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Abstract: Accurately predicting career development paths is crucial to enhancing 

educational guidance and aligning student outcomes with labor market demands. This study 

presents a novel approach that integrates biomechanical and behavioral data with machine 

learning techniques to forecast career paths for college students. Using a dataset of 150 

students, the study examines key biomechanical variables, such as joint angles, gait 

parameters, and ground reaction forces, alongside behavioral traits, including confidence 

levels, engagement, and personality. A Random Forest model was employed to analyze these 

multidimensional data and identify patterns predictive of career outcomes. The model 

achieved % overall accuracy of 82.57%, with individual performance metrics across four 

career categories showing substantial precision and recall. Integrating biomechanical and 

behavioral factors improved the model’s predictive power, demonstrating that physical 

attributes, when combined with traditional behavioral data, provide a more comprehensive 

understanding of career suitability. These findings have significant implications for career 

counseling, educational interventions, and workforce development, offering a data-driven 

approach to support students in making informed career decisions. 

Keywords: biomechanical and behavioral data; data-driven approach; physical attributes; 

precision; recall; biomechanical variables 

1. Introduction 

Predicting career development paths has long been a focus of educational 

research, as understanding the factors influencing students’ career decisions can 

improve guidance systems, increase employability, and align educational outcomes 

with labor market demands [1,2]. Traditionally, career predictions have relied 

heavily on psychological and behavioral assessments, such as personality traits, 

academic performance, and career aspirations [3,4]. However, advanced data 

collection technologies, combined with machine learning, have opened new avenues 

for analyzing diverse datasets, offering more nuanced predictions [5,6]. Integrating 

biomechanical data with behavioral and psychological variables presents a novel and 

comprehensive approach to career path prediction [7]. 

Biomechanical data refers to individuals’ physical attributes and movement 

patterns, such as joint angles, gait characteristics, and postural stability, which can 

offer insights into a person’s physical behavior and capabilities [8]. Traditionally 

studied in fields such as sports science and rehabilitation, these factors are now being 

applied in broader contexts, including career development [9]. Certain professions 

demand cognitive skills and specific physical attributes [10,11]. For instance, 

healthcare, engineering, or performance arts careers may require higher levels of 

physical endurance, motor skills, or ergonomic awareness. Therefore, biomechanical 
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factors can be critical predictors of career success in physically demanding 

professions [12]. 

On the other hand, behavioral data—including traits like engagement, 

confidence levels, and personality—remains a strong predictor of career choices [13]. 

Behavior-driven factors reflect how individuals interact with their environment, 

engage in teamwork, and respond to challenges [14,15]. Traits such as extraversion, 

conscientiousness, and openness have been widely documented in career literature, 

correlating with job satisfaction, career stability, and leadership potential [16]. When 

combined with biomechanical data, these behavioral insights can create a holistic 

profile of an individual, offering a more complete understanding of career suitability 

[17]. 

This study leverages Machine Learning (ML), particularly the Random Forest 

(RF) model, to integrate biomechanical and behavioral data for career path 

prediction. Machine learning models, particularly Random Forest, excel in 

identifying patterns across large, multidimensional datasets, where traditional linear 

models may struggle [18,19]. The RF is an ensemble learning technique that builds 

multiple Decision Trees (DT) and aggregates their results to improve predictive 

accuracy while controlling for overfitting [20–25]. Its ability to handle both 

continuous and categorical data and its robustness to noise and complex interactions 

makes it an ideal candidate for this research [26–30]. 

This study aims to develop a predictive model that can accurately forecast 

career paths for college students based on a combination of biomechanical and 

behavioral data. By focusing on key features such as joint angles, gait parameters, 

confidence levels, and engagement metrics, this research aims to uncover the 

multidimensional factors influencing career development. A dataset of 150 college 

students was collected to achieve this, incorporating physical assessments and self-

reported behavioral data. The study hypothesizes that integrating these diverse data 

types will enhance the precision of career predictions, offering a more detailed 

understanding of how physical and behavioral traits combine to shape career 

trajectories. 

The rest of the paper is organized as follows: Section 2 presents the 

methodology, Section 3 presents the ML and its training, Section 4 analyzes the 

results, and Section 5 concludes the paper 

2. Methodology 

2.1. Participants 

The study involved 150 college students from three universities in urban areas 

of China, focusing on diverse fields of study, including engineering, business, 

humanities, and health sciences. The participants were recruited through online 

announcements and campus flyers, ensuring a broad representation of the student 

population. The demographic characteristics of the participants were as follows: 55% 

(n = 82) were male, and 45% (n = 68) were female, reflecting a slight male 

predominance commonly observed in engineering disciplines. Participants ranged 

from 18 to 24 years, with a mean age of 20.5 (SD = 1.5). 
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In terms of academic year, 40% (n = 60) were first-year students, 30% (n = 45) 

were second-year students, 20% (n = 30) were third-year students, and 10% (n = 15) 

were in their final year. This distribution allowed for examining how career 

development paths evolve throughout the college experience. The participants came 

from various socioeconomic backgrounds, with 35% (n = 52) identifying as low-

income, 45% (n = 67) as middle-income, and 20% (n = 31) as high-income families. 

This variety was crucial for understanding the influence of socioeconomic status on 

career choices and opportunities. Regarding extracurricular involvement, 60% (n = 

90) of participants reported being active in student organizations or clubs, which 

provided additional data on their behavioral patterns and social interactions. This 

involvement is often correlated with leadership skills and teamwork experiences, 

which are critical factors in career development. 

2.2. Apparatus 

The study used advanced technologies and equipment to collect biomechanical 

and behavioral data from the participants. 

The Primary Apparatus Included: 

i. Motion Capture System: A 16-camera motion capture system (OptiTrack Flex 

13) was employed to capture the participants’ movements with high precision. 

This system enabled the analysis of various biomechanical parameters, such as 

joint angles, gait patterns, and postural stability. Markers were placed on key 

anatomical landmarks (e.g., hips, knees, ankles) to facilitate accurate tracking 

during specific tasks simulating career-related activities, such as presentations 

and collaborative discussions [31–34]. 

ii. Wearable Sensors: Each participant was equipped with a set of inertial 

measurement units (IMUs) attached to their lower limbs and torso. These 

sensors provided real-time data on acceleration, angular velocity, and 

orientation, allowing for the assessment of dynamic movements and fatigue 

levels during various physical tasks. The data collected by these sensors were 

critical for understanding how physical behavior might correlate with career 

path preferences and performance. 

iii. Behavioral Assessment Software: To evaluate behavioral aspects, a custom-

designed software application was utilized to track participants’ interactions in 

simulated environments. This application recorded speech patterns, response 

times, and engagement levels during group discussions and presentations. The 

software integrated feedback mechanisms to analyze the students’ confidence 

levels and communication skills, which are essential career development 

components. 

iv. Survey Instruments: Participants completed online questionnaires to gather 

demographic information, academic background, and career aspirations. The 

surveys also included validated scales to measure personality traits, motivation 

levels, and perceived career readiness. This multifaceted approach ensured a 

comprehensive understanding of each participant’s behavioral tendencies and 

aspirations. 
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v. Data Analysis Software: Software tools such as Python were employed to 

process and analyze the collected data. The Python ecosystem, particularly 

libraries like Scikit-learn, Pandas, and NumPy, facilitated the implementation of 

the RF-ML to model and predict potential career paths based on the integrated 

biomechanical and behavioral data. 

2.3. Measurements and variables 

This study employed a range of measurements and variables to capture college 

students’ biomechanical and behavioral data, which are essential for predicting their 

career paths. The variables were categorized into two main groups: biomechanical 

variables and behavioral variables. 

i) Biomechanical Variables 

Biomechanical data were collected through the motion capture system and 

wearable sensors. 

The key biomechanical variables included: 

• Joint Angles: Measurements of hip, knee, and ankle joint angles during various 

tasks, recorded in degrees. These angles were analyzed to assess postural 

alignment and stability, which are crucial in understanding physical behavior in 

career-related activities. 

• Gait Parameters: Stride length, cadence, and speed were measured during 

walking tasks. These metrics provided insights into the participants’ mobility 

and physical fitness levels. 

• Ground Reaction Forces (GRF): Collected using force plates, GRF 

measurements indicated the force exerted by participants during movements, 

which is essential for analyzing the impact of biomechanical factors on 

performance. 

• Fatigue Levels: Monitored through changes in gait and joint angles over time. A 

fatigue index was calculated based on the deviation of performance metrics 

from baseline measurements during physical tasks. 

ii) Behavioral Variables 

Behavioral data were gathered through the behavioral assessment software and 

online questionnaires. 

The key behavioral variables included: 

• Engagement Levels: Measured during group discussions and presentations 

through metrics such as speaking time, number of contributions, and response 

rates. These variables reflected the participants’ active involvement in social 

interactions, which is critical for career development. 

• Confidence Levels: Assessed using self-reported scales where participants rated 

their confidence in various career-related tasks (e.g., public speaking, teamwork) 

on a Likert scale ranging from 1 (not confident) to 5 (very confident). 

• Personality Traits: Measured using a validated questionnaire based on the Big 

Five personality traits (Openness, Conscientiousness, Extraversion, 

Agreeableness, Neuroticism). Each trait was scored on a scale of 1 to 5, 

providing insights into how personality influences career choices. 
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• Career Aspirations: Participants provided information on their desired career 

paths and goals through open-ended responses, which were later categorized for 

analysis. 

iii) Data Integration 

From Table 1, the integration of biomechanical and behavioral variables 

created a comprehensive dataset for analysis. Each participant’s biomechanical 

measurements were linked to their corresponding behavioral data, allowing for a 

multidimensional analysis of the factors influencing career development paths. The 

collected variables provided a robust framework for training the RF, enabling 

predictions of potential career trajectories based on physical and behavioral 

characteristics. 

Table 1. Measurements and variables used in the study. 

Variable Category Variable Description Unit 

Biomechanical 
Variables 

Joint Angles 
Measurements of hip, knee, 
and ankle angles 

Degrees (°) 

Gait Parameters 
Stride length, cadence, and 
speed 

Meters (m), steps/min 

Ground Reaction 
Forces (GRF) 

Force exerted during 
movements 

Newtons (N) 

Fatigue Levels 
Changes in gait and joint 
angles over time 

Index value (unitless) 

Behavioral Variables 

Engagement Levels 
Metrics from group 
discussions and presentations 

Count (number of 
contributions) 

Confidence Levels 
Self-reported confidence in 
career-related tasks 

Likert scale (1–5) 

Personality Traits 
Scores based on the Big Five 
personality traits 

Likert scale (1–5) 

Career Aspirations 
Desired career paths and 
goals 

Categorical (text) 

2.4. Experimental design and data collection 

The experimental design employed in this study aimed to investigate the 

relationship between biomechanical and behavioral factors and their influence on the 

career development paths of college students. A mixed-methods approach was 

utilized, integrating quantitative measurements from biomechanical assessments and 

qualitative insights from behavioral evaluations. 

2.4.1. Experimental design 

The study utilized a cross-sectional design, where data were collected from 

participants simultaneously. This approach allowed for a comprehensive analysis of 

the interactions between physical movements, behavioral patterns, and career 

aspirations. Participants engaged in tasks designed to simulate common scenarios 

encountered in professional environments, such as group discussions, presentations, 

and collaborative problem-solving activities. These tasks were structured to elicit 

biomechanical and behavioral responses, enabling a thorough analysis of how these 

factors interplay in real-world contexts. 
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2.4.2. Data collection process 

Data collection occurred over four weeks at three universities in urban areas of 

China. The recruitment process involved announcements and flyers distributed 

across various departments to ensure a diverse representation from different 

academic disciplines. Participants were carefully selected to include a balance of 

genders, ages, and fields of study, aiming for a sample that reflected the broader 

college student population. 

Once potential participants expressed interest, they were invited to an 

orientation session, where the study’s purpose, procedures, and expectations were 

explained in detail. This session emphasized the importance of their participation in 

contributing to a deeper understanding of how physical and behavioral factors 

influence career development. Each participant was required to provide informed 

consent, confirming their willingness to participate voluntarily. 

• Instruction for Participants: Before the data collection sessions, participants 

were given detailed instructions on the tasks they would be performing. They 

were informed that the study would involve physical activities and social 

interactions to simulate real-world scenarios. Specifically, participants were 

instructed to: 

• Prepare for Activities: Wear comfortable clothing suitable for movement and 

footwear that would allow for easy mobility. They were advised to avoid 

wearing accessories that could interfere with the motion capture system. 

• Engage Fully: During the simulations, participants were encouraged to engage 

authentically in discussions and presentations, treating the activities as they 

would in a professional setting. This was emphasized to ensure that the 

behavioral data collected would accurately reflect their typical responses and 

interactions. 

• Provide Honest Feedback: After completing the activities, participants were 

asked to complete questionnaires measuring their confidence levels, personality 

traits, and career aspirations. They were encouraged to answer these questions 

honestly and thoughtfully, as the information would be crucial for analyzing the 

results. 

The Motion Capture System (MCS) (OptiTrack Flex 13) was set up in a 

controlled environment to capture participants’ movements during the task 

simulations. Markers were affixed to specific anatomical landmarks to enable 

accurate tracking. During dynamic movements, inertial Measurement Units (IMU) 

were also used to collect additional biomechanical data, such as acceleration and 

angular velocity. Participants received brief training on wearing and adjusting the 

sensors to ensure comfort and accuracy during data collection. 

The behavioral assessment software recorded participants’ interactions during 

the tasks. Metrics such as speaking time, engagement levels, and response rates were 

automatically captured. Participants also completed self-reported questionnaires 

measuring confidence levels, personality traits, and career aspirations. These 

questionnaires were administered online, ensuring anonymity and encouraging 

candid responses. To assess fatigue levels, participants performed a series of 

physical tasks that increased in complexity and duration. Their biomechanical data 
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were analyzed to detect any changes in movement patterns and joint angles 

indicative of fatigue. 

Ethical approval was obtained from the institutional review boards of the 

participating universities. Participants were informed of their right to withdraw from 

the study without penalty. Data confidentiality was maintained by anonymizing 

responses and securely storing all collected data. 

3. Machine learning RF 

The RF (Figure 1) is an ensemble learning method primarily used for 

classification and regression tasks. It builds multiple DTs during training and merges 

their predictions to produce more accurate and stable results. The model leverages 

the principles of bagging (bootstrap aggregating) to enhance predictive performance 

and control overfitting. Below is a detailed description of the RF, including relevant 

expressions and equations. 

 

Figure 1. RF architecture. 

The RF constructs a collection of decision trees from a training dataset. Each 

tree is trained on a bootstrapped sample of the data, meaning that each tree is trained 

on a random subset of the training data selected with replacement. This randomness 

helps reduce the model’s variance and improve generalization to unseen data. 

Given a dataset 𝐷 with 𝑁 instances, a bootstrap sample 𝐷𝑏 for a single tree can 

be generated as follows: 

𝐷𝑏 = {(𝑥𝑖 , 𝑦𝑖) ∣ 𝑖 ∈ 𝑟𝑎𝑛𝑑𝑜𝑚_sample⁡(D, N)} (1) 

where 𝑥𝑖  represents the feature vector and 𝑦𝑖  represents the target variable. This 

process is repeated ′𝐵′ times to create ′𝐵′ different bootstrap samples, resulting in ′𝐵′ 

DT. For each bootstrap sample 𝐷𝑏, a DT, ‘𝑇𝑏′ is constructed using a random subset 

of features 𝑚 at each node. The splitting criterion used is Gini impurity, which is 

defined as: 
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Gini⁡(𝐷) = 1 −∑  

𝐶

𝑗=1

(𝑝𝑗)
2
 (2) 

where 𝑝𝑗 is the proportion of instances belonging to class 𝑗 in the dataset 𝐷, and 𝐶 is 

the total number of classes. The tree construction process involves selecting the 

feature that results in the most significant reduction in Gini impurity at each node. 

At each node of the DT, a random subset of 𝑚 features is selected (where 𝑚 <

𝑀, and 𝑀 is the total number of features). This selection is crucial for ensuring that 

the trees are decorrelated, which helps improve the robustness of the model. The 

splitting of a node is performed using the best feature from this random subset based 

on Gini impurity. 

Once all 𝐵 decision trees are constructed, predictions for a new instance 𝑥 are 

obtained by aggregating the predictions from all trees. For classification tasks, the 

final prediction is determined by the majority vote: 

𝑦̂ = mode⁡(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥)) (3) 

where 𝑇𝑏(𝑥) is the prediction of tree 𝑏 for the input instance 𝑥.The performance of 

the RF is evaluated using classification metrics such as accuracy, precision, recall, 

and F1-score. Cross-validation techniques are typically used to assess the model’s 

generalizability. 

Accuracy is defined as: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

where: 

• 𝑇𝑃 = True Positives 

• 𝑇𝑁 = True Negatives 

• 𝐹𝑃 = False Positives 

• 𝐹𝑁 = False Negatives 

One of the advantages of RF is its ability to provide insights into the importance 

of features. The importance of a feature 𝑗 can be assessed based on the decrease in 

Gini impurity that occurs when splitting nodes using that feature across all trees: 

Importance
𝑗
= ∑  

𝐵

𝑏=1

∑  

𝑛∈Nodes⁡(𝑇𝑏)

ΔGini⁡(𝑛, 𝑗) (5) 

where ΔGini⁡(𝑛, 𝑗) represents the reduction in Gini impurity when feature 𝑗 is used to 

split node 𝑛. 

The training process for the RF involves several critical steps to ensure optimal 

performance and generalization to unseen data. This section outlines the procedures 

for training the model, including the selection of hyperparameters, their significance, 

and the methods used for tuning them. 

The data preparation phase is essential before training the RF. Initially, the 

dataset is divided into training and testing sets, typically using a split of 70% for 

training and 30% for testing. This division ensures that the model can be trained on 

one subset of data while being evaluated on a separate subset to assess its predictive 
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capabilities. Feature Selection (FS) is also conducted during this phase, as the high 

dimensionality of biomechanical and behavioral data may lead to inefficiencies. 

Techniques such as Recursive Feature Elimination (RFE) or preliminary RF runs can 

guide the selection of relevant features. 

From Table 2, during the training of the RF, multiple DTs are constructed 

based on the training data. For each bootstrap sample created from the training 

dataset, a DT is built independently. The randomness introduced during training, in 

terms of data selection and FS, contributes to the diversity of the model. Additionally, 

parallelization is employed during this phase, allowing the trees to be trained 

concurrently since each tree is constructed independently. This approach accelerates 

the training process and makes it feasible to work with larger datasets. 

Table 2. hyperparameters for the RF. 

Hyperparameter Description Typical Values 

N_Estimators Number of trees in the forest. 100–500 

Max_Depth 
Maximum depth of each tree. Limiting this can 
prevent overfitting. 

10–30 

Min_Samples_Split 
A minimum number of samples is required to split an 
internal node. 

2–10 

Min_Samples_Leaf 
A minimum number of samples is required to be at a 
leaf node. 

1–5 

Max_Features 
There are several features to consider when looking 
for the best split at each node. 

“sqrt”, “log2”, or a 
fraction 

Bootstrap 
Whether bootstrap samples are used when building 
trees (sampling with replacement). 

True (default) 

The performance of the RF is significantly influenced by various 

hyperparameters that need careful tuning. Key hyperparameters include the number 

of trees (N_Estimators), which determine how many DTs are included in the forest. 

A higher number of trees generally improves model performance but increases 

computational cost. Common practice is to start with a value between 100 and 500 

and adjust based on performance. Another important hyperparameter is maximum 

depth (Max_Depth), which controls the maximum depth of each decision tree. 

Limiting the depth can prevent overfitting, especially when dealing with complex 

datasets with typical values ranging from 10 to 30. 

Minimum Samples Split (Min_Samples_Split) specifies the minimum number 

of samples required to split an internal node, helping to reduce overfitting by 

ensuring each split is based on sufficient observations. This value typically ranges 

from 2 to 10. Minimum samples leaf (Min_Samples_Leaf) sets the minimum number 

of samples that must be present in a leaf node, which helps create more robust 

models by ensuring that leaf nodes have enough samples for reliable predictions. 

Typical values are between 1 and 5. Maximum features (Max_Features) determine 

the number of features to consider when looking for the best split at each node. 

Options include “sqrt” (the square root of the number of features), “Log2,” or a 

specific integer or fraction of features, with “sqrt” often recommended for 

classification tasks. Lastly, the bootstrap parameter indicates whether bootstrap 

samples are used when building trees, and setting this to true enables the model to 
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draw samples with replacement, which is standard practice in Random Forest 

training. 

Hyperparameter tuning is critical for optimizing the RF’s performance. One 

common method is grid search, where a predefined set of hyperparameter values is 

specified, and the model is trained and evaluated for each combination. The best 

combination is selected based on cross-validated performance metrics. Alternatively, 

random search involves sampling from the hyperparameter space instead of testing 

all combinations, often proving more efficient, especially with many 

hyperparameters. K-fold cross-validation is used during the tuning process to assess 

model performance. The dataset is divided into k subsets, and the model is trained k 

times, each time using a different subset as the validation set while the remaining 

data is used for training. This process helps ensure that the model generalizes well to 

unseen data. 

After training and tuning the RF, its performance is evaluated using the testing 

dataset. Metrics such as accuracy, precision, recall, and F1-score for classification 

tasks and mean squared error for regression tasks are calculated to assess the model’s 

predictive capabilities. 

4. Results 

The analysis of biomechanical data (Table 3) provides key insights into the 

participants’ physical characteristics and movement patterns. The joint angles at the 

hip, knee, and ankle, crucial for understanding postural alignment and mobility, 

show a moderate variation across the cohort. Specifically, the hip joint angle has a 

mean of 46.92° with a standard deviation of 7.81°, indicating that the majority of 

participants exhibit similar postural patterns, though there are some outliers (ranging 

from 32.34° to 61.18°). Similarly, the knee joint angle shows a broader range, with a 

mean of 78.63° and a higher standard deviation (10.24°), suggesting more significant 

variability in knee flexion during tasks, which could be influenced by task 

complexity or fatigue. The ankle joint angle, with a mean of 32.57° and a standard 

deviation of 6.18°, reflects less variability, which may indicate consistency in foot 

positioning and lower limb stability across participants. 

Table 3. Descriptive statistics of the data. 

Variable Mean Standard Deviation (SD) Range 

Biomechanical Variables    

Joint Angles (hip) (°) 46.92 7.81 32.34–61.18 

Joint Angles (knee) (°) 78.63 10.24 57.29–97.76 

Joint Angles (ankle) (°) 32.57 6.18 21.43–43.71 

Stride Length (m) 1.38 0.27 0.92–1.88 

Cadence (steps/min) 114.22 12.47 87.34–137.89 

Walking Speed (m/s) 1.54 0.28 0.98–2.03 

Ground Reaction Forces (N) 981.56 79.61 782.91–1143.76 

Fatigue Index (unitless) 0.74 0.12 0.50–0.98 
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Table 3. (Continued). 

Variable Mean Standard Deviation (SD) Range 

Behavioral Variables    

Engagement Levels (count) 5.83 2.11 1.22–9.89 

Confidence Levels (1–5) 3.73 0.78 1.43–4.87 

Openness (1–5) 4.12 0.57 2.78–4.98 

Conscientiousness (1–5) 3.89 0.64 2.36–4.93 

Extraversion (1–5) 3.22 0.82 1.14–4.71 

Agreeableness (1–5) 3.94 0.63 2.46–4.85 

Neuroticism (1–5) 2.54 0.91 1.04–4.56 

Demographic Breakdown    

Male Participants (%) 55% - - 

Female Participants (%) 45% - - 

Academic Year (%)* - - - 

1st Year Students 40% - - 

2nd Year Students 30% - - 

3rd Year Students 20% - - 

4th Year Students 10% - - 

Socioeconomic Status (%)    

Low Income 35% - - 

Middle Income 45% - - 

High Income 20% - - 

Stride length and cadence reflect the participants’ gait characteristics. The 

average stride length is 1.38 m, with moderate variability (SD = 0.27 m), suggesting 

differences in walking styles or leg length among participants. The cadence (steps 

per minute) shows more significant variability, with a mean of 114.22 steps/min and 

a standard deviation of 12.47 steps/min, ranging from 87.34 to 137.89 steps/min. 

This wide range could be influenced by varying levels of physical fitness, with a 

faster cadence indicating more dynamic movement patterns. 

The walking speed, with a mean of 1.54 m/s (SD = 0.28 m/s), falls within the 

typical range for young adults, though some participants exhibited slower speeds, 

which may indicate fatigue or less physical activity. The ground reaction forces 

(GRF), which measure the force exerted during movement, averaged 981.56 N, with 

variability (SD = 79.61 N), indicating a mix of participants exerting different levels 

of force during tasks, perhaps reflecting differences in weight or movement intensity. 

Finally, the fatigue index, with a mean of 0.74 (SD = 0.12) and a range from 0.50 to 

0.98, suggests that participants experienced varying levels of fatigue, which may 

have affected their movement patterns and stability. 

Behavioral characteristics play a significant role in predicting career paths. 

Participants’ engagement levels, which measure their active involvement in group 

discussions and presentations, showed moderate variation, with a mean of 5.83 (SD 

= 2.11) and a wide range from 1.22 to 9.89. This suggests that while many 

participants were highly engaged, others may have been less involved, which could 
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be linked to their confidence levels or personal traits. The confidence levels, 

measured on a Likert scale, averaged 3.73 (SD = 0.78), indicating that most 

participants felt moderately confident during career-related tasks, though some 

outliers demonstrated lower or higher self-assessed confidence. 

The analysis of personality traits provides further insights. Openness, with a 

mean of 4.12 (SD = 0.57), was the highest-rated personality trait, suggesting that 

participants generally perceived themselves as open to new experiences and learning. 

Conscientiousness also ranked highly, with a mean of 3.89 (SD = 0.64), reflecting 

the participants’ tendency towards discipline and task responsibility. Extraversion, 

however, was rated slightly lower, with a mean of 3.22 (SD = 0.82), indicating that 

while some participants were outgoing and sociable, others were more reserved 

during group activities. Agreeableness, with a mean of 3.94 (SD = 0.63), reflects a 

positive tendency towards cooperation and teamwork among the participants, which 

is crucial in career-related activities. Neuroticism, with a mean of 2.54 (SD = 0.91), 

was the lowest-scoring trait, indicating that most participants exhibited emotional 

stability during tasks, though a subset experienced higher stress or anxiety levels. 

The demographic breakdown reveals the composition of the participant group. 

The gender distribution was reasonably balanced, with 55% male and 45% female 

participants. This balanced distribution provides a representative analysis of how 

gender may influence biomechanical and behavioral career development factors. 

Regarding the academic year, the most significant proportion of participants were 

first-year students (40%), followed by second-year students (30%), third-year 

students (20%), and a smaller group of fourth-year students (10%). This distribution 

explores how career development perceptions change as students’ progress through 

their academic journeys. In terms of socioeconomic status, most participants 

identified as middle-income (45%), followed by low-income (35%) and high-income 

(20%) groups. This variety in socioeconomic backgrounds is vital for analyzing how 

access to resources and opportunities may influence career aspirations and readiness. 

The performance of the RF (Table 4 and Figure 2) in predicting career 

development paths is notably strong, with an overall accuracy of 82.57% across the 

four career categories. This indicates that the model could correctly predict career 

paths for most participants, demonstrating its effectiveness in handling the 

complexity of the biomechanical and behavioral data. 

Table 4. Model performance metrics of the RF. 

Metric Career Category 1 Career Category 2 Career Category 3 Career Category 4 Overall/Weighted Average 

Accuracy 84.12% 81.75% 80.56% 85.89% 82.57% 

Precision 84.21% 81.35% 78.62% 85.76% 82.36% 

Recall 81.93% 79.12% 76.45% 87.28% 81.20% 

F1-Score 83.05% 80.21% 77.51% 86.51% 81.82% 
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Figure 2. Performance metrics analysis. 

Looking at the individual categories, Career Category 4 achieved the highest 

accuracy at 85.89%, suggesting that the model found this category to be the most 

distinguishable. This could be due to more distinct patterns in the data related to 

physical or behavioral traits for this career path. Similarly, Career Category 1 also 

showed strong performance, with an accuracy of 84.12%, indicating the model’s 

ability to capture the characteristics of students in this category effectively. In 

contrast, Career Categories 2 and 3 had slightly lower accuracies, at 81.75% and 

80.56%, respectively, suggesting that these categories may share more overlapping 

features, making it more challenging for the model to differentiate between them. 

In terms of precision, which measures the proportion of true positive predictions 

among all optimistic predictions, the model performed well, with an overall value of 

82.36%. Precision was highest for Career Category 4 (85.76%), again highlighting 

the model’s effectiveness in identifying this category. For Career Category 1, 

precision was similarly high at 84.21%, while Career Categories 2 and 3 had lower 

precision values at 81.35% and 78.62%, respectively, indicating a greater likelihood 

of false positives in these categories. 

The recall, or the ability of the model to correctly identify true positive 

instances, showed an overall value of 81.20%. Career Category 4 had the highest 

recall at 87.28%, suggesting that the model was particularly adept at capturing the 

true instances of this category. The recall for Career Category 1 was 81.93%, slightly 

lower than its precision, indicating that while the model was good at predicting this 

category, it may have missed some true instances. Career Categories 2 and 3 had 

lower recall values at 79.12% and 76.45%, reflecting some difficulty in correctly 

identifying all true instances of these career paths. 

The F1-score, which balances precision and recall, had an overall value of 

81.82%, showing a solid balance between the two metrics across all categories. The 

F1-score was highest for Career Category 4 (86.51%), further reinforcing the 

model’s strong performance in predicting this career path. The F1 scores for Career 

Categories 1, 2, and 3 were 83.05%, 80.21%, and 77.51%, respectively, suggesting a 

slightly lower but still respectable ability to predict these categories effectively. 

The confusion matrix (Figure 3) provides further insight into the model’s 

performance by showing each career category’s correct and incorrect predictions. 
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Career Category 1 had the highest number of correct predictions, with 210 out of 247 

actual instances predicted accurately. However, 17 instances of Career Category 1 

were misclassified as Career Category 3 and 12 as Career Category 2, indicating 

some confusion between these categories, possibly due to similar behavioral or 

biomechanical patterns. Only 8 instances were incorrectly predicted as Career 

Category 4, suggesting that the model could more clearly distinguish Category 4 

from Category 1. 

 

Figure 3. Confusion matrix for career path predictions. 

For Career Category 2, the model correctly predicted 189 out of 235 instances, 

but 20 were misclassified as Career Category 3 and 15 as Career Category 1, 

showing that Career Category 2 shared overlapping features with the others. 

Similarly, Career Category 3 had 182 correct predictions out of 223. However, the 

largest source of confusion for this category came from misclassification as Career 

Category 2 (18 instances), suggesting that these two categories may be closely 

related regarding the features captured by the model. 

Finally, Career Category 4 had 199 correct predictions out of 236, with the 

fewest misclassifications overall. Only 15 instances were incorrectly classified as 

Career Category 3, and fewer misclassifications were seen with Categories 1 and 2. 

This further supports the conclusion that Career Category 4 had more distinct 

characteristics that were easier for the model to recognize. 

The ranking of feature importance (Table 5 and Figure 4) from the Random 

Forest model highlights the critical role that both biomechanical and behavioral 

factors play in predicting career development paths. At the top of the list is 

Confidence Levels, with an importance score of 0.185, making it the most influential 

factor in career prediction. This suggests that students’ self-reported confidence in 

career-related tasks such as public speaking, teamwork, and presentations has a 

strong predictive power, indicating that individuals with higher confidence levels are 

more likely to follow specific career paths. 
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Table 5. Ranking of feature importance. 

Rank Feature Feature Category Importance Score 

1 Confidence Levels Behavioral 0.185 

2 Joint Angles (Hip) Biomechanical 0.142 

3 Engagement Levels Behavioral 0.137 

4 Ground Reaction Forces (GRF) Biomechanical 0.126 

5 Stride Length Biomechanical 0.114 

6 Openness (Personality Trait) Behavioral 0.092 

7 Gait Cadence Biomechanical 0.081 

8 Conscientiousness Behavioral 0.073 

9 Neuroticism Behavioral 0.050 

10 Fatigue Levels Biomechanical 0.045 

 

Figure 4. Feature importance. 

Joint Angles (Hip) is closely followed, a biomechanical feature, with an 

importance score of 0.142. This indicates that physical posture and movement 

patterns significantly influence career path predictions, particularly at the hip. It 

suggests that certain physical attributes or movement efficiencies may correlate with 

specific career types, perhaps those requiring physical activity or performance-based 

tasks. Engagement Levels ranked third with an importance score of 0.137, 

underscoring the significance of active participation in group discussions and 

presentations. This feature reflects how involvement in social interactions and 

teamwork contributes to career development, suggesting that those who engage more 

actively in such activities are more likely to follow particular career paths. 

GRF and Stride Length ranked fourth and fifth, with scores of 0.126 and 0.114, 

respectively. These biomechanical variables reflect how physical stability and gait 

patterns during tasks contribute to career path predictions, particularly in careers that 

require physical performance or precision. These features highlight the role of 

physical behavior in career development, particularly for physically demanding 

careers. 

Behavioral features like Openness (0.092) and Conscientiousness (0.073) from 

the Big Five personality traits also rank high, suggesting that personality plays a 

significant role in shaping career paths. Students with higher openness and 

conscientiousness scores may be more inclined to pursue certain professions that 

align with creativity, responsibility, and innovation. Gait Cadence (0.081) and 
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Fatigue Levels (0.045) also contributed to career path predictions, with gait cadence 

reflecting the efficiency of movement and fatigue levels indicating the impact of 

endurance on career performance. Interestingly, Neuroticism (0.050) was the lowest-

scoring personality trait, indicating that emotional stability has a less pronounced, 

but still notable, effect on career path predictions. 

The cross-validation results from the 10 folds (Table 6 and Figure 5) 

demonstrate the model’s robustness and consistency across different subsets of data. 

Fold 8 had the highest performance across all metrics, with an accuracy of 84.37%, 

precision of 83.94%, recall of 82.64%, and an F1-score of 83.29%. This indicates 

that the model performed exceptionally well in this fold, correctly predicting a 

higher proportion of career paths and balancing precision and recall effectively. Fold 

5 also showed strong performance, with an accuracy of 84.08% and a balanced F1-

score of 83.05%, reflecting high predictive power for this subset. The consistently 

high precision values across most folds suggest that the model correctly predicted 

many true positives for each career category. 

Table 6. Performance metrics across 10 folds. 

Fold Accuracy Precision Recall F1-Score 

Fold 1 83.14% 82.76% 81.82% 82.28% 

Fold 2 81.76% 81.21% 80.17% 80.68% 

Fold 3 83.32% 83.14% 81.96% 82.54% 

Fold 4 82.51% 82.03% 81.11% 81.57% 

Fold 5 84.08% 83.85% 82.27% 83.05% 

Fold 6 82.02% 81.56% 80.74% 81.15% 

Fold 7 81.67% 81.42% 80.36% 80.88% 

Fold 8 84.37% 83.94% 82.64% 83.29% 

Fold 9 82.26% 82.11% 81.24% 81.67% 

Fold 10 82.65% 82.24% 81.44% 81.83% 

 

Figure 5. 10-fold validation. 

The lowest performance was observed in Fold 7, with an accuracy of 81.67%, 

precision of 81.42%, and an F1-score of 80.88%, although the overall drop was 

minimal. The slight variance across folds (with accuracy ranging between 81.67% 
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and 84.37%) shows that the model generalizes well, maintaining high performance 

across different data splits, which is crucial for its reliability. Despite some 

fluctuation across folds, the model’s performance remains stable, with low standard 

deviations. The average metrics across all folds confirm that the Random Forest 

model effectively predicts career paths based on biomechanical and behavioral data, 

maintains a balance between precision and recall and ensures consistent predictive 

accuracy. This robustness indicates that the model is well-suited for generalization to 

new data, making it a robust tool for career path predictions. 

The Training vs Test Accuracy (Figure 6) provides valuable insight into how 

the Random Forest model’s performance improved over the 100 epochs. The training 

accuracy shows a steady and consistent improvement, starting at around 0.5 and 

gradually rising to approximately 0.95 by the end of the 100 epochs. This indicates 

that the model was effectively learning and adjusting its parameters to fit the training 

data, significantly improving its predictive power. 

 

Figure 6. Training vs test accuracy. 

The test accuracy curve follows a similar upward trajectory with slight 

fluctuations. The test accuracy starts around 0.5 and rises to approximately 0.85. The 

fluctuations observed in the test accuracy are expected, as the model is being 

evaluated on unseen data, which introduces more variability compared to the training 

set. The fact that test accuracy consistently improves alongside the training accuracy, 

without a significant drop-off or plateau, indicates that the model is generalizing well 

to new data and is not overfitting. 

The Training vs Test Loss (Figure 7) reveals how the model’s loss function 

evolves over the training process. The training loss begins high, around 1.5, and 

steadily decreases as the epochs progress, dropping below 0.2 by the final epoch. 

This decreasing trend reflects the model’s ability to minimize the error in the training 

data as it fine-tunes its parameters over time. The continuous reduction in training 

loss indicates that the model is learning effectively and becoming more accurate in 

its predictions. 

Similarly, the test loss decreases, though it starts slightly higher at 1.6 and 

shows more fluctuations than the training loss. By the 100th epoch, the test loss 

reaches around 0.4, but the fluctuations observed throughout the process highlight 

the challenges of generalizing to unseen data. These fluctuations suggest that while 

the model is learning effectively, the test data introduces more variability, possibly 

due to differences in the complexity or patterns within the test set. Notably, the test 
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loss does not rise significantly toward the end, which is a positive sign that the model 

is not overfitting and continues to generalize well to new data. 

 

Figure 7. Training vs test loss. 

5. Conclusion and future work 

This study demonstrates the effectiveness of integrating biomechanical and 

behavioral data to predict career development paths using an RF-ML. The results 

highlight the importance of considering physical attributes and behavioral traits in 

career prediction, as each provides unique insights into a student’s potential career 

trajectory. The model’s performance, with an overall accuracy of 82.57% and vital 

metrics across precision, recall, and F1-score, confirms the feasibility of this 

approach in offering more personalized and data-driven career guidance. Key 

features such as confidence levels, joint angles, and engagement were the most 

significant predictors, underscoring the value of multidimensional data in 

understanding career outcomes. The study also illustrated how physical factors like 

gait and posture, often overlooked in career prediction, can influence career 

suitability, particularly in physically demanding professions. The implications of this 

research extend to career counseling and educational planning, where a deeper 

understanding of how behavioral and biomechanical factors intersect could lead to 

more targeted interventions and guidance. 

Future research could refine this model by incorporating additional variables or 

expanding the dataset to include more diverse student populations. In conclusion, 

integrating biomechanical and behavioral data provides a more holistic approach to 

predicting career paths, with machine learning offering powerful tools for 

uncovering complex patterns in multidimensional datasets. This study offers a 

promising foundation for future innovations in career guidance systems, supporting 

students in making more informed and personalized career decisions. 
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