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Abstract: Accurately identifying and correcting erroneous sports behaviors of athletes or 

beginners in ice and snow sports can improve the training quality. However, ice and snow 

sports scenes often have complex motion backgrounds, and the behavioral features during 

motion are difficult to extract, which affects the recognition accuracy. In order to solve the 

feature extraction in ice and snow sports behavior recognition, a behavior recognition model 

based on multi-scale features and improved convolutional block attention module is 

proposed. The model first utilizes multi-scale features to obtain multi-level features from the 

collected ice and snow motion images, ensuring that features of different scales in the images 

can be effectively captured. Then, one-dimensional convolution and spatial random pooling 

layers are introduced to improve the convolutional attention module, thereby constructing a 

behavior recognition model. The accuracy of the proposed model in the Ski-Pose dataset was 

98.3%, which was 8.2% and 13.7% higher than other recognition models, indicating an 

obvious gap. The accuracy and F1 value were 89.5% and 91.2%, respectively, and the 

recognition rate for small targets reached 80%, which verified the effectiveness of the model. 

The research provides new technological support for intelligent monitoring and analysis 

systems for ice and snow sports. 

Keywords: multi-scale features; CBAM; ice and snow sports; behavior recognition; 

algorithm optimization 

1. Introduction 

In recent years, ice and snow sports (ICS) have gradually become a highly 

anticipated sport worldwide. Especially after the Winter Olympics, people’s 

enthusiasm for ICS reached its peak [1,2]. At the same time, the gradual 

improvement of sports facilities has lowered the threshold for ICS, which has led to 

a sharp increase in the participants in these sports. With the rapid development of 

ICS, the recognition and analysis of sports behavior have become increasingly 

important. Recognizing sports behavior can not only reduce the training difficulty for 

amateurs when they first encounter ICS, but also enhance the training efficiency [3]. 

However, due to the dynamic and complex outdoor environment, it is greatly 

affected by factors such as lighting and weather. It is easy to be interfered by various 

small target objects during recognition, and a single scale feature is difficult to face 

these challenges, resulting in low recognition efficiency [4,5]. How to improve the 

recognition accuracy and robustness of ICS behavior in complex environments has 

become an urgent problem. 

In recent years, the Convolutional Block Attention Module (CBAM), which 

integrates channel attention and spatial attention, has performed well in various deep 

learning tasks and has been extensively applied. He et al. [6] proposed a fall 
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detection approach on the basis of parallel 2D Convolutional Neural Network (CNN) 

and CBAM. This method used pulse compression to update the image in the radar 

echo signal. The image was sent to CBAM for recognition and judgment of whether 

there was a fall or other action. The introduced CBAM achieved multi-domain 

standards for target behavior recognition, improve image resolution, and effectively 

reduce the probability of false alarms and missed alarms in fall detection [6]. Feng et 

al. [7] built a CNN on the ground of CBAM for pneumonia detection in chest X-ray 

images. This network calculated the channel weights of images by adding CBAM 

modules, and focused more on the information space part of the feature map, solving 

the redundancy problem of the feature map. The accuracy and recall on the 

pneumonia dataset were both higher than 95%, indicating that its discriminative 

effect on images was good [7]. Deng et al. [8] proposed a learning semi-supervised 

automatic modulation recognition method on the ground of multi-modal information 

and domain adversarial networks. This method mined potential knowledge 

information of unlabeled target domain data by introducing domain adversarial 

training, and enhanced the network’s ability to signify key features by introducing 

CBAM. Compared with existing schemes, this scheme had higher average 

classification accuracy and higher adaptability in different network structures [8]. 

Jiang et al. [9] built a Multi-Scale Feature (MSF) fusion network on the ground of 

CBAM. This network utilized spatiotemporal convolution blocks to extract temporal 

and spatial features of EEG signals. The CBAM was applied to process and classify 

changes in different objects. The performance of the feature fusion network was 

improved, and the average accuracy of the network in EEG wake-up was as high as 

99%, verifying the effectiveness of the scheme [9]. Chang [10] proposed an 

intelligent bearing fault diagnosis model that combined CBAM module and 

optimized residual network structure. The model first introduced CBAM to enhance 

data feature extraction, and then optimized the residual network to reduce the 

complexity of the model. The feature extraction ability of this model was superior to 

traditional deep network models, which improved the feature extraction ability [10]. 

There are also many studies on behavior recognition. Pan et al. [11] proposed 

an animal behavior recognition method on the basis of CNN. This method used 

wearable sensors to collect animal behavior and constructed action images in the 

sensor data stream, distinguishing animal behavior types in a CNN. This method had 

a high accuracy in behavior monitoring [11]. Pang et al. [12] designed a pedestrian 

trajectory prediction approach based on adversarial generative networks. This model 

introduced an adversarial generative network to construct a feature module for 

processing the collected pedestrian images and making predictions. The model could 

improve the accuracy and diversity of pedestrian trajectory prediction [12]. Huang et 

al. [13] designed a real-time driver behavior detection model on the ground of deep 

learning. This model consisted of an inverted residual network with depth separable 

convolutions, and introduced attention mechanism into the nonlinear transformation 

layer. The accuracy of the model on the driving test dataset was 95.17%, and its 

real-time, accuracy, and reliability were superior to current behavior recognition 

models [13]. Sun et al. [14] built a car driving behavior management approach on the 

ground of adaptive soft deep reinforcement learning. This model used 

high-performance driving behavior recognition to calculate the optimal equivalent 
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factors for different driving behaviors. An improved multi-learning space adaptive 

deep reinforcement learning algorithm was introduced to perceive and learn driving 

behaviors. This model reduced the hydrogen consumption and usage cost of 

automobiles compared with traditional methods [14]. Yu et al. [15] built a human 

activity recognition model based on radar and 3D point cloud technology. This 

model used a multi-input multi-output radar as a static ground sensor to obtain the 

dense point clouds of human activity behavior. The model could more easily access 

and obtain human motion information, and had a higher accuracy [15]. 

In summary, CBAM can be widely applied in various fields, and there have 

been many studies on behavior recognition. However, there is still relatively little 

research on behavior recognition in ICS. In order to reduce the misjudgment of ICS 

behavior recognition, it is necessary to accurately identify it. Based on this, a snow 

and ice sports behavior recognition model based on MSF and improved CBAM is 

developed. It is expected to explore more accurate methods for behavior recognition, 

reduce the misidentification rate, and promote the development of ICS. 

The innovation points of this study are as follows. (1) A feature extraction 

scheme for ICS behavior based on MSF is developed, which improves the 

recognition ability of sports detail features. (2) The CBAM module is improved to 

enhance its recognition accuracy and robustness. (3) A recognition model for 

behavior recognition in ICS is constricted by integrating MSF and improved CBAM. 

The research is structured from three parts. Part one constructs a new model. The 

second part is the performance testing. The third part discusses the experimental 

results. 

2. Methods and materials 

2.1. Feature extraction scheme for ice and snow sports behavior based on 

MSF 

By identifying the behavioral characteristics of athletes in ICS, intelligent 

posture correction can be provided for athletes to improve exercise efficiency [16]. 

However, ICS have complex movement characteristics and diverse external 

environments, such as athlete movement switching, posture changes, and dynamic 

backgrounds, which pose great challenges to the ICS behavior recognition [17]. Due 

to the fact that traditional dynamic behavior feature extraction methods mostly use 

single scale feature extraction methods, these methods cannot capture comprehensive 

motion details well faced with fast changes in actions and scenes, and may also 

ignore actions with low discriminability. MSF can effectively capture and parse 

multiple scale characteristics of data, achieving recognition and fusion of different 

motion details [18]. Therefore, the study uses MSF to extract behavioral 

characteristics of ICS. The designed MSF fusion network structure is shown in 

Figure 1. 



Molecular & Cellular Biomechanics 2024, 21(4), 602. 
 

4 

Input 

image 
Backbone 

network

Branch 

Network 1

Branch 

Network 2

Feature 

fusion

Multi scale feature 

representation

Multi branch building blocks

 

Figure 1. Multi-scale feature fusion network structure. 

Figure 1 displays the MSF fusion network for extracting ICS behavior, which 

is composed of a backbone network and multiple branch modules stacked together. 

The branch module includes two branch networks, mainly used for selective fusion 

of multiple feature streams with different receptive field sizes to learn MSF in ice 

and snow motion images [19]. On this basis, structural units are used to extract MSF 

from each layer of the network, and MSF from different levels are fused to obtain 

MSF expressions. The MSF fusion network designed for research is based on the 

residual network. Given an image input data 𝑥, a residual 𝑥̑ is constructed, and its 

expression is displayed in Equation (1). 

𝑥̃ = 𝐹(𝑥) (1) 

In Equation (1), 𝑥̑  signifies the residual value constructed. 𝐹(𝑥)  is a 

numerical value with a mapping function. 𝐹 is a lightweight convolutional layer 

used for single scale feature learning of ice and snow motion images. By calculating 

the value of the mapping function, the feature output 𝑦  can be obtained, as 

presented in Equation (2). 

𝑦 = 𝑥 + 𝑥̃ (2) 

In Equation (2), 𝑦 is the numerical value of the image feature output. After 

feature learning, the constructed multi-branch module can consciously extract 

motion posture features from different ice and snow motion images based on their 

receptive fields, which can better distinguish the features. The multi-branch module 

construction of MSF is shown in Figure 2. 

The construction process diagram of the multi-branch module is presented in 

Figure 2. The process first inputs the input ice and snow motion image into the 

construction module. Without participating in spatial information fusion, the feature 

dimension is processed by the contribution network layer. 𝑥 represents the two 

independent branches constructed by the multi-branch module, and each independent 

branch contains a different number of lightweight convolutional layers CONV. At 

this time, the feature maps are separately input into the branch module to obtain a 

map of multiple scale features. The scale of the image receptive field can affect the 

feature fusion efficiency receptive field scales leads to increased computational 

complexity, smaller receptive fields have higher computational efficiency, and 

feature fusion needs to consider different feature scales. Therefore, two 

studies-designed image receptive fields of different sizes. The standard for the 

change in receptive field scale of collected ICS images refers to the proportional 

growth model, where there are two types of receptive field sizes for images. One is 3 
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× 3and the other is 5 × 5. Finally, the image features extracted by the fusion branch 

are output to a convolutional layer with a size of 1 × 1 for dimensionality reduction. 

After the specified feature output dimension is obtained, it is fused with the input 

features. Through this residual neural network-based method, multi-scale 

representation of ice and snow motion images can be achieved, and the 

representation contains the complete spatial scale. In summary, a hierarchical 

iterative algorithm with multiple branch unit structures can achieve feature 

processing of ice and snow motion images with different sizes. The obtained MSF 

can contain more complex and rich information [20]. The important step in 

extracting features of ICS behavior is the feature scale fusion method. This method 

does not require manual setting, but dynamically calculates the weights of each 

branch feature on the ground of the input image characteristics. Therefore, the 

multi-scale residual feature is displayed in Equation (3) [21]. 
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Figure 2. Multi-scale feature fusion network structure. 

𝑥̃ = ∑

𝑛=1
𝑁

𝐺(𝑋𝑛) ⊙ 𝑋𝑛 (3) 

In Equation (3), ⊙is the Hadamard product. 𝑁signifies the branches. 𝑋𝑛 

signifies the size of the feature channel. 𝑛 is the number of sub-feature channels. 

𝐺(⋅) is the vector of the sub-network. The sub-network contains one global average 

pooling layer and two fully connected layers. 𝐺(𝑋𝑛) is the feature weight of two 

branches. This method can assign different scale features based on the weight of the 

input ICS behavior image, reducing the error of manually assigning weights and 

adaptively expressing and learning MSF of different input images [22]. The 

expression for extracting MSF of ICS behavior is shown in Equation (4). 

𝐹𝑠 =∑𝑤𝑖

𝑛

𝑖=1

× 𝐹𝑖 (4) 
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In Equation (4), 𝐹𝑠 is the final MSF representation of the input image. 𝐹𝑖 

represents image features extracted at different scales. 𝑤𝑖 is the weight of each 

scale feature. After obtaining the MSF representation of the image, the feature can be 

convolved, and the expression of the convolution operation is shown in Equation (5). 

𝐹𝑐𝑜𝑛𝑣 = 𝑊 × 𝑋 + 𝑏 (5) 

In Equation (5), 𝐹𝑐𝑜𝑛𝑣  is the convolved feature map. 𝑊 signifies the weight 

matrix of the convolution kernel. 𝑋 signifies the input image or feature map. 𝑏 is 

the bias term. Performing depth separable convolution on the obtained feature map 

can separate the channels and regions of the image, reducing the number of image 

transformations and computational power. As a result, the network takes less time to 

process massive image data [23,24]. The equation expression for depth separable 

convolution is shown in Equation (6). 

𝐹𝑠𝑒𝑝 = 𝑊𝑑𝑒𝑝𝑡ℎ × (𝑊𝑝𝑜𝑖𝑛𝑡 × 𝑋) (6) 

In Equation (6), 𝐹𝑠𝑒𝑝 is the feature map after depth separable convolution. 

𝑊𝑑𝑒𝑝𝑡ℎ is the weight of the deep convolution kernel. 𝑊𝑝𝑜𝑖𝑛𝑡  signifies the weight of 

the point convolution kernel. Normalizing the feature map can improve the 

recognition ability of complex ICS behaviors, as displayed in Equation (7). 

𝐴𝑛𝑜𝑟𝑚 =
𝐹 − 𝜇

𝜎
 (7) 

In Equation (7), 𝐴𝑛𝑜𝑟𝑚  signifies the normalized feature map. 𝐹 signifies the 

original feature map. 𝜇 signifies the mean of the feature map. 𝜎 signifies the 

standard deviation of the feature map. In summary, the flowchart of the ICS behavior 

feature extraction scheme based on MSF is shown in Figure 3. 
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Figure 3. Flow chart of feature extraction scheme for ice and snow sports behavior based on multi-scale features. 

Figure 3 shows the flowchart of the ice and snow motion feature extraction 

scheme based on MSF. Firstly, the collected ice and snow motion behavior images 

are input into the residual neural network for feature extraction and the construction 

of a multi-branch module architecture. After extracting motion features of different 

scales, these features are fused and calculated. Finally, the obtained feature map is 

normalized to output the final MSF map. 

 



Molecular & Cellular Biomechanics 2024, 21(4), 602. 
 

7 

2.2. Construction of ice and snow sports behavior recognition model 

based on MSF-ICBAM 

Due to the diversity of target objects in ICS scenes and the presence of a large 

number of small target objects, traditional behavior recognition methods have low 

recognition accuracy and robustness when dealing with this scene. Common ICS 

scenes are shown in Figure 4, which is from the Common Objects in Context 

(COCO) dataset (https://cocodataset.org/#download). This dataset is a publicly 

available dataset widely used for research and development in the field of computer 

vision. The currently widely used small object recognition model is CBAM, which 

can simultaneously process channel and spatial information and optimize the 

model’s expressive and generalization abilities. In addition, it can adaptively learn 

features of different regions in the input image, increasing the model’s attention to 

important features [25]. However, CBAM still has limitations such as unclear feature 

extraction for small targets and high computational complexity [26]. To improve the 

recognition ability of small targets in ICS, and optimize the robustness and 

generalization ability of the recognition model, the CBAM is optimized. A model on 

the basis of Multi-scale Features and improved Convolutional Block Attention 

Module (MSF-ICBAM) for ICS behavior recognition is constricted. 

 

Figure 4. Ice and snow sports scene. 

The study first optimizes the channel attention mechanism in CBAM. The 

optimized CBAM channel attention mechanism module calculation is displayed in 

Equation (8). 

𝑀𝑐(𝐹) = 𝜎(𝑓1×1(MaxPool(𝐹)) + 𝑓1×1(LocalAvgPool(𝐹)) + 𝑓1×1(StoPool(𝐹))) (8) 

In Equation (8), 𝜎  is the sigmoid activation function. 𝑓1×1  is a 

one-dimensional convolution operation. MaxPool  is the global max pooling. 

LocalAvgPool is local average pooling. StoPool is global random pooling. Local 

averaging and global random pooling are used to calculate the proportion of attention 

channels, so that the MSF-based ICS behavior features can be further divided and 

weighted, thereby improving the attention mechanism’s focus on small targets [27]. 

In addition, introducing one-dimensional convolution to achieve information 

exchange between multiple channels reduces the number of calculations and 

improves the efficiency of operations. Local averaging and global random pooling in 

CBAM provide a more comprehensive capture of inter-channel relationships and a 

more robust feature representation, enhance the model’s perception of local details 

and global context information, thus improving the accuracy of attention allocation, 

optimizing small target recognition, and enhancing the model’s generalization 
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ability. Finally, the behavior recognition performance and computational efficiency 

of the model in complex scenarios are improved. After local average pooling and 

global random pooling, the calculation performance of the model has been improved. 

When dealing with outdoor sports such as ice and snow sports, the target 

identification can be more timely and effectively completed. The structural diagram 

of improving the channel attention mechanism of CBAM through the above 

operation is shown in Figure 5. 

Input features

MaxPool

Local AvgPool

StoPool Conv 1d

Conv 1d Channel Attention

 

Figure 5. Structural diagram of improved CBAM channel attention mechanism. 

The optimization process of CBAM is as follows: First, the channel attention 

mechanism was optimized by combining global max pooling and global random 

pooling, as well as introducing one-dimensional convolution, which allowed the 

model to more accurately assign attention weights between channels and improve 

computational efficiency. Second, the spatial attention mechanism enhanced the 

model’s attention to key targets by replacing the original convolution kernel with an 

expansion convolution kernel and adding a random pooling layer, while reducing the 

focus on unimportant information. Additionally, to address the problem of 

imbalanced sample categories, the focus loss was introduced, which made the model 

pay more attention to difficult-to-classify samples. Finally, the model’s stability in 

dynamic changing environments was improved by introducing affine transformation 

matrices and Kalman filters. In addition to optimizing the channel attention 

mechanism in CBAM, the study also improves the spatial attention mechanism. In 

order to reduce the attention mechanism’s focus on unimportant information and 

increase the attention weight on key targets to achieve accurate spatial relationship 

mapping, the convolution kernel with a horizontal and vertical size of 7 in the 

original structure is replaced with a dilated convolution with a size of 3, and the 

dilation rate of this convolution is set to 2. In addition, a random pooling layer is 

added to the module. The optimized structure diagram of the spatial attention module 

in CBAM is displayed in Figure 6. 
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Figure 6. Structural diagram of the spatial attention mechanism improvement for 

CBATM. 

Figure 6 shows the spatial attention structure diagram with the added dilated 

convolution kernels and random pooling layers, and its calculation is shown in 

Equation (9). 

𝑀𝑠(𝐹) = 𝜎(𝑓3×3
dw ([MaxPool(𝐹); AvgPool(𝐹); StoPool(𝐹)])) (9) 

In Equation (9), 𝑀𝑠(𝐹) is the output value of the spatial attention mechanism. 

𝑓3×3
dw  represents using a convolution kernel with a horizontal and vertical size of 3 

and a dilated ratio of 2 for dilated convolution operation. In order to solve the 

imbalanced sample categories during the training process of the improved CBAM, 

the study introduces focus loss to improve it. The calculation is shown in Equation 

(10) [28,29]. 

AFL(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)
𝛾 𝑙𝑜𝑔( 𝑝𝑡) (10) 

In Equation (10), 𝑝𝑡 is the predicted probability. 𝛼𝑡 is a factor used to balance 

positive and negative samples. 𝛾 is the parameter for adjusting the weights of 

difficult and easy samples. 𝛼𝑡 is used to balance the attention of a small number of 

categories in the dataset, and is usually set between [0, 1]. Too high of this parameter 

will cause excessive attention to a small number of categories, so the study sets it at 

0.25. 𝛾 is used to adjust the model’s attention to the difficulty degree of the sample, 

which is usually set between [1,5]. The larger the parameter, the higher the model’s 

attention to the difficulty sample. Focusing entirely on difficult samples will cause 

the model to be difficult to converge and the amount of computation will increase. 

Therefore, this parameter is set to 2. 𝑙𝑜𝑔(𝑝𝑡) is the logarithmic part of the 

probability. The adaptive factor calculation for focus loss is shown in Equation (11) 

[30,31]. 

1

1

N

i i
i

t N

i
i

p

p


 =

=


=



 (11) 

In Equation (10), 𝑗 is the value of the adaptive factor in the focus loss. 𝑝𝑖 

signifies the predicted probability of the i-th sample image. 𝑁 signifies the number 

of image samples of ICS behavior. By calculating the channel statistics of 

convolution, the feature expression ability of the model at different scales is 

improved, as displayed in Equation (12). 
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In Equation (12), 𝑆𝑐 represents the statistical information of the channel. 𝐻 

signifies the height of the feature image. 𝑊 signifies the width of the feature image. 

𝑈(𝑖, 𝑗) signifies the pixel value of the 𝑖-th row and 𝑗-th column in feature map 𝑈. 

The fully connected layer of the improved CBAM dimension after reduction is 

displayed in Equation (13). 

𝑧 = 𝛿(𝑊𝑠𝐵(𝑆)) (13) 

In Equation (13), 𝑧 signifies the output channel attention weight vector. 𝛿 is 

the ReLU activation function. 𝑊𝑠 is the weight matrix. 𝐵(𝑆) is the image feature 

value after batch normalization of the improved CBAM. In the recognition model of 

ICS behavior, since the target is in motion, to optimize the stability and accuracy of 

recognition, the affine transformation matrix is calculated [32,33]. The calculation is 

shown in Equation (14). 

𝐴 = [𝑀 ∣ 𝑇] (14) 

In Equation (14), 𝐴 is the affine transformation matrix. 𝑀 is the rotated part 

of the affine matrix. 𝑇 is a translation vector. To compensate for the stability during 

ICS, a Kalman filter update formula is introduced to optimize it. The expression of 

this update formula is shown in Equation (15). 

𝑃𝑡
′ = 𝑀𝑘𝑃𝑡−1𝑀𝑘

𝑇  (15) 

In Equation (15), 𝑃𝑡
′  is the updated covariance matrix. 𝑀𝑘  is the 

transformation matrix. 𝑃𝑡−1 is the prior covariance matrix. In summary, a snow and 

ice sports behavior recognition model based on MSF-ICBAM can be constructed, 

and the flowchart is displayed in Figure 7. 
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Figure 7. Flow chart of ice and snow sports behavior recognition model based on 

MSF-ICBAM. 

The model structure diagram shown in Figure 7 first inputs images of ICS 

behavior, and uses an MSF extraction module to extract motion features at different 

scales. Then, the improved CBAM module enhances the attention to small targets 

and integrates MSF to output recognition results. 



Molecular & Cellular Biomechanics 2024, 21(4), 602. 
 

11 

3. Results 

3.1. The effectiveness evaluation of the feature extraction scheme for ice 

and snow sports behavior based on MSF 

The experiment first evaluates the effectiveness of the ICS behavior feature 

extraction scheme based on MSF. The study uses publicly available datasets as 

image data input, namely COCO and Ski-Pose. The initial parameter settings for the 

hardware environment, software, and model used are shown in Table 1. 

Table 1. Experimental environment setup. 

Experimental hardware setup Experimental software settings 

Project Set up Project Set up 

CPU Intel(R)Core(TM)i7-10700K Python Version 3.8.10 

GPU GTX3060 Pytorch Version 1.9 

Operating system Ubuntu 18.04 Number of training iterations 500 

CUDA Version  10.2 Optimizer selection Adam 

CUNN Version 81 Number of warm-up training batches 15 

Memory 512 GB SSD Initial learning rate 0.01 

To verify the effectiveness of the ICS behavior feature extraction based on 

MSF, it is compared with other commonly used feature extraction methods, 

including Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature 

Transform (SIFT). Figure 8 displays the average loss curves of the three feature 

extraction methods for ICS behavior recognition at different training times. 
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Figure 8. The average loss curve of three feature extraction methods for recognizing ice and snow sports behavior 

under different training times. (a) The average loss curves of MSF, HOG, and SIFT in the COCO datasetSF, HOG, 

and SIFT in the COCO dataset; (b) The average loss curves of MSF, HOG, and SIFT in the Ski Pose training set. 

Figure 8a shows the average loss curves of three feature extraction methods for 

ICS behavior feature extraction on the COCO dataset. The loss curve of MSF 

decreased rapidly, rapidly decreasing after 100 training iterations and then slowly 

decreasing to 0.71. The loss curves of HOG and SIFT decreased slowly, and the 

average loss function gradually approached the lowest value when the training 

iterations were 200–300. When trained 500 times, the average loss function of MSF 
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decreased by 0.12 and 0.24 compared with HOG and SIFT. Figure 8b shows the 

average loss curves of three feature extraction methods for ICS behavior feature 

extraction on the Ski-Pose dataset. In the figure, as the training iterations approached 

150, the average loss of MSF decreased from 1.6 to 1.1, then rapidly decreased to 

0.84, and then slowly decreased to 0.81 before leveling off. The average loss curves 

of HOG and SIFT decreased slowly, and the loss was higher than MSF at 500 

training iterations. The experimental results show that MSF converges faster 

compared with HOG and SIFT under training on different datasets. It has been 

demonstrated that the proposed approach can effectively capture MSF in ICS 

behavior images, providing more accurate feature extraction results. It is more 

suitable for application in ICS behavior feature extraction. The Mean Average 

Precision (mAP) of MSF, HOG, and SIFT trained on COCO and Ski-Pose datasets is 

shown in Figure 9. 
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Figure 9. The average loss curve of three feature extraction methods for recognizing ice and snow sports behavior 

under different training times. (a) MAP results of three feature extraction models on COCO dataset; (b) MAP results 

of three feature extraction models on Ski-Pose dataset. 

Figure 9a shows the mAP curve trends of three feature extraction methods on 

the COCO. As the tests increased, the mAP values also increased. At 500 tests, the 

mAP values of MSF, HOG, and SIFT were 0.80, 0.72, and 0.65, respectively, with 

MSF having a higher value than the other two algorithms. Figure 9b shows the mAP 

curve trends of three feature extraction methods on the Ski-Pose dataset. The mAP 

values of all three feature extraction methods gradually increased with the increase 

of testing times, with HOG and SIFT showing slower growth rates than MSF. When 

tested 500 times, the mAP values of MSF, HOG, and SIFT were 0.85, 0.75, and 

0.68, respectively, with MSF having a higher value than the other two feature 

extraction methods. The experimental results indicate that the motion behavior 

feature extraction scheme based on MSF is more suitable for ICS, and MSF can 

accurately capture multi-dimensional information. The precision of three feature 

extraction methods on COCO and Ski-Pose datasets with different training times is 

shown in Figure 10. 
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Figure 10. Experimental data on the precision of MSF, HOG, and SIFT under different training times on COCO and 

Ski-Pose datasets. (a) Comparison of precision of three feature extraction models in COCO dataset; (b) Comparison of 

precision of three feature extraction models in Ski-Pose dataset. 

Figure 10a shows the feature extraction precision of MSF, HOG, and SIFT 

methods on the COCO dataset. The MSF-based ice and snow motion behavior 

feature extraction method had a higher precision on the COCO dataset than HOG 

and SIFT, and the graphic area was 20%–30% larger than the other two feature 

extraction methods. When the training frequency was 500 times, the precision values 

of MSF, HOG, and SIFT were 0.94, 0.87, and 0.82, respectively, with MFS having a 

higher precision value. Figure 10b shows the feature extraction precision of MSF, 

HOG, and SIFT methods on the Ski-Pose dataset. From the graph area in the figure, 

the precision of the three feature extraction methods increased with the increase of 

training times. In addition, MSF had a higher precision value than the other two 

methods. When the training frequency was 500 times, the precision values of MSF 

were 0.12 and 0.17 higher than those of HOG and SIFT. The feature extraction 

method based on MSF has higher robustness and precision in extracting complex ice 

and snow motion scene features due to the HOG and SIFT methods. 

3.2. Performance verification of ice and snow sports behavior recognition 

model based on MSF-ICBAM 

To verify the recognition effect of the proposed model in ICS behavior, 

common behavior recognition models are compared with it, including the Inflated 

3D ConvNet (I3D), Two-stream CNN, ResNet + Long Short-Term Memory (ResNet 

+ LSTM), and Temporal Segment Networks (TSN). Firstly, the accuracy and recall 

of the three different models are experimentally verified, as displayed in Figure 11. 

Figure 11a shows the accuracy of three models in recognizing ICS behavior on 

the Ski-Pose dataset. From the figure, all three algorithms showed a rapid upward 

trend after reaching 100 iterations, and then tended to flatten out. The accuracy of 

MSF-ICBAM exceeded the other two methods. When the iteration reached 500, the 

accuracy of MSF-ICBAM, TSN, and I3D was 98.3%, 90.1%, and 84.6%, 

respectively. The accuracy of MSF-ICBAM was 8.2% and 13.7% higher than that of 

MSF-ICBAM, indicating a significant difference. Figure 11b shows the recall 

results of three models for recognizing ICS behavior. The recall rates of all three 
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algorithms showed a rapid upward trend at 200 iterations, while the recall rate values 

slowly increased and then flattened out at 200–500 iterations. The recall rate of 

MSF-ICBAM was 20%–30% higher than that of TSN and I3D at different iterations. 

The designed model has high effectiveness in identifying small targets in ICS 

behavior. The model exhibits high recognition error and recognition ability. The 

training speed and inference speed of different models are presented in Figure 12. 
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Figure 11. Comparison of accuracy and recall rates of different models for recognizing ice and snow sports behavior. 

(a) Accuracy of Different Models in Recognizing Ice and Snow Sports Behavior; (b) Recall of Different Models in 

Recognizing Ice and Snow Sports Behavior. 
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Figure 12. Experimental results on training speed and inference speed of different models. (a) Comparison results of 

training time for different models; (b) Comparison results of inference speed among different models. 

Figure 12a shows the training time of different models for ICS behavior 

recognition in two training sets. The training time of MSF-ICBAM, I3D, 

Two-stream CNN, ResNet + LSTM, and TSN recognition models on the COCO 

dataset was 29, 54, 73, 117, and 136 minutes, respectively. The training time on the 

Ski-Pose dataset was 31, 62, 103, 96, and 128 minutes, respectively. The training 

time of the proposed model was relatively short, with a difference of 30%–60% 

compared with other models. Figure 12b shows the inference time results of 

different models for ICS behavior recognition in two training sets. From the height 

of the bar chart shape, MSF-ICBAM had the fastest inference time, exceeding other 

models. The inference speeds of MSF-ICBAM, I3D, Two-stream CNN, ResNet + 

LSTM, and TSN recognition models on the COCO dataset were 34, 28, 22, 25, and 

30 FPS, respectively. The inference speeds on the Ski-Pose dataset were 32, 26, 20, 
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23, and 28 FPS, respectively. MSF-ICBAM had the highest inference speed on both 

datasets. The experimental results demonstrate that MSF-ICBAM has shorter 

training time and higher training efficiency on different datasets. In addition, the 

inference speed of MSF-ICBAM is superior to other models, indicating that it has 

high efficiency and good real-time performance, which can still quickly and 

accurately identify motion behavior in complex ICS environments. The study 

conducts experiments on the model size, parameter quantity, floating-point operation 

count, accuracy, and F1 value on two datasets, as displayed in Table 2. 

Table 2. Comparison results of different models. 

Model Data set 
Model size 

(MB) 

Parameter quantity (in 

millions) 

Floating-point operations 

(GFLOPs) 

Accuracy 

(%) 
F1 value 

(%) 

MSF-ICBAM 

COCO 

120 11.7 145 89.5 91.2 

I3D 215 12.4 120 86.1 87.9 

Two-stream 
CNN 

190 35.4 110 84.8 86.4 

ResNet + 
LSTM 

150 25.6 135 87.4 89.1 

TSN 160 16.3 130 85.2 87.0 

MSF-ICBAM 

Ski-Pose 

118 11.7 145 88.9 90.7 

I3D 210 12.4 120 85.6 87.2 

Two-stream 
CNN 

188 35.4 110 83.9 85.5 

ResNet + 
LSTM 

148 25.6 135 86.9 88.4 

TSN 159 16.3 130 84.7 86.5 

Table 2 shows the model size, parameter quantity, floating-point operation 

count, accuracy, and F1 value of different models on two datasets. From the data in 

the table, MSF-ICBAM outperformed the other four models in various metrics, 

especially in accuracy and F1 value. In the COCO and Ski-Pose datasets, the model 

sizes of MSF-ICBAM were 120 MB and 118 MB, which were 44.18% and 43.8% 

smaller than I3D, respectively. The parameter quantity and floating-point operation 

count of MSF-ICBAM were 117 million and 145, respectively, indicating that it can 

maintain efficient computing capability in different ICS scenarios. In the COCO 

dataset, the accuracy and F1 value of MSF-ICBAM were 89.5% and 91.2%, 

respectively, which were 3.4% and 4.7% higher than I3D and Two-stream CNN, 

respectively. In the Ski-Pose dataset, the accuracy and F1 score of MSF-ICBAM 

were also higher than other models. The results verify the effectiveness of the model 

in processing ICS behavior recognition tasks. In order to further analyze the 

parameters and computational complexity of MSF-ICBAM in practical applications, 

the number of parameters of the model in different scenarios and the usage of 

computing resources of the device are studied and counted, and the results are shown 

in Table 3. 
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Table 3. Number of parameters and computing resource usage in different scenarios. 

Map Parameter quantity (in millions) Computing resources (%) 

1 143 32.5 

2 126 28.7 

3 124 28.7 

4 136 29.6 

5 128 29.1 

As can be seen in Table 3, the MSF-ICBAM model can control the number of 

parameters between 120 million and 150 million in different scenarios. The 

MSF-ICBAM model maintains a low level of device computing resource 

consumption in different scenarios. When the number of parameters in the scenario 

reaches 143 million, the MSF-ICBAM model consumes only 32.5% of device 

computing resources. The study uses the I3D model and the proposed model to 

identify ICS behavior, as displayed in Figure 13. 

(a) (b) 

 

Figure 13. The recognition effect of two recognition models on ice and snow sports behavior. (a) The recognition 

effect of I3D on ice and snow sports behavior; (b) The effectiveness of the method proposed by the research institute 

in recognizing ice and snow sports behavior. 

From Figure 13, the ICS behavior recognition effect of the proposed model was 

better than that of the I3D model, and the recognition rate for small targets reached 

80%. After obtaining the skiing athlete’s movement posture area and body contour, 

the research model uses ICBAM to extract the athlete’s movement posture area and 

body contour features. Based on this, MSF are used to fuse the complementary 

features of the two, ensuring the recognition effect of ICS behavior. 

4. Discussion and conclusion 

Through experimental analysis, the effectiveness of the ICS behavior 

recognition model on the basis of MSF-ICBAM was verified. The study compared 

and evaluated the recognition performance of MSF-ICBAM models on the Ski-Pose 

and COCO datasets, demonstrating significant advantages in recognition accuracy, 

recall, training speed, and inference time compared with other traditional recognition 

models. By integrating MSF and ICBAM, the model demonstrated good adaptability 

in complex environments and small target recognition in ICS, especially with high 

robustness in accurately identifying small target athlete postures and dynamic 
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background changes. The results can provide effective support for the automated 

analysis of ICS behavior, and provide real-time basis for sports posture management 

and correction. 

ICS is usually conducted in outdoor environments, and the scenes of their 

movements are often dynamic and complex, easily affected by factors such as a large 

number of small targets and lighting weather. In order to improve the recognition 

accuracy and robustness of ICS behavior, a model for ICS behavior recognition 

based on MSF-ICBAM was proposed. Relevant experiments were conducted to 

verify the effectiveness. The loss curve of MSF decreased rapidly in the COCO and 

Ski-Pose datasets, and the average loss function dropped to the lowest of 0.71 and 

0.83 respectively when the number of tests reached 500, significantly lower than 

other comparison feature extraction methods. In the COCO dataset, when the 

number of tests was 500, the mAP values of MSF, HOG, and SIFT were 0.80, 0.72, 

and 0.65, respectively, with MSF having a higher value than the other two 

algorithms. In the Ski-Pose dataset, the accuracy of MSF-ICBAM, TSN, and I3D 

was 98.3%, 90.1%, and 84.6%, respectively. The accuracy of MSF-ICBAM was 

8.2% and 13.7% higher than that of TSN and I3D, indicating a significant difference. 

The accuracy and F1 value of MSF-ICBAM were 89.5% and 91.2%, respectively, 

which were 3.4% and 4.7% higher than I3D and Two-stream CNN, respectively. The 

recognition rate for small targets reached 80%. Ice and snow sports are usually 

carried out outdoors, portable equipment resources are limited, and 

high-performance models often need more computing resources. Therefore, the 

model designed by research needs to face the problem of model performance 

degradation caused by resource constraints in practical applications. The model can 

be integrated into the intelligent monitoring system to provide technical support for 

the management and analysis of ice and snow sports, such as athlete performance 

tracking and training effect evaluation. In the competition environment, the model 

can help referees more accurately judge whether the athletes’ actions are compliant, 

and also provide data support for competition analysis. The results have verified the 

effectiveness of the model and can be well applied to ICS behavior recognition, with 

good adaptability to complex and varied ICS scenes. Although the model can 

improve its performance in ICS behavior recognition, its computational efficiency 

will decrease in real-time behavior recognition applications. In the future, the 

parallel computing technology will be explored to enhance the computational 

efficiency of the model and achieve real-time motion behavior recognition. 
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Abbreviations 

ICS Ice and Snow Sports 

CBAM Convolutional Block Attention Module 

CNN Convolutional Neural Network 

MSF Multi-Scale Feature 

COCO Common Objects in Context 
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MSF-ICBAM Convolutional Block Attention Module 

HOG Histogram of Oriented Gradients 

SIFT Scale-Invariant Feature Transform 

I3D Inflated 3D ConvNet 

ResNet+LSTM ResNet+Long Short-Term Memory 

TSN Temporal Segment Networks 
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