, indicating that 

this model can accurately simulate the injection and distribution of embolic agents in 

cerebral vessels [26]. Orlowski et al. used the Eulerian method to simulate the changes 

in blood flow in cerebral vessels after the obstruction of arteriovenous malformations 

and the delivery of embolic liquids [27]. Zhang et al. utilized the Eulerian model to 

simulate the diffusion behavior of liquid embolic agents during the treatment of 

cerebral arteriovenous malformations [28]. The Eulerian two-phase flow model shows 

promising application prospects and a solid scientific basis for simulating treatment in 

intracranial aneurysms. This paper uses the CFD results from the Eulerian two-phase 

flow as the basis for assessing treatment applicability, reasonably categorizing the 

treatment outcomes. 

CFD holds significant importance in predicting treatment outcomes; however, it 

often faces high time and computational costs, limiting its direct application in clinical 

settings. Therefore, it is particularly important to construct more efficient predictive 

models. When using temperature-sensitive embolic agents to treat IA, the embolic 

agent is in a liquid state during the initial injection, coupling with the surrounding 

blood and significantly affecting the blood flow patterns. Furthermore, there is rich 

evidence that the vascular geometry has a substantial impact on the hemodynamics of 

intracranial aneurysms. The complexity and variability of vascular geometry directly 

influence the distribution and velocity of blood flow, while different geometric 

structures determine distinct flow patterns, which can affect the distribution of the 

embolic agent and, consequently, the therapeutic efficacy [29–31]. Thus, it is 

reasonable to rely solely on these geometric features to predict treatment effectiveness. 

Based on this, this paper establishes a decision tree model based on geometric features, 

using simulation results as the basis for assessment, aiming to quickly determine the 

treatment applicability through the geometric parameters of cases to provide effective 

support for clinical decision-making. The decision tree method is a commonly used 

data mining technique for building classification systems based on multiple variables 

or developing predictive algorithms for target variables [32]. This paper employs the 

decision tree model as the final binary classification model, where the geometric and 

computational parameters of the aneurysm and parent artery serve as input variables, 

based solely on geometric structure, with CFD results used as the basis for determining 

positive and negative examples. 

2. Materials and methods 

This study conducted virtual treatments for 28 patients with specific intracranial 

aneurysms (three computational models were carried out for each case according to 

different boundary conditions, i.e., 84 computational models were carried out) and 

analyzed the simulation results. The aim was to explore the factors influencing the 

success of embolization treatment using temperature-sensitive embolic agents for 

intracranial aneurysms. Based on the simulation results, a rapid reconstruction and 

screening tool identified by geometric information was established. This study can be 

summarized as a binary classification problem influenced by multiple factors 

regarding the success of the embolization treatment. 
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2.1. Data sources 

The CADA dataset (https://cada-rre.grand-challenge.org/) was acquired using the 

digital subtraction AXIOM Artis C-arm system, with a rotation acquisition time of 5 

seconds, resulting in a total of 126 frames (each frame capturing 190° or 1.5°, 1024 × 

1024 pixel matrix, 126 frames). Post-processing was performed using LEONARDO 

InSpace 3D (Siemens, Forchheim, Germany). Contrast agent (Imeron 300, Bracco 

Imaging Deutschland GmbH, Germany) was manually injected into the internal 

carotid artery (for anterior aneurysms) or vertebral artery (for posterior aneurysms). A 

volume reconstruction was performed on the regions of interest selected by 

neurosurgeons, generating a three-dimensional stack of 440 image slices, with an in-

plane matrix of 512 × 512 voxels and a voxel size of 0.25 mm [33]. 

2.2. Virtual treatment method based on Eulerian two-phase flow  

2.2.1. Basic assumptions 

(1) This study ignores the deformation of aneurysm and microcatheter caused by 

pressure, assumes that the vessel wall and microcatheter are rigid structures, and 

focuses mainly on the coupling of blood and embolic agent. 

(2) The coagulation of temperature-sensitive embolic agents is mainly affected by 

temperature, and in this study, it is assumed that the temperature at which the 

embolic agent coagulates is reached after 60 s. Therefore, during the process of 

bolus injection (i.e., the first 60s), the temperature-sensitive embolic agent is in 

the liquid phase. 

(3) It is assumed that the kinematic viscosity coefficient of blood remains constant 

during bolus agent injection. In the previous assumption, it was mentioned that 

the present study ignored the effect of energy, so the present study’s research 

considered the blood viscosity and the viscosity of the temperature-sensitive 

bolus agent to be constant in the first 60 s. Therefore, this study set the bolus 

agent to fill the entire aneurysm in 60 s, and the injection rate is shown in equation 

(1): 

𝑉𝑖𝑛𝑗𝑒𝑐𝑡 =
𝑉𝑎𝑛𝑢

𝜋𝑟𝑝𝑖𝑝𝑒
2 × 60

 (1) 

where, 𝑉𝑎𝑛𝑢 is the volume of the aneurysm and 𝑟𝑝𝑖𝑝𝑒 is the radius of the microcatheter 

for injection (as shown in Figure 1a), which was taken as 0.43 mm in this study. 

(4) In this study, it is assumed that the vessel wall and microcatheter surface are no-

slip boundary conditions. 

2.2.2. Computational model design 

(1) Use incompressible Newtonian fluid to represent blood 

Blood viscosity models can be categorized into two main groups, namely 

Newtonian and non-Newtonian viscosity models. The use of multiphase non-

Newtonian pulsating fluids to represent blood flow mainly assumes that blood consists 

of red blood cells and white blood cells, which are therefore elastic cells suspended in 

a Newtonian fluid called plasma (continuous phase). Due to the multiphase nature of 

blood, it is clear that blood viscosity will be controlled by the behavior of its 

microstructural components. 
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Most numerical simulations of intracranial aneurysms assume blood as a 

Newtonian fluid when solving the Navier-Stokes equations. The focus of this study is 

mainly on the coupling of blood and embolic agent, and Newtonian fluid can fulfill 

the needs of this study, so an incompressible Newtonian fluid is used to represent 

blood in this study. 

(2) Use of laminar flow model 

The focus of this study is to simulate the injection process of embolic agents in 

intracranial aneurysms. In order to simplify the calculations and efficiently simulate 

the interaction between blood and embolic agents, a laminar flow model was chosen 

for this study. 

Within an intracranial aneurysm, blood flow usually presents as low Reynolds 

number flow. The computational results showed that the Reynolds numbers of the 

regions inside and around the aneurysm were lower than 2000, indicating that the flow 

in these regions was mainly in the laminar flow state. Therefore, the laminar flow 

model can effectively describe the flow characteristics of blood flow. 

(3) Use of transient model 

In this study, a transient model was used to accurately simulate the dynamic 

behavior of temperature-sensitive embolic agents in intracranial arteries. The transient 

model was able to capture the time-dependent characteristics of the bolus agent during 

injection and diffusion, and the total computation time was 60 s from the time the 

bolus agent was pushed out of the microcatheter. 

(4) Relevant parameter settings 

According to the assumptions in section 2.2.1, the research in this study set the 

blood density to 1060 kg/m3; the blood kinematic viscosity to 0.0035 (Pa∙s); and the 

viscosity of the embolic agent to 0.015 (Pa∙s) [28]. 

2.2.3. Computational model solution 

This study uses the Eulerian two-phase flow model for fluid dynamics 

simulations to simulate the embolization treatment process, employing the three-

dimensional Navier-Stokes (NS) equations to model the fluid phase. The solid phase 

is simulated by solving the momentum equation and the continuity equation. 

Numerical solutions are performed using the simulation software FLUENT [34]. 

For the fluid phase, the continuity equation and momentum equation are 

represented by Equations (2) and (3), respectively. 

∂ (α𝑓ρ
𝑓
)

∂t
+ ∇ ⋅ (α𝑓ρ

𝑓𝑢𝑓
) = 0 (2) 

∂(α𝑓ρ𝑓𝑢𝑓)

∂𝑡
+ ∇ ⋅ (α𝑓ρ𝑓𝑢𝑓 ⊗𝑢𝑓) = −α𝑓∇𝑃 + μ𝑓∇

2𝑢𝑓 + 𝐹𝑓,𝑖𝑛𝑡 (3) 

For the solid phase, the continuity equation and momentum equation are 

represented by Equations (4) and (5), respectively. 

∂(α𝑠ρ𝑠)

∂𝑡
+ ∇ ⋅ (α𝑠ρ𝑠𝑢𝑠) = 0 (4) 
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∂(α𝑠ρ𝑠𝑢𝑠)

∂𝑡
+ ∇ ⋅ (α𝑠ρ𝑠𝑢𝑠 ⊗𝑢𝑠) = −α𝑠∇𝑃 + 𝐹𝑠,𝑖𝑛𝑡 (5) 

Where 𝛼𝑓 and 𝛼𝑠 represent the volume fractions of the fluid phase and solid phase, 

respectively; 𝜌𝑓 and 𝜌𝑠 are the corresponding densities; 𝑢𝑓 and 𝑢𝑠 denote the velocity 

fields of each phase; 𝑃  is the shared pressure field; 𝜇𝑓  represents the dynamic 

viscosity of the fluid phase; and 𝐹𝑓,𝑖𝑛𝑡 and 𝐹𝑠,𝑖𝑛𝑡 are the interaction forces between the 

fluid phase and solid phase, respectively. 

2.3. Geometric parameters and boundary conditions 

After analysis, the main factors influencing the success of liquid embolic agent 

embolization are the geometric parameters and boundary conditions. 

This study selects the following geometric parameters to explore the impact of 

geometric factors on the success of embolization treatment: the volume of the 

aneurysm (𝑉𝑎𝑛𝑢), aneurysm centerline length (𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒), the maximum cross-

sectional radius of the aneurysm (𝑎𝑛𝑢𝑟
𝑚𝑎𝑥), the mean cross-sectional radius of the 

aneurysm (𝑎𝑛𝑢𝑟
𝑚𝑒𝑎𝑛 ), and the mean cross-sectional radius of the parent artery 

(𝑣𝑒𝑠𝑠𝑒𝑙𝑟
𝑚𝑒𝑎𝑛) to represent their absolute values. Additionally, the study uses the ratio 

of the mean cross-sectional diameter of the aneurysm to the centerline length 

(𝑟𝑎𝑡𝑖𝑜
𝑎𝑛𝑢𝑟

𝑚𝑒𝑎𝑛

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒), the cosine of the angle between the centerline of the parent vessel 

and the aneurysm centerline (𝑐𝑜𝑠𝑣𝑒𝑠𝑠𝑒𝑙
𝑎𝑛𝑢 ), and the ratio of the mean radius of the 

aneurysm to the mean radius of the parent artery (𝑉𝑟𝑎𝑡𝑖𝑜𝑣𝑒𝑠𝑠𝑒𝑙
𝑎𝑛𝑢 ) to represent relative 

positions and relative sizes. The geometric parameters of the aneurysm are shown in 

Figure 1. 

𝑟𝑎𝑡𝑖𝑜
𝑎𝑛𝑢𝑟

𝑚𝑒𝑎𝑛

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒  characterizes the morphology of the aneurysm, as is shown in 

Equation (6). The smaller the value, the more “elongated” the aneurysm becomes. 

𝑟𝑎𝑡𝑖𝑜
𝑎𝑛𝑢𝑟

𝑚𝑒𝑎𝑛

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 =
2 × 𝑎𝑛𝑢𝑟

𝑚𝑒𝑎𝑛

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒
 (6) 

𝑉𝑟𝑎𝑡𝑖𝑜𝑣𝑒𝑠𝑠𝑒𝑙
𝑎𝑛𝑢 , as is shown in Equation (7), indicates that the larger the value, the 

greater the size of the aneurysm relative to the parent artery. 

𝑉𝑟𝑎𝑡𝑖𝑜𝑣𝑒𝑠𝑠𝑒𝑙
𝑎𝑛𝑢 =

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 × 𝑎𝑛𝑢𝑟
𝑚𝑒𝑎𝑛

(𝑣𝑒𝑠𝑠𝑒𝑙𝑟
𝑚𝑒𝑎𝑛)2

 (7) 

Related studies indicate that the relative position and size of the parent artery and 

the aneurysm determine their hemodynamic patterns [34]. Therefore, this study 

performs a dimensional analysis of the geometric parameters of the aneurysm and the 

parent artery to further explore the impact of their relative position and size on the 

outcomes. 

The boundary conditions include the injection velocity and the insertion position 

of the microcatheter during injection. In this study, all outlet boundary conditions are 

the same, with a reference pressure of 0 at the outlet. Therefore, for the same case, the 

only influencing factor that varies is the insertion position of the microcatheter. Three 

insertion positions of the microcatheter are selected for calculations: the base of the 
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neck of the aneurysm, the middle of the aneurysm cavity, and deep within the 

aneurysm. 

 

 

(a) (b) 

  
(c) (d) 

Figure 1. Schematic diagram of aneurysm geometric parameters. (a) Overall 

morphology of the microcatheter and aneurysm; (b) dashed line indicates the radius 

of the parent artery; (c) dashed line indicates the centerline of the aneurysm; (d) 

dashed line indicates the radius of the aneurysm. 

2.4. Establishment of the decision tree model 

2.4.1. Discretization of parameters 

In constructing the predictive decision tree model for the treatment of intracranial 

aneurysms using temperature-sensitive embolic agents, this study employs K-means 

clustering for the discretization of cases to enhance the model’s predictive accuracy 

and interpretability. The K-means clustering algorithm is a widely used unsupervised 

learning method aimed at grouping case data into K clusters, thereby aggregating cases 

with similar characteristics. To determine the optimal number of clusters, this study 

utilizes the silhouette coefficient method. The silhouette coefficient is an important 

metric for evaluating clustering quality, measuring the similarity of cases within a 

cluster compared to cases in other clusters by combining the cohesion within the 

cluster and the separation from other clusters. Its value ranges from [−1, 1]. 

Specifically, the cohesion 𝑎 represents the average distance between a case and 

other cases within its cluster, as shown in Equation (8): 

𝑎(𝑖) =
1

|𝐶𝑖| − 1
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝑖,𝑖≠𝑗

 (8) 

Where 𝐶𝑖 is the cluster that contains case 𝑖, |𝐶𝑖| is the number of cases in cluster 𝐶𝑖, 

and 𝑑(𝑖, 𝑗) is the distance between cases 𝑖 and 𝑗 (𝑖 ≠ 𝑗) to ensure that case 𝑖 is not 

included in the calculation of the average distance. 
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The separation 𝑏 refers to the average distance between a case and the nearest 

cases from other clusters. It is calculated by determining the average distance of the 

case to all cases in other clusters and taking the minimum value as 𝑏, as shown in 

Equation (9): 

𝑏(𝑖) = min
𝑘≠𝑖

(
1

|𝐶𝑘|
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝑘

) (9) 

The calculation of the silhouette coefficient is shown in Equation (10). The value 

of the silhouette coefficient will assist in selecting the optimal 𝐾  value, thereby 

ensuring that the model can more accurately reflect the impact of different geometric 

features on the treatment outcomes when predicting the suitability of temperature-

sensitive embolic agents. 

𝑠 =
𝑏 − 𝑎

max(𝑎, 𝑏)
 (10) 

For each parameter, this study calculated the number of clusters ranging from [2, 

6] and sorted the clusters in ascending order based on the size of the dimensionless 

parameters. Among them, a higher cluster index indicates a larger value of the 

dimensionless parameter. The discretization information for each parameter is shown 

in Figure 2. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Figure 2. Discretization of parameters 1 to 8. (a) Aneurysm volume; (b) aneurysm centerline length; (c) maximum 

cross-sectional radius of the aneurysm; (d) mean cross-sectional radius of the aneurysm; (e) mean cross-sectional 

radius of the parent vessel; (f) ratio of the mean radius of the aneurysm to the mean radius of the parent vessel; (g) 

ratio of the mean cross-sectional diameter of the aneurysm to the centerline length; (h) cosine of the angle between the 

centerline of the parent vessel and the aneurysm centerline. 

This study used the optimal 𝐾 value obtained after discretization to cluster each 

parameter, and the results are shown in Figure 3. 

  

(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. Clustering of parameters 1 to 8. (a) Aneurysm volume; (b) aneurysm centerline length; (c) maximum cross-

sectional radius of the aneurysm; (d) mean cross-sectional radius of the aneurysm; (e) mean cross-sectional radius of 

the parent vessel; (f) ratio of the mean radius of the aneurysm to the mean radius of the parent vessel; (g) ratio of the 

mean cross-sectional diameter of the aneurysm to the centerline length; (h) cosine of the angle between the centerline 

of the parent vessel and the aneurysm centerline. 
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2.4.2. Information gain of parameters 

In the process of constructing the decision tree model for the treatment of 

intracranial aneurysms with temperature-sensitive embolic agents, this study selects 

information gain as an important metric for evaluating the optimal splitting attribute. 

The information entropy 𝐻(𝐷) is used to measure the purity of the case set, as shown 

in Equation (11). 

𝐻(𝐷) = −∑𝑝𝑘

𝑛

𝑘=1

log
2
(𝑝𝑘) (11) 

Where 𝑝𝑘  represents the proportion of cases in class 𝑘 among the total cases, and 

log2(𝑝𝑘) is the logarithm of 𝑝𝑘  with base 2. When𝑝𝑘  equals 0, 𝑝𝑘 log2(𝑝𝑘) is also 

considered to be 0. The minimum value of information entropy is 0, indicating that the 

case set is completely pure, meaning all cases belong to the same category. 

To reflect the differences in the number of cases contained in different branch 

nodes, this study assigns a weight to each branch node as 
|𝐷𝑣|

|𝐷|
, where |𝐷𝑣| is the 

number of cases in branch node 𝑣 and |𝐷| is the total number of cases in the dataset. 

Branch nodes with a larger number of cases will have a greater influence on the overall 

information gain. 

Based on the entropy of each branch and its weight, the overall “information 

gain” obtained from using attribute 𝑎 to partition the sample set 𝐷 can be calculated 

as shown in Equation (12). 

Gain(𝐷, 𝑎) = Ent(𝐷) −∑
|𝐷𝑣|

|𝐷|

𝑉

𝑣=1

Ent(𝐷𝑣) (12) 

Where Ent(𝐷) is the overall entropy before partitioning, Ent(𝐷𝑣) is the entropy of 

branch node 𝑣. The greater the information gain, the greater the “purity improvement” 

achieved by using attribute 𝑎 for partitioning. 

This article uses the ID3 algorithm based on information gain to construct the 

decision tree. Information gain is a key criterion for selecting partition attributes in the 

decision tree. The ID3 algorithm (Quinlan, 1986) selects the attribute 𝑎∗  that 

maximizes information gain at each step, as shown in Equation (13). 

𝑎∗ = arg max
𝑎∈𝐴

Gain (𝐷, 𝑎) (13) 

The information gain-based selection method ensures that the decision tree 

effectively reduces system uncertainty at each partition, thus constructing an efficient 

and accurate classification decision tree. The entropy and information gain of each 

parameter in the model are shown in Table 1. 

Table 1. Entropy values and information gain for each parameter. 

Parameter Entropy Information Gain 

𝑉𝑎𝑛𝑢(Parameter 1) 1.943 0.064 

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒(Parameter 2) 1.299 0.032 

𝑎𝑛𝑢𝑟
𝑚𝑎𝑥(Parameter 3) 1.410 0.002 
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Table 1. (Continued). 

Parameter Entropy Information Gain 

𝑎𝑛𝑢𝑟
𝑚𝑒𝑎𝑛(Parameter 4) 1.068 0.015 

𝑣𝑒𝑠𝑠𝑒𝑙𝑟
𝑚𝑒𝑎𝑛(Parameter 5) 0.996 0.011 

𝑉𝑟𝑎𝑡𝑖𝑜𝑣𝑒𝑠𝑠𝑒𝑙
𝑎𝑛𝑢 (Parameter 6) 1.375 0.048 

𝑟𝑎𝑡𝑖𝑜
𝑎𝑛𝑢𝑟

𝑚𝑒𝑎𝑛

𝑎𝑛𝑢𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒(Parameter 7) 2.512 0.257 

𝑐𝑜𝑠𝑣𝑒𝑠𝑠𝑒𝑙
𝑎𝑛𝑢 (Parameter 8) 1.530 0.048 

2.4.3. Pruning of decision tree model 

Pruning is an important optimization step in the decision tree model. It simplifies 

the tree structure to enhance the model’s generalization ability, interpretability, and 

computational efficiency while reducing the impact of noise. By applying appropriate 

pruning, the decision tree can better adapt to the data encountered in practical 

applications, thereby improving the overall performance of the model. In this study, 

pruning is utilized to optimize the decision tree by removing branches that are not 

strongly associated with the outcome. This process aims to streamline the tree 

structure, allowing the model to retain key features while eliminating redundant 

branches, thus enhancing the model’s interpretability and computational efficiency. 

2.4.4. Evaluation of the classification performance of the decision tree model 

This study employs the Leave-One-Out Cross Validation (LOOCV) method to 

evaluate the performance of the decision tree model [35]. This approach is suitable for 

small sample datasets, maximizing the utilization of the training set while ensuring 

that each sample can independently serve as a test set. In 28 independent training and 

testing iterations, one sample is left out as the test set in each iteration, while the 

remaining 27 samples are used for model training. This cross-validation method not 

only enhances the robustness of the evaluation but also provides insights into the 

model’s performance on each individual sample, allowing for a comprehensive 

understanding of its generalization ability. The classification performance of the 

decision tree model is assessed using accuracy, specificity, sensitivity, and F1-score. 

3. Results 

3.1. Fluid dynamics characteristics of applicable and non-applicable 

cases 

This study determines the success of embolization treatment based on simulation 

results, specifically assessing whether a case is suitable for treatment. In successful 

embolization cases, the embolic agent is uniformly injected into the aneurysm and 

fully fills the aneurysmal cavity, as shown in Figure 4. Conversely, in unsuccessful 

cases, the embolic agent fails to completely fill the aneurysm and may flow into the 

parent artery, posing a risk of occlusion to the parent artery and its branching vessels. 

The simulation results for successful and unsuccessful embolization treatments are 

depicted in Figure 5a,b, respectively. 
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Figure 4. The diffusion process of the embolic agent in successful cases, showing the diffusion status at 15 s, 30 s, 45 

s, and 60 s from left to right. 

 
  

(a) (b) 

Figure 5. Simulation results of embolization treatment. (a) A successful case where the embolic agent is uniformly 

injected into the aneurysm and completely fills the aneurysmal cavity; (b) a failed case where the embolic agent 

cannot fill the entire aneurysm, leading to flow into the parent artery and posing a risk of obstructing the parent artery 

and its branches. 

3.2. Establishment of a binary classification decision tree model based on 

geometric features 

The Decision Tree Constructed from Geometric Parameter Calculations is shown 

in Figure 6. 

 

Figure 6. Decision tree model diagram. 
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The decision tree model underwent pruning operations to reduce the impact of 

noise, and the pruned decision tree is shown in Figure 7. 

 
Figure 7. Pruned decision tree model. 

The successful branches of the decision tree include: 

1) If the ratio of the mean cross-sectional diameter of the aneurysm to the centerline 

length is {1, 2, 3} and the cosine of the angle between the centerline of the parent 

vessel and the aneurysm centerline is {1}, this branch indicates that when the 

ratio of the mean cross-sectional diameter to the centerline length is small and the 

cosine value of the angle is very small, the case is predicted to be suitable. 

2) If the ratio of the mean cross-sectional diameter of the aneurysm to the centerline 

length is {1, 2, 3}, the cosine of the angle between the centerline of the parent 

vessel and the aneurysm centerline is {2, 3}, and the ratio of the mean radius of 

the aneurysm to the mean radius of the parent artery is {3}, this branch indicates 

that when the ratio of the mean cross-sectional diameter of the aneurysm to the 

centerline length is small, the cosine value of the angle is large, and the ratio of 

the mean radius of the aneurysm to the mean radius of the parent artery is very 

large, the case is predicted to be suitable. 

The failure branches of the decision tree include: 

1) If the ratio of the mean cross-sectional diameter of the aneurysm to the centerline 

length is {4, 5, 6}, this branch indicates that when the ratio is large, the case is 

predicted to be unsuitable. 

2) If the ratio of the mean cross-sectional diameter of the aneurysm to the centerline 

length is {1, 2, 3}, the cosine of the angle between the centerline of the parent 

vessel and the aneurysm centerline is {2, 3}, and the ratio of the mean radius of 

the aneurysm to the mean radius of the parent artery is {1, 2}, this branch 

indicates that when the ratio is small, the cosine value is large, and the ratio of 

the mean radius of the aneurysm to the mean radius of the parent artery is small, 

the case is predicted to be unsuitable. 

In constructing the final decision tree, only three key parameters are involved. 

Compared to the individual geometric parameters of the aneurysm and parent artery 
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(such as the mean cross-sectional radius, volume, centerline length, and maximum 

cross-sectional radius of the aneurysm, as well as the mean cross-sectional radius of 

the parent artery), the correlated parameters (i.e., the ratio of the mean radius of the 

aneurysm to the mean radius of the parent artery, the ratio of the mean cross-sectional 

diameter of the aneurysm to the centerline length, and the absolute value of the cosine 

of the angle between the centerline of the parent vessel and the aneurysm centerline) 

show higher information gain. This indicates that the morphology of the aneurysm and 

its relative position to the parent artery have a more decisive influence on the 

prediction results in the decision tree model. 

3.3. Geometric features of suitable cases 

This study analyzes the geometric features of suitable cases based on specific 

instances of intracranial aneurysms. 

Impact of Aneurysm Morphology on Outcomes: The morphology of an aneurysm 

is determined by the ratio of the mean cross-sectional diameter of the aneurysm to the 

centerline length. By controlling two other variables to remain approximately 

constant, two cases with significant differences in the ratio of the mean cross-sectional 

diameter of the aneurysm to the centerline length were selected for analysis. In Figure 

8a, the case with a smaller ratio resulted in treatment failure, as the embolic agent did 

not adequately fill the aneurysm and instead flowed into the parent artery. In contrast, 

Figure 8b illustrates a case with a larger ratio that achieved treatment success, wherein 

the embolic agent effectively filled the aneurysm, as shown in Figure 8. 

 
 

 (a) (b) 

Figure 8. Comparison of the ratio of the mean cross-sectional diameter of the 

aneurysms to the centerline length. (a) Case with small ratios; (b) case with high 

rates 

Impact of Relative Size of Aneurysm and Parent Artery on Outcomes: The ratio 

of the mean radius of the aneurysm to the mean radius of the parent artery is a key 

parameter for assessing their relative sizes. By keeping the other two parameters 

approximately constant, two cases with different ratios of the mean radius of the 

aneurysm to the mean radius of the parent artery were selected for analysis. This 

illustrates the importance of larger aneurysms in treatment strategy selection. In 

Figure 9a, where the aneurysm is smaller relative to the parent artery, the blood flow 

velocity is higher, making it difficult for the embolic agent to adequately fill the 

aneurysm. Conversely, when the aneurysm is larger relative to the parent artery, as 
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shown in Figure 9b, the blood flow velocity within the aneurysm is relatively slower, 

as illustrated in Figure 9. 

 
 

 (a) (b) 

Figure 9. Comparison of the ratio of the mean radius of the aneurysm to the mean 

radius of the parent artery. (a) Case with small ratios; (b) case with high rates. 

The Impact of the Angle between the Centerline of the Parent Artery and the 

Centerline of the Aneurysm on Decision-Making: The absolute value of the cosine of 

the angle between the centerline of the parent artery and the centerline of the aneurysm 

is an important geometric parameter used to quantify their relative orientation. By 

keeping the other two parameters approximately constant, two cases with different 

angles between the centerlines were selected to explore the specific impact of this 

geometric parameter on clinical decision-making. In Figure 10a, the presence of a 

significant jet flow makes it difficult for the embolic agent to adequately fill the 

aneurysm, resulting in treatment failure. Conversely, when the centerline of the parent 

artery is nearly perpendicular to the centerline of the aneurysm, as shown in Figure 

10b, the flow within the aneurysm predominantly exhibits a shear flow pattern without 

significant jet impact. This blood flow characteristic increases the likelihood of 

successful embolization, as the shear flow can more effectively restrict non-target 

movement of the embolic agent, thereby enhancing the local treatment effect, as 

illustrated in Figure 10. 

  

 (a) (b) 

Figure 10. Comparison of the angle between the centerline of the parent artery and 

the centerline of the aneurysm. (a) Case with large clip angles; (b) Case where the 

angle tends to be perpendicular 
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3.4. Evaluations of the classification performance of the decision tree 

model 

After cross-validation, the success rate for positive cases was 71.43%, while the 

success rate for negative cases was 80.95%, resulting in an overall success rate of 

78.57%. This indicates that the model demonstrates favorable predictive performance 

across all samples. The model’s sensitivity is 71.4%, effectively identifying the 

majority of positive cases, while its specificity is 81.0%, reflecting a relatively low 

misclassification rate among negative cases. Additionally, the model’s F1 score is 

62.5%, achieving a balance between precision and recall for positive samples. 

4. Discussion 

This study utilized the Euler two-phase flow model to simulate blood flow within 

the aneurysm and its coupling behavior with temperature-sensitive embolic agents, 

resulting in virtual treatment outcomes for intracranial aneurysms. By further 

incorporating the geometric structures of the aneurysm and the parent artery, a 

decision tree model was developed based on these geometric features for the treatment 

of intracranial vascular malformations using temperature-sensitive embolic agents. 

According to the final model results, the primary factors influencing the success of 

embolization treatment were found to be the relative position and size of the aneurysm 

and parent artery, specifically the ratio of the mean cross-sectional diameter of the 

aneurysm to the centerline length, the ratio of the mean radius of the aneurysm to the 

mean radius of the parent artery, and the absolute value of the cosine of the angle 

between the centerlines of the parent artery and the aneurysm. 

For the ratio of the mean cross-sectional diameter of the aneurysm to the 

centerline length, a smaller ratio indicates a more elongated shape of the aneurysm, 

providing ample space for the development of the jet flow within. In such cases, the 

energy dissipation caused by shear effects is relatively large, effectively reducing the 

direct impact of the jet. Consequently, the kinetic energy of the jet is diminished, 

which helps decrease the risk of the embolic agent being displaced by the jet flow, 

thereby increasing the success rate of embolization. This physical phenomenon 

suggests that elongated aneurysms may have a higher therapeutic adaptability and 

success probability during treatment. 

Regarding the ratio of the mean radius of the aneurysm to the mean radius of the 

parent artery, a larger ratio indicates a greater size of the aneurysm relative to the 

parent artery. Analysis from the decision tree model shows a tendency to select 

relatively larger aneurysms, which are clinically categorized as giant aneurysms. This 

characteristic helps reduce the risk of the embolic agent quickly flowing into the parent 

artery due to hemodynamic impacts, thus enhancing the success rate of treatment. 

As for the absolute value of the cosine of the angle between the centerline of the 

parent artery and the centerline of the aneurysm, values close to 0 indicate that the two 

are nearly perpendicular; conversely, values near 1 suggest that they are parallel, a 

configuration commonly seen in dome-shaped aneurysms. According to the decision 

tree model presented in this study, selecting aneurysms with a vertical configuration 

shows a strong correlation with predicting treatment success, likely due to more 

favorable hemodynamic conditions for intervention in such configurations. 
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In this paper, a decision tree prediction model based on geometric features is 

constructed, and a method is proposed to rapidly predict the treatment effect without 

relying on complex computational fluid dynamics (CFD) simulations. Compared with 

the disadvantages of CFD simulation, which is difficult to be widely applied in clinical 

practice due to its time-consuming and high computational cost, the model in this 

paper is able to quickly and efficiently determine whether an aneurysm is suitable for 

treatment with a temperature-sensitive embolic agent by analyzing the geometric 

features of the intracranial aneurysm, which greatly simplifies the computational 

process, and improves the operability and applicability in clinical practice. In clinical 

practice, the prediction model proposed in this paper provides physicians with an 

auxiliary screening tool to quickly determine whether a case is suitable for 

temperature-sensitive embolic agent treatment through geometric features before 

surgery, thereby reducing surgical risks and improving the efficiency and accuracy of 

personalized treatment. This technical tool lays the foundation for physicians to 

formulate more accurate treatment plans, which helps to increase the success rate of 

surgery and improve the prognosis of patients, and promotes the further development 

of intracranial aneurysm treatment based on temperature-sensitive embolic agents. 

However, this study has several limitations. Each aneurysm was modeled as 

extending from a relative center position, and only three intervention locations were 

considered to manage computational costs; in reality, the positioning of microcatheters 

during treatment may be more complex than accounted for in this study. The 

coagulation process of the embolic agent is not instantaneous; early coagulation may 

obstruct blood flow. Future research could enhance the model’s realism by improving 

constitutive relationships and incorporating time-dependent factors. Although a 

decision tree model with good classification performance was achieved with a 

relatively small sample size, increasing the sample size will be an important aspect for 

future studies to consider. Integration of models into healthcare information systems 

requires additional hardware and software support, especially in geometric feature 

extraction. If model predictions conflict with physician judgment, physician 

experience should be prioritized and models should be adjusted through 

multidisciplinary discussions. Future research could focus on optimizing the model to 

provide feedback on decision-making conflict cases through treatment outcomes. 

5. Conclusion 

This study implemented computational simulations of temperature-sensitive 

embolic agents for the treatment of intracranial aneurysms using the Euler two-phase 

flow model. Based on the CFD simulation results, a decision tree model was 

constructed that incorporates geometric features. The findings indicate that the relative 

position and size of the parent artery and aneurysm significantly affect the outcomes 

of embolization treatment. Aneurysm cases that are suitable for treatment with 

temperature-sensitive embolic agents typically exhibit the following characteristics: a 

smaller ratio of the mean cross-sectional diameter of the aneurysm to the centerline 

length, a larger ratio of the mean radius of the aneurysm to the mean radius of the 

parent artery, and a near-vertical orientation between the centerline of the parent artery 

and that of the aneurysm. The proposed decision tree prediction model based on 
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geometric features requires only the integration of clinical imaging data to identify 

suitable cases, thus saving time and computational costs while serving as an auxiliary 

tool to enhance the success rate of surgical interventions. 
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