
Molecular & Cellular Biomechanics 2024, 21(3), 631. 

https://doi.org/10.62617/mcb631 

1 

Article 

Blind source separation algorithm for biomedical signal based on lie group 

manifold 

Daguang Cheng
1
, Mingliang Zheng

1,2,*
 

1 School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan 232038, China 
2 Human-computer collaborative robot Joint Laboratory of Anhui Province, Huainan 232038, China 

* Corresponding author: Mingliang Zheng, zhmlwxcstu@163.com 

Abstract: Independent Component Analysis (ICA) is a powerful tool for solving blind 

source separation problem in biomedical engineering. The traditional ICA algorithm ignores 

the Lie group structure of constrained matrix manifold. In this paper, a gradient descent 

algorithm on Lie group manifold is proposed based on the geometric framework of 

optimization algorithm on Riemann manifold. Firstly, the orthogonal constraint separation 

matrices are regarded as a Lie group manifold, and the gradient of ICA objective function on 

the Lie group manifold is given by using Riemann metric; Secondly, the geodesic equation of 

the current iteration point along the gradient descent direction is calculated; Finally, a new 

iteration point is obtained by moving a certain step along the geodesic line, meanwhile, the 

step length can be adjusted adaptively. Simulation results show that the gradient algorithm on 

Lie group manifold is feasible for blind Source Separation, and its performance (convergence 

speed, stability and error) is better than other algorithms. 
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1. Introduction 

Functional studies in molecular biology show that the majority of genes have 

pleiotropic function. Almost every gene can respond to a variety of distinct external 

signals. Linear factorisation methods have an intrinsic way to associate a gene 

(sensor) to several sources of signal (biological functions) which makes it a suitable 

tool for analysis of complex biological data. Moreover, since the linear factorization 

methods are based on some kind of averaging of the data (calculating data moments), 

they are intrinsically more stable to the presence of high levels of noise in the data 

and partial removal of samples, if compared to the agglomerative clustering 

methods. Blind source separation refers to the process of recovering each source 

signal from only partial prior knowledge of the observed signal and the source 

signal, when both the source signal and the transmission signal channels are 

unknown. Independent component analysis (ICA) is an effective method for blind 

signal separation, which is a new signal processing technology in modern times [1–

4]. It satisfies the principle of statistical independence, optimizes the objective 

function through various algorithms, and obtains the estimation components for 

source signals, which are independent and non-Gauss distribution. At present, ICA 

algorithms are mainly divided into batch algorithms and adaptive algorithms. Batch 

algorithms, such as FastICA algorithm [5] and Joint diagonalization algorithm [5], 

have good numerical stability, but are not suitable for real-time update of observation 

data. Adaptive algorithms, such as EASI algorithm [6] and Natural gradient ICA 
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algorithm [7], have less computational complexity and online learning ability, but the 

convergence and stability are greatly affected by the learning step. It is worth noting 

that under the basic assumption of ICA, the separation matrix is constrained by 

orthogonality, which is equivalent to the white signal. The traditional ICA learning 

algorithms do not make use of the fact that the constraint set is a Riemannian 

manifold, which causes the separation matrix to have a large amount of computation 

and instability in the iterative process. ICA is an optimization problem with manifold 

constraints. If this constraint is treated as an equality constraint, the numerical 

calculation effect may not be very good. Therefore, the nonlinear constrained 

optimization problem of ICA is transformed into an optimization problem on a 

Riemannian manifold, which will be very reasonable and efficient. 

In recent years, optimization algorithms on manifolds [8–12] have become an 

important research direction in the field of nonlinear programming, and have been 

successfully applied in many fields such as pattern recognition, image processing, 

blind source separation, and biomedical signal processing. Optimization algorithms 

on manifolds treat constraint sets as manifolds, thus transforming traditional 

constrained optimization problems into unconstrained optimization problems.The 

Riemannian manifold optimization framework on manifolds can effectively deal 

with nonlinear optimization problems with constraints. It can unify constrained and 

unconstrained models on Euclidean space. Edelman [13] proposed the Newton 

format and conjugate gradient format on stiefel manifold; Zhang [14] studied the 

gradient algorithm on stiefel manifold and its application in feature extraction; Song 

[15] studied the optimization method on Riemann manifold to solve sparsity PCA; Li 

[16] studied the interference alignment scheme based on the conjugate gradient 

algorithm on grassmanian manifold, however, the gradient algorithm on manifold for 

ICA is rarely reported. Based on the geodesic flow tool on Riemannian manifold, 

this paper proposes a gradient algorithm on Lie group manifold, which has adaptive 

adjustment of step size and guaranteed orthogonal constraints. We established a line 

search method on the Lie group manifold and provided a detailed explanation of the 

determination and calculation method of the descent direction of non-smooth 

functions on the Lie group manifold in the algorithm steps. This paper also verified 

the convergence and feasibility of the algorithm through numerical experiments. 

2. Materials and methods 

This paper deals with the phenomenon that the traditional natural gradient 

algorithm in signal blind source separation is poor stability and poor separation 

performance. This paper proposes an improved gradient descent algorithm on Lie 

group manifold based on the geometric framework of manifold optimization 

algorithms. Firstly, the orthogonal constraint separation matrices are regarded as a 

Lie group manifold, and the gradient of ICA objective function on the Lie group 

manifold is given by using Riemann metric; Secondly, the geodesic equation of the 

current iteration point along the gradient descent direction is calculated; Finally, a 

new iteration point is obtained by moving a certain step along the geodesic line, 

meanwhile, the step length can be adjusted adaptively.  
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3. Results and discussion 

Research has shown that the gradient algorithm on Lie group manifold is 

feasible for blind Source Separation, and its performance (convergence speed, 

stability and error) is better than other algorithms. This algorithm not only effectively 

estimates the mixing matrix, but also has good separation performance for signals 

with appropriately reduced sparsity requirements. 

3.1. Optimization model of ICA 

The model for blind source separation of signals is shown in Figure 1. 

Assuming the number of source signals is 𝑛, the linear instantaneous mixing model 

in the determined state is denoted as  𝑠(𝑡) = [𝑠1(𝑡) 𝑠2(𝑡) ⋯ 𝑠𝑛(𝑡)]𝑇 . After 

passing through a linear time invariant channel, the source signal𝒔(𝑡) is received by 

m-receiving terminals and becomes an observed mixed signal 𝑥(𝑡) =

[𝑥1(𝑡) 𝑥2(𝑡) ⋯ 𝑥𝑚(𝑡)]𝑇, which are the linear mixture of source signals 𝑠(𝑡). 

Due to the model being in a deterministic state, so𝑛 = 𝑚. The relationship between 

the 𝑥(𝑡) and the 𝑠(𝑡) can be expressed as: 

𝑥(𝑡) = 𝐴𝑚×𝑛𝑠(𝑡) (1) 

here 𝐴 is a mixture matrix, each component of 𝑠(𝑡) is a random variable with zero-

mean. 

 

Figure 1. Model for blind source separation of signals. 

The purpose of ICA is to find the separation matrix𝑊under the condition of 

unknow mixture matrix 𝐴 and unkonw source signals  𝑠(𝑡) , so as to make each 

element  𝑦𝑖(𝑡) of the estimation  y(𝑡)  for source signals  𝑠(𝑡)  mutually statistically 

independent. 

𝑦(𝑡) = 𝑊𝑛×𝑛𝑥(𝑡) = 𝑊𝐴𝑠(𝑡) (2) 

The solution process of ICA is actually an optimization process, which can be 

realized by data preprocessing, constructing objective function and establishing 

optimization algorithm. 

1) Data preprocessing:  

① Centralize observation variables, that is: 



Molecular & Cellular Biomechanics 2024, 21(3), 631.  

4 

�̄� = 𝑥 − 𝐸(𝑥) (3) 

② Whitening, looking for linear transformation 𝑧 = 𝑉𝑛×𝑛�̄�, where𝑉satisfies: 

𝑉 = 𝐷−1/2𝑅𝑇 , 𝐸(�̄��̄�𝑇) = 𝑅𝐷𝑅𝑇  (4) 

Whitening can remove the second-order correlation among the components of 

mixed signal and simplify the mixed matrix𝐴into a new orthogonal matrix�̃�, that is 

𝐸(𝑧𝑧𝑇) = 𝐼, �̃� = 𝑉𝐴, �̃�𝑇�̃� = 𝐼. 

2) Objective function: the probability density of output signal 𝑦(𝑡) is𝑝𝑦(𝑦, 𝑊), the 

probability density of Gauss signal is 𝑝𝑦(𝑦𝑔𝑎𝑢𝑠𝑠), and the negentropy is: 

𝐽(𝑦1, 𝑦2, . . . , 𝑦𝑛) = ∫ 𝑝𝑦(𝑦, 𝑊) 𝑙𝑛 𝑝𝑦 (𝑦, 𝑊)𝑑𝑦 − ∫ 𝑝𝑦(𝑦𝑔𝑎𝑢𝑠𝑠)lny𝑔𝑎𝑢𝑠𝑠 𝑙𝑛 𝑑 𝑦 = 𝐻(𝑦𝑔𝑎𝑢𝑠𝑠) − 𝐻(𝑦, 𝑊) (5) 

3) Optimization mode: because the source signal𝐬(𝑡) has unit variance, we hope 

that the estimated signal𝐲(𝑡) should also have unit variance, that is𝐸(𝐲𝐲𝑇) = 𝐈. 

At the same time, because the observed signal 𝐳 is whitened, we get the 

important property of the separation matrix 𝑊 which is that the separation 

matrix𝑊should be orthogonal, that is: 

𝐸(𝑦𝑦𝑇) = 𝐸(𝑊𝑧𝑧𝑇𝑊𝑇) = 𝑊𝐸(𝑧𝑧𝑇)𝑊𝑇 = 𝑊𝐼𝑊𝑇 = 𝑊𝑊𝑇 = 𝐼 ⇒ 𝑊𝑇𝑊 = 𝐼 (6) 

Therefore, the optimization model of ICA problem is a non-convex 

optimization problem on the orthogonal constraint matrix manifold, that is: 

min
𝑊∈𝑅𝑛×𝑛

   𝐽(𝑊) 

𝑠. 𝑡.         𝑊𝑇𝑊 = 𝐼 
(7) 

3.2. Gradient algorithm on Lie group manifold 

The feasible region in Equation (7) is 𝑂(𝑛, 𝑅) = {𝑊 ∈ 𝐺𝐿(𝑛, 𝑅)|𝑊𝑇𝑊 = 𝐼}, 

which is a Lie group manifold, Its local coordinate system in Euclidean space 

is𝑞1, 𝑞2, . . . 𝑞𝑛 , the Riemann metric is 𝑔 = 𝑔𝑖𝑗
𝜕

𝜕𝑞𝑖
⊗

𝜕

𝜕𝑞𝑗
, the tangent vector space of 

its point𝑊is𝑇𝑊𝑂, so the inner product is: 

⟨𝑀, 𝑁⟩𝑊 = 𝑔𝑊(𝑀, 𝑁) = 𝑡𝑟(𝑀𝑇𝑁), 𝑀, 𝑁 ∈ 𝑇𝑊𝑂 (8) 

Therefore, the Riemannian gradient of objective function on Lie group manifold 

is: 

𝑔𝑟𝑎𝑑𝑊
𝑂 𝐽 =

1

2
(𝑔𝑟𝑎𝑑𝑊𝐽 − 𝑊(𝑔𝑟𝑎𝑑𝑊𝐽)𝑇𝑊) 

𝑔𝑟𝑎𝑑𝑊𝐽 = 𝛻𝐽𝑊𝑇𝑊 

(9) 

here 𝛻𝐽 is the normal gradient of 𝐽 on Euclidean space. 

Then the geodesic equation at the point𝑊along the direction 𝐻 = −𝑔𝑟𝑎𝑑𝑊
𝑂 𝐽 on 

Lie group manifold is: 
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𝛾(𝑡) = 𝑊𝑋(𝑡) + 𝑄𝑌(𝑡); 

[
𝑋(𝑡)

𝑌(𝑡)
] = 𝑒𝑥𝑝 𝑡 [𝐿 −𝑈𝑇

𝑈 0
] [

𝐼
0

] 
(10) 

here 𝐿 = 𝑊𝑇𝐻 is skew-symmetric matrix, 𝑄, 𝑈 are QR decomposition matrices of 

(𝐼 − 𝑊𝑊𝑇)𝐻. 

To sum up, the steps of gradient descent method on Lie group manifold are as 

follows: 

(1) Given initial point 𝑊0 , termination constant 𝜀 > 0 and initial step size 𝑡0 , 

firstly𝑘 = 0; 

(2) Calculating𝑔𝑟𝑎𝑑𝑊
𝑂 𝐽 , if ‖𝑔𝑟𝑎𝑑𝑊

𝑂 𝐽(𝑊𝑘)‖
2

= 𝒈𝑊(𝑔𝑟𝑎𝑑𝑊
𝑂 𝐽(𝑊𝑘), 𝑔𝑟𝑎𝑑𝑊

𝑂 𝐽(𝑊𝑘)) 

= 𝑡𝑟((𝑔𝑟𝑎𝑑𝑊
𝑂 𝐽(𝑊𝑘))𝑇(𝑔𝑟𝑎𝑑𝑊

𝑂 𝐽(𝑊𝑘))) ≤ 𝜀 , stop iteration and output 𝑊𝑘 , 

otherwise enter (3); 

(3) The iteration format at 𝑊𝑘 along 𝐻 = −𝑡𝑘𝑔𝑟𝑎𝑑𝑊
𝑂 𝐽 is: 

𝑊𝑘+1 = 𝑊𝑘𝑋(𝑡𝑘) + 𝑄𝑌(𝑡𝑘) (11) 

(4) Adaptive adjustment step size, if  𝐽(𝑊𝑘) > 𝐽(𝑊𝑘+1) , so  𝑘 = 𝑘 + 1, 𝑡𝑘+1 =

𝛼𝑡𝑘 , 𝛼 > 1, back to step (2), otherwise  𝐽(𝑊𝑘) < 𝐽(𝑊𝑘+1),so  𝑘 = 𝑘 + 1, 𝑡𝑘 =

𝛼𝑡𝑘 , 𝛼 < 1, back to step (3). 

The movement of iteration point in gradient descent method on Lie group 

manifold can be seen in Figure 2. 

 

Figure 2. The movement of iteration point in gradient descent method on Lie group 

manifold. 

Under certain conditions, it can be proved that the above gradient algorithm is 

convergent.  

The proof process is long, which can be referred to reference [17]. 

The brief paragraph for the algorithm steps is in Figure 3. 
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Figure 3. The diagram outlining the algorithm. 

3.3. Simulation results 

There are four source signals that are sine wave, square wave, sawtooth wave 

and stochastic wave, see Figure 4. All elements of the mixed matrix 𝐴 meet the 

uniform distribution of (−1,1), see Figure 5 for the observed signal. 

  
(a) Sine (b) Square 

  
(c) Sawtooth (d) Stochastic 

Figure 4. Source signal waveform. 
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(a) Sine (b) Square 

  
(c) Sawtooth (d) Stochastic 

Figure 5. Observation signal waveform. 

It can be seen from Figure 5 that the mixed observation signal has been 

centralized. 

The objective function 𝐽(𝑦, 𝑊) of ICA based on negentropy can be expressed as 

follows: 

𝐽(𝑊) = −
1

2
𝑡𝑟(𝑊𝑇𝐺𝑊), 𝐺 = 𝐸(𝑥𝑥𝑇) (12) 

The corresponding gradients on Euclidean space and Lie group manifold are: 

𝜕𝐽

𝜕𝑊
= 𝐺𝑊 

𝑔𝑟𝑎𝑛𝑑𝑊
𝑂 𝐽 = 𝐺𝑊 − 𝑊𝑊𝑇𝐺𝑊 

(13) 

Initial separation matrix is eye 𝑊0 = 𝐼4×4, initial step size is𝑡0 = 0.0015, the 

final optimal solution is obtained by using the iterative scheme Equation (11) on Lie 

group manifold: 

𝑊1448
∗ = [

−0.1745 0.2621 −0.7307 −0.6057
−0.5951 −0.7904 −0.1452 0.0046
0.7329 −0.4642 −0.4718 0.1572
0.2798 0.3017 −0.4715 0.7800

] (14) 

The optimal solution Equation (14) also satisfies the first-order optimality 

condition of manifold optimization, that is 𝑔𝑟𝑎𝑛𝑑𝑊
𝑂 𝐽(𝑊∗) ≈ 0. 

Then the optimal separation signal is shown in Figure 5. It can be seen from 

Figure 6 that the gradient algorithm on Lie group manifold can separate the mixed 

signals effectively and accurately, but the order and symbol of signals have changed. 
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(a) Sine (b) Square 

  

(c) Sawtooth (d) Stochastic 

Figure 6. Separation signal. 

The common evaluation metric for blind source separation algorithms is 

“crosstalk error” [18]. The performance of algorithm is measured by 𝑃𝐼: 

𝑃𝐼 = ∑(∑
|𝑐𝑖𝑗|

𝑚𝑎𝑥
𝑘

|𝑐𝑖𝑘|

4

𝑗=1

4

𝑖=1

− 1) + ∑(∑
|𝑐𝑖𝑗|

𝑚𝑎𝑥
𝑘

|𝑐𝑘𝑗|

4

𝑖=1

4

𝑗=1

− 1) (15) 

here [𝑐𝑖𝑗] = [𝑊 ⋅ 𝐴]𝑖𝑗 , the𝑃𝐼is the smaller, the statistical performance of separation 

algorithm is the better. Comparing the natural gradient ICA algorithm with fixed step 

size [19] and the simulation degradation algorithm [20], the iteration trend of𝑃𝐼is 

shown in Figure 7. 

 

Figure 7. Comparison of PI of three algorithms. 
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It can be seen from Figure 7 that the algorithm based on Lie group manifold 

gradient has faster convergence speed in the early stage of iteration. At the same 

time, after the iteration is relatively stable, the natural gradient algorithm with fixed 

step length has discontinuous fluctuation jump, the convergence error of simulation 

degradation algorithm is slightly larger than that of the gradient algorithm on Lie 

group manifold, so the algorithm in this paper is more stable and the steady-state 

error is smaller. 

5. Conclusion 

The traditional ICA algorithms do not make full use of the Lie group structure 

of orthogonal constraint separation matrices, and the stability and convergence of 

algorithm are greatly affected by the learning step. Therefore, this paper introduces 

the Lie group manifold gradient and adaptive adjustment step. A gradient algorithm 

framework on the orthogonal group is obtained based on the Riemann manifold 

optimization algorithm with geodesic. The simulation of blind source separation 

shows that the gradient algorithm based on Lie group manifold with geodesic to 

construct iterative scheme, which has faster convergence speed than the natural 

gradient algorithm with fixed step size and the simulated annealing bionic algorithm, 

and the stability of algorithm and the accuracy of separation are greatly improved. 
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