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Abstract: With the rapid growth of computer vision and deep learning technologies, the 

application of pose estimation and action recognition in sports training has become 

increasingly widespread. Due to factors such as complex movements, fast speed, and limb 

occlusion, pose estimation and action recognition in tennis face significant challenges. 

Therefore, this study first introduces selective dropout and pyramid region of interest pooling 

layer strategies in fast region convolutional neural networks. Secondly, a pose estimation 

algorithm based on multi-scale fusion pose residual network 50 is designed, and finally a 

spatiotemporal graph convolutional network model is constructed by fusing channel attention 

module and multi-scale dilated convolution module. The data showed that the average 

detection accuracy of the improved attitude residual network 50 was 70.4%, and the accuracy 

of object detection for small, medium, and large objects was 57.4%, 69.3%, and 79.2%, 

respectively. The continuous action recognition accuracy and inter action fluency detection 

time of the improved spatiotemporal graph convolutional network were 93.8% and 19.2 ms, 

respectively. When the sample size was 1000, its memory usage was 1378 MB and the 

running time was 32.7 ms. Experiments have shown that the improved model achieves high 

accuracy and robustness in tennis action recognition tasks, especially in complex scenes and 

limb occlusion conditions, where the model shows significant advantages. This study aims to 

provide an efficient and accurate motion recognition technology for tennis posture analysis 

and intelligent training. 

Keywords: Spatial Temporal Graph Convolutional Network (ST-GCN); tennis; attitude 

estimation; action recognition; multi-scale dilated convolution module 

1. Introduction 

The progression of technology has resulted in a growing necessity for effective 

and intelligent training tools in the domain of sports [1]. In competitive sports, 

data-driven technology is gradually being introduced into athletes’ daily training to 

improve their performance. Especially in tennis, the precision and speed variation of 

movements are crucial for athletes’ technical performance [2,3]. To enhance the 

scientificity of training, Pose Estimation and Action Recognition (PEAR) technology 

has gradually become a focus of sports science research. These technologies can 

provide quantifiable motion analysis by capturing athletes’ skeletal motion data, 

thereby providing strong support for athletes’ motion optimization and training 

strategies [4]. In the development of Deep Learning (DL), Graph Convolutional 

Networks (GCNs) have gradually been introduced into the PEAR field, significantly 

improving the spatial feature extraction ability of models, especially achieving great 

success in image classification and Object Detection (OD) [5]. In response to the 

temporal dynamic characteristics of human movements, the Spatial Temporal Graph 

Convolutional Network (ST-GCN) has emerged. 
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ST-GCN combines the temporal and spatial dimensions to effectively capture 

the spatiotemporal dynamic characteristics of human bones, making it particularly 

suitable for PEAR in complex motion [6]. In view of the importance of human 

skeleton dynamics in action recognition, scholars such as S. Yan proposed a new 

dynamic skeleton model, ST-GCN, to overcome the problems of limited expression 

ability and difficulty in generalization of traditional skeleton modeling methods. 

ST-GCN enhances expression and generalization capabilities by automatically 

learning spatiotemporal patterns from data. Experimental results on two large 

datasets show that ST-GCN significantly outperforms existing mainstream methods 

[7]. Scholars such as M. Li proposed an action-structure graph convolutional 

network to address the problem of ignoring implicit joint correlations in action 

recognition based on skeletal data. The network combines active and structural links 

to capture higher-order dependencies and helps capture more detailed action patterns 

through self-supervision. Experimental results on NTU-RGB+D and Kinetics 

datasets show that the network shows significant improvements in both action 

recognition and future pose prediction [8]. Scholars such as Zhu introduced the 

channel attention module into ST-GCN++ to address the problems of information 

loss and redundancy in ST-GCN’s processing of complex action data. Through 

experiments on the NTU60 data set, it is proven that this model has achieved the 

most advanced performance in the current field of action recognition, especially 

when processing complex data [9]. Keskes and other scholars proposed a visual 

system based on ST-GCN to solve the problem of insufficient robustness and 

versatility of methods based on manual features in fall detection. Through 

experiments on NTU RGB-D, TST fall detection v2 and Fallfree data sets, the 

efficiency and accuracy of the system were verified, reaching 100% accuracy, 

surpassing the existing state-of-the-art level [10]. 

In addition to its application in the field of general action recognition, ST-GCN 

and its improved versions have also been widely used in more specific scenarios, 

such as sports action recognition and medical health monitoring, and have 

demonstrated excellent performance. Tong et al. proposed a basketball pose 

recognition model based on enhanced GCN and ST-GCN. By combining the 

advantages of GCN and ST-GCN, graph structured data with time series 

relationships has been effectively processed. The improved ST-GCN achieved an 

accuracy of 95.58% in basketball pose recognition [11]. Lovanshi et al. developed a 

customized ST-GCN model for human activity recognition built on skeleton data. 

This model effectively utilized the spatial and temporal features in the skeleton data. 

The customized ST-GCN outperformed existing state-of-the-art methods in Top-1 

and Top-5 accuracy across multiple databases [12]. Li et al. proposed a node 

attention-based ST-GCN model to address the limitation of ST-GCN’s inability to 

learn non-adjacent node relationships in action recognition. The introduction of node 

attention module explicitly modeled the interdependence of global nodes, thereby 

effectively improving the recognition performance of actions that require global 

information [13]. Zhang et al. proposed a new spatial attention and temporal 

extension model to address the problem of fine-grained information loss in fixed 

time kernel size and action classification based on the existing ST-GCN model. By 

using the two GCN modules, data redundancy and noise were effectively reduced, 
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and the robustness to various motion speeds and sequence lengths was improved [14]. 

Sabo et al. constructed a gait analysis model built on ST-GCN for detecting gait 

disorders in drug-induced Parkinson’s disease. It encouraged the model to learn gait 

patterns of dementia patients through a self-supervised pre-training phase. The 

ST-GCN model performed better than traditional regression models and time 

convolutional networks on the 3D joint trajectories extracted by Kinect [15]. 

Currently, the field of action recognition has gradually become one of the 

research hotspots. Action recognition technologies for different scenarios and forms 

of motion are constantly emerging and showing broad application prospects. Wu et 

al. established a sports video standard action recognition method that integrates local 

and global features to address the current situation where existing action recognition 

algorithms cannot effectively work in sports competitions with high complexity, fine 

class granularity, and fast action speed. By using spatiotemporal compression and 

feature fusion algorithms, the underfitting problem of attention mechanism in 

extracting spatiotemporal features has been overcome [16]. Sun et al. proposed a 

motion video action recognition method based on Fish Swarm Algorithm (FSA). By 

improving the FSA, invariant features were constructed and feature dimensionality 

was reduced, effectively preserving key details of motion actions. This method had a 

recognition time of less than 326 s for actions such as walking and running, with a 

recognition rate of over 94% [17]. Ren et al. proposed an action recognition 

algorithm that combines Precise Time Protocol and CNN (PTP-CNN). In the testing 

of the human-computer interaction gymnastics action recognition system, the 

PTP-CNN achieved a recognition accuracy of 96.3%, a recall rate of 95.2%, and a 

running time of 3.4 s [18]. Barbon Junior et al. proposed a motion action mining 

framework for recognizing complex human movements, which combines position 

data and association rule mining to model actions based on human displacement 

trajectory sequences. The random forest classifier achieved a balanced accuracy of 

93.3% in dribbling action recognition [19]. Shan et al. proposed an intelligent action 

recognition and correction system to address the issue of subjective judgment of 

action standards by coaches in traditional sports training. The system utilized 

RGB-D sensors to analyze the key points of athletes’ bones in real time, and 

combined timing tracking algorithms to evaluate the differences between movements 

and standards [20]. 

In summary, although many studies in recent years have improved the accuracy 

of action recognition by introducing ST-GCN and improved skeleton data analysis 

models, there are still certain limitations when dealing with scenarios such as 

multi-target, occlusion, and high-speed actions. Therefore, this study constructs a 

detection and recognition model for tennis events. The innovation lies in first 

improving the Faster Region-based CNN (Faster R-CNN) as an OD model. Secondly, 

based on Pose Residual Network 50 (PoseResNet50), a Multi-Scale Fused 

PoseResNet50 (MF-PoseResNet50) is proposed. Finally, an ST-GCN with Channel 

Attention and Dilated Convolution (ST-GCN-CAD) tennis PEAR model is 

constructed. This study aims to enhance the adaptability and recognition accuracy of 

the model for different actions in complex scenes by fusing the spatiotemporal 

features of GCN with the skeleton information of graph structures, providing more 

effective technical support for intelligent training of tennis. 
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2. Methods and materials 

In response to the problems of insufficient accuracy in pose estimation and 

insufficient extraction of dynamic features in existing tennis action recognition, this 

study first improves the basic framework of Faster R-CNN and PoseResNet50 from 

the spatial dimension of images. By introducing multi-scale fusion methods, the 

accuracy of feature extraction has been optimized. Secondly, by combining the 

Channel Attention Module (CAM) and the Multi-Scale Dilated Convolution Module 

(MSDCM), an improved ST-GCN-CAD tennis action recognition model is proposed 

to enhance the model’s ability to extract spatiotemporal dynamic features of action 

sequences. 

2.1. Design of HPE algorithm based on MF-PoseResNet50 

Accurately locating the target person is a key step in algorithm design in 

Human Pose Estimation (HPE) tasks. To improve the accuracy of HPE, this study 

first uses OD technology to accurately locate the characters in the image before 

estimation. This study introduces the classic Faster R-CNN model, which can 

efficiently generate target candidate regions and perform accurate target recognition 

[21]. However, Faster R-CNN may face issues of multi-target occlusion and 

decreased performance in detecting fast-moving objects in complex motion scenes 

[22]. Therefore, this study attempts to introduce selective Dropout and Spatial 

Pyramid RoI Pooling Layer (SPP) to improve Faster R-CNN. The purpose is to 

improve its ability to detect fast-moving and dense targets in motion scenes, thereby 

providing more accurate target areas for subsequent HPE. The schematic diagram of 

selective Dropout is displayed in Figure 1. 

... ...

Pooling Layer
Convolutional 

Layer

×
0 ( ) 0mf  =

0 ( ) 0mf  

 

Figure 1. Selective dropout diagram. 

In Figure 1, selective Dropout first selects the feature map and weight of a 

hidden layer in the network as input, and uses the standard Dropout method for the 

first training. The weights that will be randomly set to zero during this process will 

be recorded. Subsequently, the feature maps that have been zeroed and those that 

have not been zeroed in the hidden layer are sent as negative and positive samples, 

respectively, to the Support Vector Machine (SVM) classifier for training. In the 

second training, SVM is utilized to determine whether the weight of each node is set 

to 0, and nodes classified as positive samples increase their probability of being 

dropped out. In the final training, based on the classification results of SVM, the 

network further performs selective dropout on each layer node to perfect the training 
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period of the model. Subsequently, the structure of SPP is exhibited in Figure 2. 
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Figure 2. Schematic diagram of the SPP layer. 

In Figure 2, SPP divides the input feature map into sub-regions of different 

sizes through multi-scale feature mapping, and performs pooling operations on these 

regions separately. The figure shows a three-layer pyramid structure, consisting of 

feature maps with resolutions of 16 times, 4 times, and n times, respectively. 

Through such multi-scale processing, the SPP layer can capture detailed information 

of different scales in the input image, thus adapting to changes in object shape and 

scale. Finally, these multi-scale pooled features are integrated through a fully 

connected layer to generate feature vectors for subsequent classification. Finally, to 

improve the generalization capacity and robustness, RReLU is introduced as the 

activation function. Compared to traditional ReLU, RReLU introduces a random 

slope on the negative half axis. This randomness can effectively prevent overfitting 

of the model, while alleviating the problem of neuron death and ensuring that more 

neurons participate in learning. In addition, RReLU performs better in handling 

noise and uncertainty, making it suitable for tennis motion detection in dynamic 

scenes. Its expression is shown in Equation (1). 

, 0
( )

, 0i

x if x
f x

a x if x


= 



 
(1) 

In Equation (1), x  is the input feature value or the activation value of the 

neuron. ia  is a slope parameter randomly sampled from a uniform distribution 

~ia U l u（ , ） during training. l  and u  are preset upper and lower limits used to 

control the range of negative slope. After building an OD model grounded on 

improved Faster R-CNN, this study will attempt to construct the HPE algorithm for 

PoseResNet50. PoseResNet50 is based on the deep structure of residual networks, 

which can effectively extract human skeletal features and has strong feature 

expression ability [23,24]. Firstly, the constructed 2D pose point annotation is shown 

in Figure 3. 
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Figure 3. 2D human pose annotation diagram. 

Figure 3a shows the multi-dimensional facial feature points in the traditional 

COCO annotation system, including nasal tip, eyes, and ears. Figure 3b shows a 

complex scenario for open sports. This study uses a single head posture center point 

identification to represent the head posture by calculating the geometric center 

coordinates of key areas of the head, to streamline the annotation process and 

improve operational efficiency. A whole-body skeletal dataset containing 13 core 

keypoints is constructed through precise recognition using HPE algorithm. The 

optimized data coordinate expression is shown in Equation (2). 

   ( ) ( ( ), ( )), 1,...,i j j j j J
P t x t y t c t T


= 

 
(2) 

In Equation (2), ( )iP t  is the position of the j -th keypoint at time t . ( )jx t  

and ( )jy t  are the horizontal and vertical coordinates of the j -th key point at time 

t . jc  is the confidence level of the j -th key point. In j J , J  is the set of 

key points, indicating that there are a total of J  key points that need to be 

annotated.  1,...,t T  is a different time frame in the time series, with a total of 

T  time frames. The different sets of limb points contained in each of the four limb 

blocks in Figure 3b are shown in Equation (3). 

 
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LB p p p
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LB p p p

=


=


=
 =  

(3) 

In Equation (3), 𝐿𝐵1, 𝐿𝐵2, 𝐿𝐵3, and 𝐿𝐵3 are the upper Left and Right (L&R), 

lower L&R limb masses. 2p  to 13p  correspond to the L&R shoulders, elbows, 

wrists, pelvic bones, knees, and ankles in Figure 3b, respectively. Subsequently, in 

the pose estimation step, the deep residual network structure of PoseResNet50 can 

effectively handle complex image feature extraction tasks. Through multi-level 

convolution operations, shallow and deep features of the target character can be 

captured, ensuring that semantic information at different levels is fully expressed, 
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thereby enhancing the ability to capture pose details [25,26]. In addition, the residual 

structure of PoseResNet50 helps to solve the common gradient vanishing problem in 

deep networks, making the network more stable during training and able to learn 

complex action patterns more efficiently [27,28]. Meanwhile, due to the complex 

actions and varying sizes of limb parts involved in pose estimation, this study 

introduces ResNet50 and improves the backbone network of PoseResNet50 using 

multi-scale feature fusion methods. By integrating feature information from both 

shallow and deep layers through multi-scale feature fusion, the model can not only 

capture the global skeletal structure but also focus on local detailed features. 

Therefore, the flowchart of the improved backbone network of MF PoseResNet50 is 

shown in Figure 4. 
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Figure 4. Introducing the PoseResNet50 backbone network structure of ResNet50. 

In Figure 4, MF-PoseResNet50 consists of four stages, each consisting of a 

Conv Block and an Identity Block. In Stage 0, the input image undergoes 

convolution and max pooling operations, and the output feature map size is (64, 32, 

32), which means 64 channels and a spatial size of 32 × 32. In Stage 1, the 

convblock extends the features to (256, 32, 32) through three convolution operations 

and maintains that dimension unchanged through identity blocks. Subsequently, 

Stage 2 further reduces the feature map to (512, 16, 16) through conv blocks, while 

maintaining the feature size through identity blocks. In Stage 3, the conv blocks 

continue to expand the features to (1024, 8, 8) and maintain the dimensionality of the 

feature map through identity blocks. Finally, through the global average pooling 

layer, the spatial size is reduced to 1 × 1 to obtain a fixed size output for subsequent 

pose estimation tasks. The entire network maintains effective gradient transfer 

through residual connections and integrates multi-level features at different scales, 

making it perform excellently in complex pose estimation tasks. 

Subsequently, in response to the possible differences in human posture caused 

by occlusion and high-speed changes in tennis, a posture correction module is 

introduced after extracting features to correct the offset posture. This module first 

defines a function that calculates the average position of low confidence attitude 

points in the current frame by combining the attitude points of the previous frame, 
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current frame, and next frame. Secondly, it adjusts the position of low confidence 

points by offsetting the position of high confidence pose points. The correction 

process generates the final correction point position by superimposing offset and 

weight. Subsequently, the algorithm traverses the pose sequence of each frame, 

determines whether there are low confidence pose points in the current frame, and 

obtains corresponding pose points in adjacent frames based on the contextual 

relationships of these points. Finally, the corrected pose point sequence is updated to 

the pose set. 

Finally, since MF-PoseResNet50 is based on a convolutional neural network 

model, it has a large number of parameters. In order to further optimize the 

computational efficiency of the model and improve its practicality in environments 

with limited computing resources, the study introduced a model compression 

technology called weight pruning. The goal of weight pruning is to reduce the 

memory usage and computational complexity of the model by removing redundant 

weight parameters. It mainly includes weight importance evaluation, pruning 

strategy, and post-pruning training steps. First, the importance of each weight is 

evaluated by calculating its absolute value. Smaller weights are considered to have 

less impact on the model and can be removed. The weight importance evaluation 

Equation is shown in Equation (4). 

|𝑤𝑖𝑗| = 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑤𝑖𝑗) (4) 

In Equation (4), 𝑤𝑖𝑗  is the j-th weight in the i-th layer, and 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑤𝑖𝑗) 

represents the absolute value of the weight. The importance of the weight is 

evaluated by calculating the absolute value of the weight. Smaller weights are 

considered to have less impact on the overall model and are removed first to achieve 

the goal of pruning. 

Subsequently, in the pruning strategy, a pruning ratio of 𝑝% is set, that is, the 

least important 𝑝% weights in the model are removed. After all weights are sorted 

by their importance, these least important weights are removed. The removed 

weights are set to zero. The pruned model can be retrained through fine-tuning to 

restore some of the lost accuracy. The fine-tuning stage readjusts the remaining 

weights through back propagation to make the model adapt to the pruned structure 

again and minimize the performance degradation caused by pruning. The study 

adopts a global pruning strategy to remove the smaller important weights in the 

model, and the pruning ratio is set to 30%. Finally, the pruned model is trained 

through further fine-tuning to ensure that the performance is maintained at a high 

level. The loss function of fine-tuning is the same as that of the original training. The 

weight update Equation after pruning is shown in Equation (5). 

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 − 𝜂
∂𝐿

∂𝑤𝑖𝑗

 (5) 

In Equation (5),   represents the learning rate and L  represents the loss 

function. This pruning strategy aims to effectively reduce the computational 

complexity of the model while maintaining high accuracy. The pruned model is not 

only suitable for environments with abundant computing resources, but also 

performs well on devices with limited resources. 
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2.2. Tennis movement recognition algorithm based on ST-GCN-CAD 

After completing the HPE algorithm design based on the improved 

PoseResNet50, this study further focuses on how to accurately identify and analyze 

complex tennis movements in dynamic motion scenes. Attitude estimation provides 

precise localization of skeletal points, but action recognition requires a deeper 

understanding of the dynamic changes of these skeletal points in the spatiotemporal 

dimension. Therefore, this study introduces ST-GCN. This model is capable of 

capturing both spatial and temporal features during motion, making it particularly 

suitable for fast and complex movements like tennis. The advantage of ST-GCN lies 

in its capacity to model the spatiotemporal relationships between human keypoints 

through graph convolution, effectively improving the accuracy and robustness of 

action recognition [29]. Therefore, choosing ST-GCN as the core algorithm for 

tennis action recognition can not only supplement the shortcomings of pose 

estimation, but also better handle complex motion patterns in dynamic scenes [30]. 

In the ST-GCN model, the input data is batch normalized to improve the 

training stability. Next, the data sequentially enter multiple ST-GC units. Each unit 

consists of three parts: Attention Module (ATT), GCN, and Temporal Convolutional 

Network (TCN) [31]. GCN is responsible for extracting spatial features, while TCN 

extracts time series features, and ATT is used to enhance the model’s attention to 

important information. Stacking multiple ST-GC units to capture complex 

spatiotemporal information at a deeper level. Subsequently, the features are 

dimensionality reduced through a Pooling layer (POOL) and finally passed into a 

Fully Connected layer (FC) for classification or prediction output. The entire 

structure achieves efficient analysis and recognition of input data by combining 

spatial and temporal features as well as attention mechanisms.Due to the fixed size 

of the time GCN kernel used in traditional ST-GCN models, this limits the model’s 

ability to capture temporal features, resulting in poor performance in processing 

complex dynamic data [32,33]. Therefore, this study attempts to introduce CAM and 

MSDCM to enhance the representation of temporal features. The design and function 

of these two key components are described in detail below. 

First, CAM enhances feature representation by adjusting the importance of each 

channel [34]. In terms of specific design, it captures the global context information 

of the feature map through global average pooling and global maximum pooling, 

then generates weights through two fully connected layers and weights the input 

feature map. This can improve the network’s attention on important features, thereby 

improving the accuracy and robustness of action recognition. The expected effect is 

to improve the model’s ability to capture key information by optimizing the weight 

of channel features, especially in multi-objective or complex backgrounds, which 

can effectively enhance the model’s expressive ability. Second, MSDCM extracts 

multi-scale information through convolution with different expansion rates to expand 

the receptive field of the convolution kernel while maintaining a small amount of 

calculation. The design of this module can capture action details at different scales, 

and is particularly effective in identifying key frames or dynamic actions in 

long-term sequences. The expected effect is to enhance the generalization ability of 

the model on different time scales and improve the recognition accuracy of complex 
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actions or rapidly changing postures. In short, CAM can better focus on key features 

by dynamically adjusting the weights of different channels. MSDCM enhances the 

model’s ability to capture temporal features by introducing convolution kernels of 

different scales, enabling the model to more effectively handle multi-scale temporal 

information. Firstly, the introduction of FC and Batch Normalization (BN) CAM is 

shown in Figure 5. 

Input feature 

map

Channel 

enhancement 

components

Relu

Batch 

normalization
Sigmoid

Channel 

attention weight

FC

FC
 

Figure 5. Schematic diagram of the improved CAM. 

In Figure 5, in the improved CAM, after the input features are processed by the 

channel enhancement component, they are first reduced in dimensionality through 

FC, and then the non-linear expression ability of the features is improved through the 

ReLU function. Next, the features are restored to their dimensions through FC and 

processed through BN to ensure their balance across different channels. Finally, after 

Sigmoid, channel attention weights are generated to enhance the representation 

ability of important features. This process aims to enhance the model’s attention to 

key features and further improve its performance by adaptively adjusting the weights 

of each channel. The expression of the output feature map of the channel 

enhancement component is shown in Equation (6). 

( )Z CAM X=  (6) 

In Equation (6), 𝑍 is the feature map after channel enhancement. Input data 𝑋 

is the input feature matrix of a batch. Subsequently, the attention weights of the 

channels are calculated through two layers of FC to control the importance of each 

channel, as shown in Equation (7). 

𝐴𝑇𝑇𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊2 × 𝑅𝑒𝑙𝑢(𝑊1𝑍)) (7) 

In Equation (7), 𝐴𝑇𝑇𝑐 is the final channel attention weight used to represent 

the importance of each channel. 𝑊1 and 𝑊2 are the weight matrices of two layers 

of FC, which respectively control the dimensionality reduction and enhancement of 

features, adjust the dimensionality of input features, and capture the 

interrelationships between channels. 𝑆𝑖𝑔𝑚𝑜𝑖𝑑  and 𝑅𝑒𝑙𝑢  are both activation 

functions used to increase the non-linear expression ability and control the 

importance of each channel. Subsequently, in MSDCM, dilated convolution 

introduces intervals in the convolution operation to expand the receptive field, which 

can capture more global information without increasing computational complexity. 
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Its structure is shown in Figure 6. 
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Figure 6. MSDCM structure. 

In Figure 6, firstly, the input features are processed through dilated 

convolutions of various scales, i.e., dilated convolutions with kernel sizes of 3 × 1 

and dilation rates of 2, 3, and 5, respectively, to capture features in different time 

ranges. Each dilated convolution operation generates a feature map 𝑌1, 𝑌2, 𝑌3 . 

These features are further extracted through subsequent 3 × 1 convolutions, and 

finally all features are fused through feature concatenation. On the fused features, 

information is integrated through a 1 × 1 convolution operation to generate output 

features. Throughout the process, different scales of dilated convolutions help the 

model better capture feature changes at different time scales, enhance the model’s 

perception of temporal information, and improve performance in time series analysis. 

Therefore, the Equation for extracting time equidistant feature information through 

dilated convolution operations with different dilation rates is shown in Equation (8). 

𝑥𝑖 = 𝐶𝑑(𝑋
′), 𝑑 = 2,3,4 𝑖 = 1,2,3 (8) 

In Equation (8), 𝑥𝑖  is the feature information obtained through dilated 

convolutions with different dilation rates. 𝐶𝑑  is a dilated convolution operation with 

an expansion rate of d . 𝑋 ′ is the input feature information, with a shape of 

[𝑁, 𝐶, 𝑇, 𝑉]. 𝑁 is the batch size, 𝐶 is the amount of channels, 𝑇 is the time step, 

and 𝑉 is the number of human skeletal nodes. To better capture the dependencies 

between local times in action sequences, this study uses a set of time convolutions to 

capture the correlations between different time steps, as shown in Equation (9). 

𝑌𝑖 = {
𝐶𝑜𝑛1×1(𝑋

′), 𝑖𝑓 𝑖 = 0

𝑇𝐺𝑖(𝑥𝑖 + 𝑌𝑖−1), 𝑖𝑓 𝑖 > 0
 (9) 

In Equation (9), 𝑌𝑖  and 𝑌𝑖−1  are the output features of the current and 

previous time steps. 𝐶𝑜𝑛1×1 is a 1 × 1 convolution operation used to extract the 

basic features of the input at the initial layer. 𝑇𝐺𝑖  is a time convolution operation 

with dilation rate used to extract temporal dependencies. Each branch aggregates 

contextual information from adjacent time frames through different convolution 
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operations. Finally, the outputs of these branches are fused to form the overall 

temporal characteristics. The output result is shown in Equation (10). 

{
𝑍′ = 𝐶𝑎𝑡[𝑌0, . . . , 𝑌𝑠]

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛1×1(𝑍
′) + 𝐶𝑜𝑛1×1(𝑋

′)
 (10) 

In Equation (10), 𝑍′ is the feature matrix formed by concatenating the outputs 

𝑌0, . . . , 𝑌𝑠 of each time convolution branch through a concatenation operation (Cat). 

𝐶𝑜𝑛1×1(𝑍
′) performs a 1 × 1 convolution operation on the concatenated feature 𝑍′ 

to integrate multi-scale feature information. 𝐶𝑜𝑛1×1(𝑋
′)  performs a 1×1 

convolution on input 𝑋 ′ as another part of the residual connection to ensure the 

integrity of information transmission. 𝑂𝑢𝑡𝑝𝑢𝑡 is the final output feature, which 

includes multi-scale temporal features and input residual information. Finally, based 

on the CAM and MSDCM modules mentioned above, the improved ST-GCN-CAD 

model structure is shown in Figure 7. 
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Figure 7. ST-GCN-CAD module structure diagram. 

In Figure 7, firstly, the input skeleton data is processed and standardized by BN 

to improve the training stability of the network. Next, the data is sequentially 

processed through multiple layers of GCN. Each layer of GCN processes spatial 

features, extracts relationships and dynamic information between joint points. The 

network extracts features at different levels through three layers of GCN modules. 

Each layer corresponds to a different number of channels and time steps. After 

extracting preliminary features, a Global Average Pooling (GAP) layer was added 

and classified through FC, ultimately outputting action classification scores. In the 

feature extraction process, the model introduces spatial convolution module and 

CAM. This section captures spatial features through spatial convolution, combines 

MSDCM to enhance the perception ability of temporal features, and ultimately uses 

channel attention mechanism to further improve the weight of key features and 

enhance the discriminative ability. Through these improvements, the model can not 

only capture richer spatiotemporal information, but also greatly enhance the 

accuracy of complex action recognition. 

3. Results 

To verify the performance of the proposed tennis PEAR model based on 
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improved ST-GCN-CAD, an experimental environment suitable for tennis sports 

scenes is first established, and the collected tennis sports data is preprocessed. Part of 

the data are used for model training. Secondly, this study comprehensively testes the 

recognition accuracy and robustness of the model through ablation experiments, 

comparison of similar models, and multi-index testing. Subsequently, simulation 

tests are conducted based on real tennis match scenes to verify the performance and 

application effects of the model in actual sports scenarios. 

3.1. Performance testing of MF-PoseResNet50 attitude estimation 

algorithm 

To verify the performance and effectiveness of the IFaster R-CNN OD 

algorithm and the MF PoseResNet50 attitude estimation algorithm, a suitable 

experimental environment is established in this study. The operating system is 

Windows 10, the CPU is Intel Core i7, and the base frequency is 4.2 Hz. The GPU is 

NVIDIA GeForce RTX 1660s, with 16 GB of video memory and 16 GB of memory. 

The dataset used is PASCAL VOC, which contains approximately 17,000 images 

with OD annotations. Firstly, in IFaster R-CNN, the learning rate is set to 0.001 and 

Cosine Annealing is used for dynamic adjustment, with a batch size of 16. The 

optimizer chooses AdamW to balance weight decay. In addition, the NMS threshold 

for non-maximum suppression is 0.5, and the scale range for Anchor generation is 32 

to 512. The experiment uses a multi-scale training strategy to improve the detection 

performance of the model on targets of different sizes. To verify the effectiveness of 

the improvements made to IFaster R-CNN, its Mean Average Precision (mAP) and 

Intersection over Union (IoU) are compared with Faster R-CNN, Efficient Detection 

(EfficientDet), and YOLOv5 on the PASCAL VOC dataset. The test results are 

displayed in Figure 8. 
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Figure 8. The mAP and IoU test results for different models. 

Figure 8 shows the mAP and IoU test results of Faster R-CNN, EfficientDet, 

YOLOv5, and IFaster R-CNN as a function of iteration times. In Figure 8a, when 

the iteration reaches 500 times, the mAP values of the four models are 0.76, 0.81, 

0.87, and 0.91. In the early stages of iteration, IFaster R-CNN quickly outperforms 

the other three models, with its mAP value increasing from 0.5 to nearly 0.75, 

enabling faster capture of target features. In Figure 8b, when the iteration reaches 

500 times, the IoU values of the four models are 0.86, 0.87, 0.88, and 0.89. IFaster 
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R-CNN has the optimal mAP and IoU values, demonstrating the effectiveness of 

Faster R-CNN in introducing selective Dropout and SPP strategies. This fusion 

makes it more stable and accurate when dealing with complex backgrounds and 

small targets. Subsequently, this study utilizes the COCO dataset, which contains 

over 250,000 annotated keypoints and over 80,000 images. The experiment 

introduces OpenPose, Higher Resolution Network (HigherHRNet), Mask 

Region-based CNN (Mask R-CNN) models, and compares them with 

MF-PoseResNet50. The loss curves and Precision-Recall (PR) curves of the four 

models as they vary with the number of iterations are shown in Figure 9. 
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Figure 9. Test results of loss curve and PR curve. 

In Figure 9a, when iterating 500 times, the loss values of OpenPose, 

HigherHRNet, Mask R-CNN, and MF-PoseResNet50 are 0.011, 0.006, 0.009, and 

0.003. In contrast, although HigherHRNet and Mask R-CNN perform better in the 

early iteration stage, their relatively complex model structures result in slower 

convergence speed and higher loss values at higher iteration times. OpenPose, due to 

its bottom-up nature, struggles to capture high-resolution details, resulting in 

relatively high loss values throughout the entire process. In Figure 9b, the area 

enclosed by the PR curve and the coordinate axis is the Area Under the Precision 

Recall Curve (AUC). As the AUC value increases, the accuracy and recall of the 

model at varying thresholds also rises, indicating that the model has good 

comprehensive performance. Therefore, the larger the area of the PR curve, the 

better the detection performance of the attitude estimation algorithm, which can 

more accurately and completely capture and identify key attitude points. Therefore, 

the curve of MF-PoseResNet50 completely surrounds other curves and has the 

highest AUC value. This study introduces the MSCOCO2017 dataset, which 

contains approximately 67,000 images with human keypoint annotation results, to 

test the Average detection Precision (AP) of each model on two datasets, as shown in 

Figure 10. 
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Figure 10. AP test results of each model. 

Figure 10a–d show the AP values of four models on the COCO and 

MSCOCO2017 datasets. Among them, AP50 and AP75 are APs detected with IoU 

thresholds of 0.50 and 0.75. AP (E), AP (M), and AP (L) are APs used for detecting 

simple samples, medium-sized targets, and large targets. The above different AP 

indicators can comprehensively evaluate the detection performance of the model 

under different IoU thresholds and target sizes. In Figure 10d, the 

MF-PoseResNet50 model is applied on COCO, AP = 70.4%, AP50 = 88.5%, AP75 

= 75.6%. In addition, the model has an AP (E) of 57.4% for small objects, 69.3% for 

medium objects, and 79.2% for large objects on objects of different sizes. At 

MSCOCO2017, the performance of the MF-PoseResNet50 model slightly improves, 

AP = 71.3%, AP50 = 89.1%, and AP75 = 76.2%, AP (E) = 58.2%, AP (M) = 70.1%, 

and AP (L) = 80.1%. This indicates that the MF-PoseResNet50 model exhibits high 

accuracy on different datasets, especially in the detection of larger object AP (L), 

where the performance advantage is more pronounced. Compared to other models, 

MF-PoseResNet50 has shown better accuracy and stability in all indicators. Finally, 

to further validate the comprehensive performance of the models, Table 1 shows the 

comparative results of each model at different resolutions. 
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Table 1. Experimental results at different resolutions. 

Model Name Resolution/px FPS/Frames per second Average inference time/ms Memory usage/MB 

MF-PoseResNet50 

256 × 256 44.7 22.4 948 

512 × 512 31.5 31.7 1248 

1024 × 1024 18.3 55.9 2113 

OpenPose 

256 × 256 29.8 33.2 1214 

512 × 512 20.5 50.2 1723 

1024 × 1024 12.2 83.5 2802 

HigherHRNet 

256 × 256 37.9 26.1 1145 

512 × 512 28.3 35.9 1523 

1024 × 1024 16.5 62.7 2417 

Mask R-CNN 

256 × 256 21.7 45.7 1325 

512 × 512 14.1 71.6 1934 

1024 × 1024 8.3 125.3 3223 

Table 1 shows the Frames Per Second (FPS), inference time, and memory 

usage of each model at different resolutions. At a low resolution of 256 × 256, 

MF-PoseResNet50 performs the best with 44.7 FPS, inference time of 22.4 ms, and 

memory usage of only 948 MB, indicating that the lightweight design of this model 

significantly improves computational efficiency. At a high resolution of 1024 × 1024, 

although the FPS and inference time of all models have significantly decreased, 

MF-PoseResNet50 still maintains a high FPS of 18.3 FPS. Compared to other 

models, its inference time and memory consumption are still at a relatively low level. 

In contrast, Mask R-CNN achieves inference time of 125.3 ms at high resolution and 

significantly increases memory usage. This indicates that MF-PoseResNet50 can 

effectively control computational overhead while ensuring high accuracy, and its 

optimized multi-scale fusion strategy is the key to improving efficiency. 

3.2. Experimental analysis of ST-GCN-CAD action recognition model 

After verifying the application effectiveness of IFaster R-CNN and 

MF-PoseResNet50, this study conducts performance testing on the ST-GCN-CAD 

model. The NTU-RGB+D dataset is used, which contains over 56,000 video 

segments covering 60 different actions. Due to the fact that ST-GCN-CAD is 

composed of CAM and MSDCM, to verify the effectiveness, the ablation experiment 

results are shown in Figure 11. 

Figure 11a,b show the ablation test results for Top-1 accuracy and F1 Score 

with CAM and MSDCM removed, both modules removed simultaneously, and the 

complete model removed. In the Top-1 accuracy test of Figure 11a, the complete 

ST-GCN-CAD exhibits optimal accuracy as the number of iterations increases. 

When iterates 500 times, the detection accuracies for the four situations are 90.1%, 

88.5%, 75.3%, and 94.3%, respectively. The F1 test results in Figure 11b also show 

a similar trend, with F1 values of 0.90, 0.87, 0.86, and 0.93 for the four models after 

500 iterations. The main reason for this difference is that CAM effectively enhances 

the channel selection of spatiotemporal features, improving the accuracy of feature 

expression, while MSDCM enhances the ability to capture spatiotemporal 
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information at different scales, improving the performance of action recognition. It 

also confirms the effectiveness of this study in improving ST-GCN-CAD. Each 

module has played a certain positive role in the final model. Subsequently, Adaptive 

GGCN (AGCN), Two-Stream AGCN (2s-AGCN), and Multi-Scale Graph Temporal 

Convolutional Networks (MS-G3D) are introduced as comparative models. The 

experiment selects the TSR tennis action dataset, which includes various technical 

actions such as forehand, backhand, and serve, and provides relevant video data. 

This study selects five representative tennis movements: forehand stroke, backhand 

stroke, serve, intercept, and topspin. The experimental results of the confusion matrix 

for the four models are shown in Figure 12. 
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Figure 11. Ablation test results. 
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Figure 12. Confusion matrix test results of each model. 
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Figure 12a–d show the confusion matrices of AGCN, 2s-AGCN, MS-G3D, and 

ST-GCN-CAD for recognizing different tennis movements. The recognition accuracy 

of ST-GCN-CAD is significantly higher in five representative tennis movements. It 

can accurately distinguish subtle differences in movements, such as significantly 

reducing the confusion rate between forehand and backhand shots, and further 

improving the accuracy of interception and topspin movements. In Figure 12a, 

AGCN is prone to confusion when recognizing similar actions such as forehand and 

backhand shots due to the lack of precise capture of action details. In Figure 12b, 

2s-AGCN improves its ability to extract spatiotemporal information from action 

sequences by introducing a dual stream architecture, but there is still some error in 

complex actions such as interception. In Figure 12c, MS-G3D improves the capture 

of global motion features by introducing multi-scale graph convolution, but is 

relatively inadequate in handling local motion details. In Figure 12d, ST-GCN-CAD 

combined with CAM and MSDCM enhances the ability to capture spatiotemporal 

details, resulting in more stable and accurate performance in various tennis 

movements. To further verify the model’s performance in dealing with complex 

scenes and body occlusion, the study selected tennis action images with complex 

scenes such as body occlusion and multi-person interaction in the dataset and 

performed posture labeling analysis. The model’s robustness and accuracy in dealing 

with partial body occlusion and complex background interference are demonstrated 

through visualization. The experimental results are shown in Figure 13 below. 

(a) Limb occlusion

(b) Complex scene  

Figure 13. Qualitative analysis of experimental results. 

Figure 13a,b are the experimental results of posture estimation in the presence 

of limb occlusion and complex background. In Figure 13a, the model can still 

accurately locate key points when dealing with limb occlusion, especially when the 

limbs are partially occluded by the net or other objects, the model can still restore 

relatively complete posture information, indicating that it has a strong recognition 

ability for incompletely visible actions. Figure 13b shows that in the scene of 

multi-person interaction and complex background, the model can effectively 

distinguish the actions of different athletes, and maintain a high posture recognition 

accuracy under the condition of lighting changes and background interference. The 

experimental results verify the robustness of the model in actual complex scenes, and 

further demonstrate its application potential in multi-target and multi-athlete scenes. 
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Subsequently, the study used a self-built data set for further simulation tests. 

First, the data set contains no less than 10 different tennis actions, including common 

actions such as serving, receiving, forehand, backhand, volley, and so on. These 

actions are accurately annotated to ensure that the starting and ending points of each 

action are consistent, and the number of samples of each action is evenly distributed. 

Specifically, serving and receiving each contain about 1500 samples, forehand and 

backhand shots each contain 1200 samples, volley and volley actions each contain 

1000 samples, and other special actions (such as difficult volleys) have 800 samples 

each. Data annotation uses a combination of manual and automatic annotation, of 

which 70% of the data is annotated by an automated tool based on motion capture 

technology, and 30% is reviewed by an expert team to ensure the consistency and 

accuracy of the annotation. In addition, the data set includes athletes from different 

industries and experience levels. Participants include 50 athletes, covering different 

groups ranging in age from 18 to 40 years old, of which 30% are professional players 

and 70% are amateurs. In terms of gender, the dataset balances the ratio of male and 

female athletes, and each gender group provides sufficient sample size. In terms of 

environmental conditions, data collection was carried out under a variety of lighting 

and venue conditions, including outdoor venues (such as sunny days, cloudy days) 

and indoor lighting environments. In order to ensure the robustness of the model, 70% 

of the data was collected in outdoor venues and 30% in indoor environments. In 

addition, lighting conditions are subdivided into three categories: strong light, weak 

light, and shadow environments, accounting for 40%, 30%, and 30% of the total data, 

respectively. Through these settings, the complex environmental conditions that may 

be encountered in reality are reflected. First, using Action Sequence Accuracy (ASA) 

and Action Smoothness Detection Time (ASDT) as indicators, each model is run 5 

times, and the results are shown in Figure 14. 
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Figure 14. ASA and ASDT test result. 

Figure 14 shows the ASA and ASDT obtained by running each model 5 times 

on the training and testing sets, respectively. ST-GCN-CAD performs the best in the 

continuous recognition test of tennis serving and receiving movements, with an 

average ASA of 93.8% and an average ASDT of 19.2 ms. AGCN shows the weakest 

performance with 84.7% ASA and 25.4 ms ASDT, and has a higher delay in 

detecting motor fluency. The performance of 2s-AGCN and MS-G3D on ASA and 
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ASDT is relatively similar, with ASA of 89.4% and 91.9% in the test set, and ASDT 

of 22.8 ms and 21.2 ms. ST-GCN-CAD reduces computational redundancy and 

improves model processing efficiency through optimized 13 skeleton points and 

network structure. It has higher accuracy and shorter detection time in continuous 

recognition of tennis serve and receive actions. Its advantage lies in its ability to 

capture fine-grained actions more accurately and process them in real-time. Finally, 

this study further expands the sample size and evaluates the model’s performance in 

recognizing complex action sequences on different dataset sizes to test its scalability 

and robustness to large-scale datasets. Table 2 shows the test results. 

Table 2. Complex action sequence recognition test results. 

Model Data size/samples CASA/% SCM/% Processing time/ms Memory usage/MB 

AGCN 

100 85.6 80.1 30.2 1049 

500 84.5 78.2 32.6 1121 

1000 82.3 74.6 35.9 1224 

2s-AGCN 

100 90.4 85.9 28.3 1098 

500 89.1 82.7 31.2 1142 

1000 87.5 80.3 34.5 1227 

MS-G3D 

100 93.8 88.2 26.1 1199 

500 92.5 86.4 29.8 1289 

1000 90.7 83.9 32.2 1378 

ST-GCN-CAD 

100 95.4 91.3 24.7 1023 

500 94.7 90.1 29.3 1108 

1000 93.5 88.7 32.7 1221 

In Table 2, there are significant differences in the performance of each model at 

different sample sizes. When the sample size is 1000, ST-GCN-CAD achieves a 

Complex Action Sequence Accuracy (CASA) of 93.5 for action combination 

recognition. The CASA of AGCN at the same scale is only 82.3%. Meanwhile, 

ST-GCN-CAD also performed well in the Sequence Continuity Maintenance (SCM) 

metric, reaching a maximum of 91.3%. Its processing time is slightly higher, at 

32.7ms. In addition, as the sample size increases, the memory usage of each model 

also increases. MS-G3D achieves a memory usage of 1378 MB at 1000 samples, but 

overall it remains reasonable. Overall, ST-GCN-CAD performs well in balancing 

accuracy and efficiency, making it suitable for complex action recognition tasks on 

large-scale datasets. 

4. Discussion 

In order to improve the recognition accuracy and the ability to handle complex 

scenes in tennis action recognition tasks, the IFaster R-CNN target detection 

algorithm, the pose estimation algorithm based on MF-PoseResNet50 and the 

ST-GCN-CAD action recognition model were researched and designed. First of all, 

compared with the lightweight single-branch Pose distillation network proposed by 

Zhang et al. [3], the MF-PoseResNet50 model significantly improves the action 
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recognition accuracy by fusing multi-scale features. On the COCO data set, the AP 

values of Zhang et al.’s method at different scales fluctuate around 70%, while the 

AP, AP50, AP75, AP (E), AP (M), and AP (L) values of MF-PoseResNet50 They are 

70.4%, 88.5%, 75.6%, 57.4%, 69.3% and 79.2% respectively. It shows that its 

advantages in target detection at different scales are more significant. This 

improvement is due to the fusion of multi-scale features, allowing the model to not 

only capture global bone structure but also better focus on local details. When the 

number of iterations reaches 500, the mAP value and IoU value of IFaster R-CNN 

are 0.91 and 0.89 respectively. 

For the ST-GCN-CAD model, compared with the multi-task model combining 

ST-GCN and YOLO proposed by Liu et al. [5], ST-GCN-CAD has better 

performance in complex scenes. Liu et al.’s model only achieved 82.3% on CASA, 

while ST-GCN-CAD achieved 93.5% and SCM achieved 91.3%. At the same time, 

its maximum running time is 35.9ms and the memory usage is 1378MB. This result 

is mainly attributed to the introduction of the channel attention module, which 

effectively enhances the model’s attention to important features, thereby showing 

stronger generalization ability and robustness in complex action sequences. It is 

worth mentioning that the structural design of the ST-GCN-CAD model gives it 

strong generalization ability and is also suitable for action recognition tasks in other 

sports. For example, when processing basketball, football and other highly dynamic 

scenes, the channel attention mechanism can effectively capture important motion 

features, while the multi-scale dilated convolution module helps the model adapt to 

actions at different scales. In addition, this structure makes the ST-GCN-CAD model 

potentially adaptable when facing different groups of people, such as different ages, 

genders, and exercise levels, which lays a good foundation for expanding the 

application scope of the model in the future. 

In summary, MF-PoseResNet50 successfully integrates the multi-scale feature 

fusion capabilities of the residual network, demonstrating excellent accuracy and 

computational efficiency. ST-GCN-CAD significantly improves the accuracy and 

robustness of action recognition through the introduction of channel attention and 

dilated convolution. Overall, it provides new research directions and technical means 

for the future action recognition field, which helps to improve the accuracy, 

robustness and wide applicability of the model in practical applications. 

5. Conclusion 

In response to the complex PEAR problem in tennis, this study proposed the 

IFaster R-CNN algorithm, the pose estimation algorithm based on 

MF-PoseResNet50, and the ST-GCN-CAD model. The experimental results show 

that the model has good loss function value and PR curve performance. The AP test 

results at different scales also show excellent detection capabilities. At the same time, 

the test results at different resolutions show that the model can effectively control the 

computational overhead while ensuring high accuracy. In the simulation test, the 

model not only achieved high-precision performance in complex scenes and body 

occlusion tests, but also showed strong adaptability in multi-target recognition and 

dynamic environments. The channel attention mechanism effectively enhances the 



Molecular & Cellular Biomechanics 2024, 21(4), 605. 
 

22 

model’s attention to important features, thereby achieving more accurate posture 

estimation and action prediction. In summary, the ST-GCN-CAD model performs 

well in processing dynamic and complex scenes, demonstrating its great application 

potential in tennis action recognition tasks. 

However, there are still some shortcomings in the research, that is, the 

performance of the model still has room for improvement when dealing with 

multi-target interference or complex backgrounds. Although the model performs well 

in tennis action recognition, its adaptability in other types of sports action 

recognition and different populations has not been fully verified. The generalization 

ability of the model still needs further discussion and testing. Future research will 

focus on the following aspects: First, further improve the performance of the model 

by introducing multimodal data fusion technology and combining athlete biosignal 

data to improve the understanding and prediction of sports behavior. Second, explore 

the application of the model in multi-athlete interaction scenarios, such as collective 

tactical analysis in team sports, which will greatly expand the scope of application of 

the model. In addition, the adaptability of the model in other sports and different 

populations will be further explored, and its generalization ability in different sports 

scenarios such as basketball and football will be verified, and the model will be 

ensured to have robust performance for different populations. Finally, the focus of 

future research will also be on how to transform the research results into practical 

sports training tools, develop real-time action recognition and feedback systems, help 

athletes optimize training strategies, and provide coaches with instant feedback, 

thereby improving training efficiency and sports performance. 
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Abbreviations 

Pose Estimation and Action Recognition PEAR 

Deep Learning DL 

Graph Convolutional Networks GCNs 

Object Detection OD 

Spatial Temporal Graph Convolutional Network ST-GCN 

Fish Swarm Algorithm FSA 

Precise Time Protocol and CNN PTP-CNN 

Faster Region-based CNN Faster R-CNN 

ST-GCN with Channel Attention and Dilated Convolution ST-GCN-CAD 

Channel Attention Module CAM) 

Multi-Scale Dilated Convolution Module MSDCM 

Human Pose Estimation HPE 

Spatial Pyramid RoI Pooling Layer SPP 

Support Vector Machine SVM 

Left and Right L&R 

Attention Module  ATT 
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Temporal Convolutional Network TCN 

Pooling layer POOL 

Fully Connected layer FC 

Batch Normalization BN 

Global Average Pooling GAP 

Mean Average Precision mAP 

Intersection over Union IoU 

Efficient Detection EfficientDet 

Higher Resolution Network HigherHRNet 

Mask Region-based CNN Mask R-CNN 

Area Under the Precision Recall Curve AUC 

Average detection Precision AP 

Frames Per Second FPS 

Adaptive GGCN AGCN 

Two-Stream AGCN 2s-AGCN 

Multi-Scale Graph Temporal Convolutional Networks MS-G3D 

Action Sequence Accuracy  ASA 

Action Smoothness Detection Time ASDT 

Complex Action Sequence Accuracy CASA 

Sequence Continuity Maintenance SCM 
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