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Abstract: This study investigates the effectiveness of integrating Motion Analysis (MA) and 

Intelligent Speech Feedback Systems (ISFS) to enhance English Pronunciation (EP) accuracy 

among Chinese learners. Leveraging the OptiTrack Prime 13 Motion Capture System (MCS) 

and SpeechAce Pronunciation API, the study aims to address challenges non-native English 

speakers face, particularly in producing accurate articulatory movements and reducing 

Pronunciation Errors. Forty-three participants were divided into Experimental Groups (EG) 

and Control Groups (CG), with the EG receiving real-time feedback on articulation and 

phoneme accuracy. Key metrics, including Pronunciation Accuracy Score (PAS), Articulatory 

Movement Score (AMS), and Pronunciation Error Rate (PER), were measured alongside 

engagement indicators, such as session duration and self-corrections. The results show that the 

EG experienced a significant improvement in pronunciation accuracy, with a 31.2% increase 

in PAS and a 57.1% reduction in PER. Enhanced AMS scores also indicated refined 

articulatory precision across various articulatory points, including lip rounding and tongue 

positioning. Engagement metrics demonstrated higher consistency and task completion rates 

in the EG, suggesting increased motivation and sustained participation due to the real-time 

feedback provided. These findings suggest that combining MA with ISFS can provide targeted, 

adaptive support, enabling learners to make precise corrections and accelerate their progress in 

achieving native-like pronunciation. This study contributes valuable insights into the potential 

of advanced feedback-driven approaches in language learning and pronunciation training. 

Keywords: Motion Analysis; Intelligent Speech Feedback; articulatory precision; 

Pronunciation Error reduction; English Pronunciation; non-native speakers 

1. Introduction 

Effective pronunciation is fundamental to successful communication in English, 

yet achieving native-like accuracy poses challenges for non-native speakers, 

particularly those whose first languages differ significantly in phonetic structure [1,2]. 

For Chinese learners, mastering English Pronunciation (EP) frequently involves 

overcoming unique articulatory and phonological challenges, such as accurately 

producing certain vowel sounds, consonant clusters, and stress patterns [3–5]. 

Traditional pronunciation teaching methods, which often rely on auditory feedback 

alone, may not fully address these complexities or offer the targeted support learners 

require to make precise articulatory adjustments [6–8]. 

In recent years, advances in technology have enabled new methods for enhancing 

Pronunciation Learning (PL), primarily through Motion Analysis (MA) and Intelligent 

Speech Feedback Systems (ISFS) [9–12]. MA tools, such as high-precision Motion 

Capture Systems (MCS), provide detailed insights into facial articulation by tracking 

movements of key articulation points like the lips, jaw, and tongue [13,14]. When 

processed with Machine Learning (ML) algorithms, this data can suggest learners’ 
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real-time feedback on their articulation, allowing for immediate adjustments and 

focused practice [15,16]. Similarly, ISFS can analyze phoneme-level details of 

learners’ pronunciation and identify areas where they deviate from native English 

patterns [17]. These systems can support more efficient and effective PL by 

highlighting specific areas for improvement and suggesting targeted corrections [18]. 

Despite the potential of these technologies, there has been limited research on 

their combined use in structured pronunciation training for non-native English 

speakers, particularly in the context of Chinese learners [19–21]. This study aims to 

address this gap by evaluating the effectiveness of a hybrid approach that integrates 

MA and ISFS. Using the OptiTrack Prime 13 MCS and SpeechAce Pronunciation 

API, this study investigates how real-time articulatory and phonetic feedback can 

impact pronunciation accuracy, error reduction, and learner engagement. 

The study is structured to explore three primary research questions: 

1) To what extent does real-time articulatory feedback improve the precision of 

articulatory movements? 

2) How does phoneme-level feedback from an ISFS affect error reduction in 

pronunciation? 

3) How does the combined feedback approach impact learner engagement and 

consistency in pronunciation practice? 

The remainder of this paper is organized as follows. Section 2 presents the 

methodology, detailing the participant selection, data collection process, and tools 

used for MA and ISFS. Section 3 provides a detailed analysis of the results, with 

subsections on Articulatory Movement Scores, Pronunciation Error Rates, and 

engagement metrics. Section 4 concludes the paper, presenting visions for future 

directions for research and applications in PL technology. 

2. Methodology 

2.1. Population 

This study’s participants comprised an initial pool of 60 English learners from 

various regions of China. After a screening process based on eligibility criteria—such 

as their willingness to participate in all phases of the study and their availability for 

the required training sessions—43 participants were selected as the final cohort. The 

selection process involved filtering out individuals who did not meet the proficiency 

level requirements (i.e., beginner to intermediate English speakers) or those who could 

not commit to the study timeline [22–25]. 

The 43 participants represented a diverse range of linguistic and educational 

backgrounds. All participants were native speakers of Chinese, with 37 being 

Mandarin speakers, while the remaining 6 spoke other dialects, such as Cantonese and 

Hokkien. The age range of the participants spanned from 18 to 40 years, with the 

majority (approximately 65%) between 18 and 30 years old, reflecting a demographic 

typical of university students and young professionals. 

Of the 43 participants, 26 were male, and 17 were female. Their English 

proficiency levels were assessed through a preliminary language test, ensuring a range 

of abilities from lower beginner (A1) to upper intermediate (B2) on the Common 

European Framework of Reference for Languages (CEFR) scale. This distribution 
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comprehensively evaluated how learners with different proficiency levels responded 

to the Motion Analysis and intelligent Speech Feedback Systems. 

Four participants withdrew During the study due to personal scheduling conflicts, 

leaving a final cohort of 39 learners. This group completed the entire training and 

testing regimen, providing sufficient data for the study’s analysis. No participants were 

excluded due to language or technological issues during the study, as the systems used 

were designed to accommodate varying levels of familiarity with digital tools. This 

final cohort served as the basis for analyzing the effectiveness of the pronunciation 

teaching systems, ensuring that the sample was sufficiently diverse to capture relevant 

insights into the broader population of English learners in China. 

2.2. MA techniques 

The MA in this study was performed using the OptiTrack Prime 13-MCS, a state-

of-the-art tool designed for detailed facial tracking and articulation analysis. This 

system is widely used in linguistic and phonetic research due to its high accuracy and 

ability to capture minute facial movements critical for speech production [26–30]. 

The OptiTrack Prime 13-MCS comprises a network of high-resolution infrared 

cameras and reflective facial markers specifically designed for speech and articulation 

studies. The cameras capture real-time facial dynamics with sub-millimeter precision, 

focusing on key articulation points like lips, jaw, and cheeks. When tracked by the 

cameras, these markers produce highly accurate data that can be analyzed to assess 

pronunciation. 

Additionally, the system incorporates depth-sensing technology, which enables 

the creation of a detailed 3D model of the participant’s facial movements. This 

technology allows for in-depth analysis of articulation from multiple perspectives, 

including side and vertical views, which are essential for capturing the full range of 

motions involved in producing specific English phonemes. The OptiTrack system is 

supported by DigiFace Software, which integrates ML algorithms that are pre-trained 

to recognize and evaluate standard articulatory patterns of EP [31–34]. 

The MCS begins by attaching small reflective markers to key points on the 

participant’s face, such as the lips, jawline, and the area surrounding the mouth. The 

OptiTrack Prime 13 cameras then track these markers as the participant reads aloud a 

set of English words and phrases. The MCS movements at a high frame rate, collecting 

detailed data on how each speech sound is physically articulated. 

The data from OptiTrack Prime 13 are processed using DigiFace Software, which 

converts the recorded facial movements into a series of numerical coordinates 

representing each articulatory gesture. These coordinates are mapped to a phonetic 

model of correct EP, allowing real-time analysis of discrepancies between the 

participant’s speech patterns and native EP standards. The software’s ML capabilities 

help identify common pronunciation challenges specific to native Chinese speakers, 

such as difficulties with vowel production or consonant clusters. 

The processed data are then used to generate real-time feedback during practice 

sessions. This feedback may include visual cues illustrating correct mouth positioning 

and detailed recommendations for articulation adjustments. The system also proposes 

comprehensive post-session analysis, allowing participants to review their progress 
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over time. By utilizing the OptiTrack Prime 13-MCS and DigiFace Software, the study 

ensures precise, real-time tracking of facial movements, providing learners with 

targeted, actionable feedback on their pronunciation efforts. 

2.3. Speech Feedback System 

The IDFS employed in this study was powered by SpeechAce Pronunciation API, 

a widely used solution for assessing and improving pronunciation in language learning 

applications. This system leverages advanced speech recognition algorithms and ML 

designed to evaluate non-native pronunciation. It provides learners immediate 

feedback on their spoken English, identifying pronunciation issues at the phoneme 

level. 

The SpeechAce Pronunciation API integrates seamlessly with audio recording 

hardware to capture and analyze speech in real time. When a participant pronounces a 

word or phrase, the system processes the audio to compare the phonetic characteristics 

of the participant’s pronunciation against a model of native EP. The system analyzes 

multiple aspects of speech, including sound accuracy, intonation, and stress patterns, 

providing a detailed breakdown of pronunciation quality for each phoneme. 

The feedback generated by SpeechAce is displayed to learners through a visual 

interface highlighting specific sounds needing improvement. For instance, if a 

participant mispronounces a vowel, the system visually marks the sound and proposes 

ideas to adjust the vocal tract position, such as raising the tongue or modifying lip 

shape. This targeted feedback is instrumental in helping learners understand precisely 

how and where to improve their pronunciation. 

Additionally, SpeechAce incorporates an error-detection feature that flags 

common pronunciation issues experienced by native Chinese speakers, such as 

challenges with certain English vowel sounds or consonant clusters. The system 

recognizes and adapts to each learner’s specific pronunciation patterns through its ML 

algorithms, enabling personalized guidance that evolves over time. This adaptability 

ensures that the feedback remains relevant and practical as the learner progresses. 

2.4. Measurements and variables 

In this study, various measurements were conducted to evaluate the effectiveness 

of MA and ISFS in enhancing EP. These measurements focused on pronunciation 

accuracy and user engagement to comprehensively assess the system’s impact. 

The Pronunciation Accuracy Score (PAS) served as a primary metric, 

representing the accuracy of participants’ pronunciation compared to a native English 

standard. This score, ranging from 0 to 100, was generated for each phoneme, word, 

and phrase to track improvements across different linguistic levels. Scores were 

collected at three intervals: Baseline (before the introduction of the system), midway 

through the study, and at the conclusion. This allowed for a detailed understanding of 

progress over time. 

The Articulatory Movement Score (AMS) was also introduced to evaluate the 

precision and consistency of facial movements associated with correct pronunciation. 

Data captured by the OptiTrack Prime 13-MCS and analyzed with DigiFace Software 

produced scores that reflected alignment with an English articulation standard. 
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Specific articulation points were monitored, such as lip rounding, jaw movement, and 

tongue positioning. Scores were assessed during key pronunciation exercises to track 

improvements in participants’ articulation accuracy and consistency. 

Pronunciation Error Rate (PER) was another essential measurement, recording 

the frequency of mispronunciations at the phoneme level. The SpeechAce 

Pronunciation API flagged and categorized errors, helping to identify specific patterns, 

such as common vowel or consonant mispronunciations. This rate was assessed 

continuously, with a summary calculated at the end of each session, allowing 

researchers to observe reduced errors over time. 

User engagement was also monitored through metrics such as session duration, 

the number of pronunciation attempts, and self-correction frequency. A survey 

conducted at the end of the study provided qualitative feedback on the participants’ 

experiences, gathering insights into the perceived ease of use, effectiveness, and 

overall satisfaction with the system. This feedback complemented the quantitative 

data, proving a subjective perspective on the system’s impact on user engagement and 

motivation. 

From Table 1 the independent variables in this study included the feedback 

system type, comparing real-time feedback from the SpeechAce Pronunciation API 

with a baseline condition of no feedback, and the pronunciation task type, which varied 

between isolated words, phrases, and sentences. The dependent variables, 

encompassing PAS, AMS, PER, and user engagement, provided objective and 

subjective insights into pronunciation improvement and learner satisfaction with the 

combined MA and ISFS. These measurements and variables contributed to a detailed 

evaluation of the system’s role in supporting EP learning. 

Table 1. Measurements, units, and variables. 

Measurement Description Unit Variable Type 

Pronunciation Accuracy Score 

(PAS) 

Measures accuracy of pronunciation compared to native 

standard, assessed at phoneme, word, and phrase levels. 
Score (0–100) Dependent Variable 

Articulatory Movement Score 

(AMS) 

Evaluates precision and consistency of facial movements 

during articulation. 
Score (0–100) Dependent Variable 

Pronunciation Error Rate (PER) 
It counts the frequency of mispronunciations and 

categorizes them by type (e.g., vowel or consonant). 
Error count Dependent Variable 

User Engagement 
Tracks participant interaction with the system (session 

duration, attempts, self-corrections). 
Various (time, count) Dependent Variable 

Feedback System Type 
Type of pronunciation feedback system used (e.g., real-

time vs. baseline with no feedback). 
Type (categorical) Independent Variable 

Pronunciation Task Type 
Context of pronunciation tasks, such as isolated words, 

phrases, or sentences. 
Type (categorical) Independent Variable 

2.5. Experiment design and data collection 

The experiment was designed to assess the impact of combining MA and ISFA 

on improving EP among Chinese learners. The study utilized a pre-post design with 

repeated measures, allowing for an in-depth comparison of participants’ pronunciation 

performance across different stages. Participants were divided into two groups: One 

receiving real-time feedback from the SpeechAce Pronunciation API and OptiTrack 

Prime 13-MCS and a baseline Control Group (CG) with no feedback. Each group 
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underwent similar pronunciation tasks, allowing for a controlled comparison of 

outcomes. 

Data collection occurred in three main phases: Pre-test, training sessions, and 

post-test. In the pre-test phase, baseline data on pronunciation accuracy, articulatory 

movement, and error rate were collected. During this phase, participants completed a 

series of pronunciation tasks, including isolated words, phrases, and sentences, which 

were recorded and analyzed to establish a baseline for each participant’s current 

proficiency. The pre-test provided initial Pronunciation Accuracy Scores (PAS), 

Articulatory Movement Scores (AMS), and Pronunciation Error Rates (PER), along 

with measures of user engagement in terms of task completion time and self-

corrections. 

The training sessions took place over four weeks, with participants engaging in 

bi-weekly sessions designed to practice and refine their pronunciation. Each session 

began with warm-up exercises to familiarize participants with the system and the 

pronunciation tasks. In the Experimental Group (EG), real-time feedback was 

provided by the SpeechAce Pronunciation API, offering phoneme-level insights into 

Pronunciation Errors and specific articulatory adjustments. The OptiTrack Prime 13-

MCS facial movements provided additional visual feedback, enabling participants to 

view their articulatory positions compared to the ideal model. The baseline group 

completed the same tasks without feedback, allowing researchers to assess the impact 

of the feedback systems on learning outcomes. 

Throughout the training sessions, data were continuously recorded, capturing 

each participant’s Pronunciation Accuracy Scores, Articulatory Movement Scores, 

and Pronunciation Error Rates. Real-time measurements from the MA were used to 

monitor improvements in articulation precision, while SpeechAce recorded phoneme-

level pronunciation scores. Session duration, the number of attempts, and self-

corrections were also logged to assess engagement and persistence, which were later 

analyzed for correlations with pronunciation improvement. 

In the final post-test phase, participants from both groups completed the same 

pronunciation tasks they had performed in the pre-test phase. This phase was designed 

to evaluate progress made over the study period. The post-test data provided updated 

Pronunciation Accuracy Scores, Articulatory Movement Scores, and Pronunciation 

Error Rates, which were compared against pre-test scores to measure improvement. 

The real-time engagement data collected throughout the training sessions were 

reviewed to identify patterns in learning behavior, particularly how immediate 

feedback influenced participants’ ability to self-correct and refine their pronunciation 

over time. 

3. Results 

3.1. AMS analysis 

The AMS analysis (Table 2 and Figure 1) examines improvements in 

articulation precision by comparing pre-test and post-test scores for specific 

articulation points. The results indicate significant enhancements in AMS for the EG, 

which received real-time MA feedback compared to the CG. The EG’s mean AMS 

increased from 55.8 to 76.5, an improvement of 37.1%, while the CG showed a more 
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minor increase from 54.6 to 64.9, an 18.9% improvement. This indicates that real-time 

feedback had a substantial positive effect on the EG’s overall articulation precision, 

with nearly double the improvement seen in the CG. The EG showed a remarkable 

improvement for lip rounding, increasing from a mean score of 51.2 to 74.1, 

representing a 44.7% enhancement. The CG’s improvement was less pronounced, 

from 52.7 to 62.3, achieving only an 18.2% increase. Lip rounding, essential for 

accurate vowel and consonant production, particularly benefited from the motion 

feedback, allowing participants to make targeted adjustments. 

The EG’s jaw movement score rose from 57.4 to 79.2, marking a 37.9% 

improvement. The CG’s score improved from 56.1 to 67.5, a 20.3% increase. Jaw 

movement is critical in controlling the vertical positioning of the mouth, affecting both 

vowel and consonant pronunciation, and the EG’s access to feedback helped them 

make more precise adjustments. The EG saw a 43.9% improvement in tongue height, 

increasing from a pre-test mean of 49.6 to a post-test mean of 71.4. The CG improved 

by 19.2%, from 50.5 to 60.2. Tongue height is essential for producing distinct vowel 

sounds, and the EG’s higher improvement suggests that motion feedback was 

beneficial in helping participants refine their tongue positioning. 

For tongue advancement, the EG’s score increased from 52.3 to 72.8, resulting 

in a 39.2% improvement. The CG’s score rose from 51.8 to 61.1, an 18.0% increase. 

Accurate tongue advancement, or front-to-back movement, is essential for 

differentiating between front, central, and back vowels, and real-time motion feedback 

appeared to assist the EG in making precise adjustments. The EG improved from a 

pre-test mean of 53.9 to a post-test mean of 74.5, achieving a 38.2% increase in lip-

spreading accuracy. In contrast, the CG’s mean score improved by 19.6%, from 52.6 

to 63.0. Lip spreading contributes to the clarity of various sounds, especially in 

differentiating rounded and unrounded vowels, and the EG’s access to feedback 

facilitated a greater degree of precision. Velum position, which affects nasality in 

speech sounds, saw a 39.2% improvement in the EG, rising from a mean of 50.7 to 

70.6. The CG improved from 51.3 to 61.4, an increase of 19.7%. Real-time feedback 

helped the EG better control velum positioning, an articulation point that can be 

challenging for non-native speakers. 

Table 2. Results for articulatory movement score. 

Articulation Point 
Pre-Test AMS 

Mean (EG) 

Post-Test AMS 

Mean (EG) 

Improvement 

(%) (EGl) 

Pre-Test AMS 

Mean (CG) 

Post-Test AMS 

Mean (CG) 

Improvement 

(%) (CG) 

Overall AMS 55.8 76.5 37.1 54.6 64.9 18.9 

Lip Rounding 51.2 74.1 44.7 52.7 62.3 18.2 

Jaw Movement 57.4 79.2 37.9 56.1 67.5 20.3 

Tongue Height 49.6 71.4 43.9 50.5 60.2 19.2 

Tongue Advancement 52.3 72.8 39.2 51.8 61.1 18.0 

Lip Spreading 53.9 74.5 38.2 52.6 63.0 19.6 

Velum Position 50.7 70.6 39.2 51.3 61.4 19.7 
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Figure 1. Articulatory movement score analysis. 

3.2. PER analysis 

The PER analysis (Table 3 and Figure 2) reveals a substantial reduction in errors 

across multiple categories for the EG compared to the CG, indicating the effectiveness 

of real-time feedback and MA. The EG achieved a significant reduction in overall 

PER, from an initial 24.7% to 10.6%, marking a 57.1% reduction. In contrast, the CG 

reduced overall PER from 25.1% to 18.3%, a 27.1% reduction. This substantial 

difference underscores the impact of the ISFS in helping learners correct their 

Pronunciation Errors more effectively. 

Vowel errors saw the most significant improvement, with the EG reducing errors 

from 13.5% to 5.3%, a 60.7% reduction. The CG achieved only a 24.1% reduction, 

from 14.1% to 10.7%. Given the complexity of vowel sounds for non-native speakers, 

this result highlights the system’s effectiveness in guiding users to refine vowel 

pronunciation accurately. The EG reduced consonant errors from 11.2% to 5.2%, a 

53.6% decrease, compared to a 30.9% reduction in the CG, which dropped from 11.0% 

to 7.6%. This improvement shows that real-time articulatory feedback played a 

significant role in assisting learners to correct consonant mispronunciations. 

Diphthongs involving gliding vowel sounds were reduced by 55.9% in the EG, 

from an initial 9.3% to 4.1%. The CG achieved a 28.9% reduction, from 9.7% to 6.9%. 

This improvement suggests that feedback on mouth and tongue positioning effectively 

addressed the complexity of diphthong pronunciation. The EG reduced stress errors 

from 10.8% to 4.6%, a 57.4% reduction, whereas the CG reduced these errors from 

10.5% to 7.7%, a 26.7% decrease. Stress accuracy is essential for fluency and natural 

intonation, and the ISFS appears to have enabled the EG to improve their stress 

application significantly. 
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The EG reduced intonation errors by 48.6%, from 7.4% to 3.8%, while the CG 

refers to a 22.2% reduction, from 7.2% to 5.6%. Intonation, which involves pitch 

variation, benefited from real-time guidance, helping the EG achieve more native-like 

intonation. For consonant clusters, the EG’s errors decreased from 8.6% to 4.3%, a 

50.0% reduction, while the CG reduced cluster errors by 28.1%, from 8.9% to 6.4%. 

Clusters can be challenging for non-native speakers, and the higher reduction in the 

EG indicates that the feedback system effectively supported the accurate production 

of these sounds. Voicing errors, which occur when sounds are mispronounced as 

voiced or unvoiced, were reduced by 53.3% in the EG, from 9.0% to 4.2%. The CG 

achieved a 29.3% reduction, from 9.2% to 6.5%. This improvement suggests that real-

time feedback helped participants distinguish precisely between voiced and unvoiced 

sounds. 

Table 3. Results for Pronunciation Error Rate. 

Error Type Initial PER (EG) Final PER (EG) Reduction (%) (EG) Initial PER (CG) Final PER (CG) Reduction (%) (CG) 

Overall PER 24.7 10.6 57.1 25.1 18.3 27.1 

Vowel Errors 13.5 5.3 60.7 14.1 10.7 24.1 

Consonant Errors 11.2 5.2 53.6 11.0 7.6 30.9 

Diphthong Errors 9.3 4.1 55.9 9.7 6.9 28.9 

Stress Errors 10.8 4.6 57.4 10.5 7.7 26.7 

Intonation Errors 7.4 3.8 48.6 7.2 5.6 22.2 

Cluster Errors 8.6 4.3 50.0 8.9 6.4 28.1 

Voicing Errors 9.0 4.2 53.3 9.2 6.5 29.3 

 
Figure 2. Pronunciation Error Rate analysis. 
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3.3. Engagement and Effort Metrics analysis 

The Engagement and Effort Metrics analysis (Table 4 and Figure 3a,b) 

examines the participants’ interaction with the IFFS and their overall effort, comparing 

the EG (which received real-time feedback) with the CG. More robust Engagement 

and Effort Metrics in the EG highlight the positive impact of the ISFS on motivation 

and sustained participation. The EG spent an average of 45.3 min per session, 

compared to 38.6 min in the CG. The correlation between session duration and PAS 

improvement was moderate in the EG (0.68) but lower in the CG (0.42). A similar 

pattern was observed for AMS improvement, with a correlation of 0.71 in the EG 

compared to 0.45 in the CG. These results suggest that extended session duration, 

likely encouraged by real-time feedback, positively influenced pronunciation and 

articulation improvements. 

Participants in the EG attempted pronunciation tasks 28 times on average per 

session, compared to 20 attempts in the CG. The number of attempts correlated highly 

with PAS improvement in the EG (0.75) and AMS improvement (0.78), while lower 

correlations were observed in the CG (0.47 and 0.51, respectively). This indicates that 

real-time feedback may have motivated participants to attempt more repetitions, 

leading to more significant improvement. The EG had a self-correction frequency of 

12 per session, while the CG averaged 8. The correlation with PAS improvement was 

moderate for the EG (0.64) but lower for the CG (0.39). The trend was similar for 

AMS improvement, with correlations of 0.66 in the EG and 0.43 in the CG. These 

findings suggest that access to feedback encouraged participants to actively identify 

and correct their mistakes, promoting more rapid learning. 

The EG actively interacted with the ISFS (e.g., pausing, replaying, or adjusting) 

16 times per session, compared to 10 times in the CG. The correlation with PAS 

improvement was 0.70 for the EG and 0.45 for the CG. For AMS improvement, the 

correlations were 0.69 and 0.46, respectively. This shows that higher interaction with 

the ISFS was associated with more significant learning gains, especially in the EG, 

where feedback was available. The task completion rate was higher in the EG (93.4%) 

compared to the CG (85.6%). The correlation between task completion rate and PAS 

improvement was 0.76 in the EG and 0.50 in the CG, with a similar pattern for AMS 

improvement (0.74 for EG, 0.52 for CG). This difference indicates that real-time 

feedback may enhance task completion rates, which correlates with improved 

pronunciation accuracy and articulation. 

Participants in the EG made an average of 15 pronunciation adjustment attempts 

per session, compared to 9 in the CG. The correlation between pronunciation 

adjustments and PAS improvement was 0.73 in the EG and 0.49 in the CG, while the 

correlation with AMS improvement was 0.77 in the EG and 0.53 in the CG. This 

suggests that the ISFS encouraged participants to make more targeted adjustments, 

facilitating more accurate pronunciation. Engagement consistency, which reflects the 

regularity of participation across sessions, was 88.2% in the EG and 75.3% in the CG. 

The correlation with PAS improvement was 0.67 in the EG and 0.41 in the CG, while 

for AMS improvement, it was 0.69 for the EG and 0.42 for the CG. Higher consistency 

among the EG highlights the motivational role of feedback in sustaining engagement. 

The EG performed an average of 8 learning retention checks per session, double that 
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of the CG, which averaged 4. The correlation between retention checks and PAS 

improvement was 0.72 for the EG, while the CG correlated 0.44. For AMS 

improvement, the correlations were 0.74 in the EG and 0.47 in the CG. This finding 

suggests that the feedback system effectively supported retention, helping participants 

to apply learned corrections in subsequent sessions. 

Table 4. Engagement and Effort Metrics results. 

Metric 
Mean 

(EG) 

Mean 

(CG) 

Correlation with PAS 

Improvement (EGl) 

Correlation with AMS 

Improvement (EGl) 

Correlation with PAS 

Improvement (CG) 

Correlation with AMS 

Improvement (CG) 

Average Session 

Duration (min) 
45.3 38.6 0.68 0.71 0.42 0.45 

Number of Attempts 28 20 0.75 0.78 0.47 0.51 

Self-Corrections 

Frequency 
12 8 0.64 0.66 0.39 0.43 

Active Feedback 

Interaction Rate 
16 10 0.70 0.69 0.45 0.46 

Task Completion 

Rate (%) 
93.4 85.6 0.76 0.74 0.50 0.52 

Pronunciation 

Adjustment 

Attempts 

15 9 0.73 0.77 0.49 0.53 

Engagement 

Consistency (%) 
88.2 75.3 0.67 0.69 0.41 0.42 

Learning Retention 

Checks 
8 4 0.72 0.74 0.44 0.47 

 
(a) 
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(b) 

Figure 3. Engagement and Effort Metrics results, (a) mean comparison; (b) correlation analysis. 

3.4. Results for Between-Group comparison 

The Between-Group comparison analysis (Table 5 and Figure 4) highlights the 

differences in Pronunciation Accuracy Score (PAS), Articulatory Movement Score 

(AMS), Pronunciation Error Rate (PER) reduction, and key engagement metrics 

between the EG, which received real-time feedback, and the CG. The EG achieved a 

31.2% improvement in PAS compared to only a 12.2% improvement in the CG, 

resulting in a 19.0% difference. This substantial disparity indicates that real-time 

feedback significantly boosted pronunciation accuracy, likely by guiding participants 

toward more precise articulation. 

The EG improved their AMS by 37.1%, nearly double the 18.9% improvement 

observed in the CG, marking an 18.2% difference. This indicates that participants with 

access to MA feedback were better able to refine their articulatory movements, 

contributing to more accurate pronunciation. The EG’s PER reduction was 57.1%, 

significantly higher than the 27.1% reduction in the CG, with a 30.0% difference 

between groups. The pronounced reduction in errors among the EG suggests that real-

time feedback effectively supported participants in identifying and correcting their 

pronunciation mistakes, leading to fewer errors over time. 

The EG’s average session duration was 45.3 min, while the CG averaged 38.6 

min, resulting in a 6.7 min difference. The additional practice time in the EG 

contributed to the group’s higher improvement rates, as feedback encouraged them to 

refine their pronunciation more. Participants in the EG averaged 28 attempts per 

session, compared to 20 in the CG, with an 8-attempt difference. The higher number 

of attempts reflects the EG’s increased motivation to practice pronunciation, likely 

driven by immediate feedback. 

The EG self-corrected 12 times on average, compared to 8 times in the CG, a 

difference of 4 self-corrections. Real-time feedback likely prompted more self-

corrections as participants received immediate cues to improve specific articulatory 
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points, facilitating quicker adjustments. The EG achieved a 93.4% task completion 

rate, compared to 85.6% in the CG, with a 7.8% difference. This higher completion 

rate suggests that feedback increased task engagement and encouraged participants to 

complete more exercises, leading to more significant overall improvement. 

Engagement consistency, which measures steady participation across sessions, was 

88.2% for the EG and 75.3% for the CG, showing a 12.9% difference. The consistency 

in engagement in the EG reflects the motivating effect of interactive feedback, which 

may have contributed to sustained improved pronunciation. 

Table 5. Between-Group comparison analysis. 

Metric EG CG Difference 

PAS Improvement (%) 31.2 12.2 19.0 

AMS Improvement (%) 37.1 18.9 18.2 

PER Reduction (%) 57.1 27.1 30.0 

Average Session Duration (min) 45.3 38.6 6.7 

Number of Attempts 28 20 8 

Self-Corrections Frequency 12 8 4 

Task Completion Rate (%) 93.4 85.6 7.8 

Engagement Consistency (%) 88.2 75.3 12.9 

 
Figure 4. Comparison analysis between groups. 

The Pre- and Post-Test comparison analysis (Table 6 and Figure 5) evaluates the 

differences in pronunciation accuracy, articulation precision, error reduction, and 
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engagement metrics for both the EG and CG from the beginning to the end of the 

study. The results highlight significant improvements in the EG, which are driven by 

integrating real-time feedback and MA. The EG’s PAS improved from a mean score 

of 62.3 to 81.7, representing a 19.4-point increase. In contrast, the CG’s PAS increased 

from 63.1 to 70.8, showing a 7.7-point improvement. This substantial difference 

demonstrates that real-time feedback provided in the EG led to more pronounced gains 

in pronunciation accuracy. 

Table 6. Pre- and Post-Test comparison analysis. 

Metric Pre-Test (EG) Post-Test (EG) Improvement (EG) Pre-Test (CG) Post-Test (CG) Improvement (CG) 

PAS (Mean Score) 62.3 81.7 19.4 63.1 70.8 7.7 

AMS (Mean Score) 55.8 76.5 20.7 54.6 64.9 10.3 

PER (Error Rate %) 24.7 10.6 −14.1 25.1 18.3 −6.8 

Average Session 

Duration (min) 
39.2 45.3 6.1 38.1 38.6 0.5 

Number of 

Attempts 
20 28 8 18 20 2 

Self-Corrections 

Frequency 
7 12 5 6 8 2 

Task Completion 

Rate (%) 
80.4 93.4 13.0 78.9 85.6 6.7 

Engagement 

Consistency (%) 
72.5 88.2 15.7 70.1 75.3 5.2 

 

Figure 5. Pre- and post-test comparison analysis. 
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The AMS for the EG increased from 55.8 to 76.5, a 20.7-point improvement, 

whereas the CG improved from 54.6 to 64.9, a 10.3-point increase. This indicates that 

the EG’s access to MA feedback significantly refined their articulation, allowing for 

better accuracy in producing English phonemes. The EG reduced its PER from 24.7% 

to 10.6%, a reduction of 14.1 percentage points. The CG’s PER decreased from 25.1% 

to 18.3%, a reduction of 6.8 percentage points. The more significant reduction in error 

rate in the EG suggests that immediate feedback helped participants identify and 

correct mispronunciations more effectively than the CG. 

The EG’s session duration increased from 39.2 to 45.3 min, a 6.1 min increase. 

The CG showed minimal change, increasing from 38.1 to 38.6 min. The longer session 

duration in the EG indicates that real-time feedback likely motivated participants to 

spend more time practicing and refining their pronunciation. The number of 

pronunciation attempts rose from 20 to 28 in the EG, an increase of 8, compared to a 

minor increase of 2 attempts (from 18 to 20) in the CG. This difference shows that 

participants in the EG were more engaged in practicing and attempting corrections due 

to the continuous feedback. 

Self-corrections increased from 7 to 12 in the EG, a 5-correction increase, while 

the CG increased from 6 to 8, a 2-correction increase. The higher frequency of self-

corrections in the EG reflects how feedback encouraged active self-monitoring and 

adjustments, helping participants achieve more precise pronunciation. The EG’s task 

completion rate improved from 80.4% to 93.4%, a 13.0% increase, while the CG’s 

completion rate increased from 78.9% to 85.6%, a 6.7% improvement. The higher 

completion rate in the EG suggests that feedback maintained participants’ motivation 

and commitment to completing the tasks. Engagement consistency, which measures 

regular participation and adherence to the study schedule, increased from 72.5% to 

88.2% in the EG, a 15.7% improvement. The CG showed a more minor increase from 

70.1% to 75.3%, a 5.2% improvement. The consistent engagement observed in the EG 

suggests that interactive feedback helped maintain participants’ dedication to the 

study. 

4. Conclusion and future work 

Integrating MA and ISFS provides a promising approach to enhancing EP 

learning for non-native speakers, particularly those with phonological and articulatory 

challenges. This study’s results demonstrate that real-time, adaptive feedback can 

significantly improve pronunciation accuracy, reduce error rates, and refine 

articulation precision among Chinese learners of English. The EG, which received 

feedback-driven practice, showed markedly higher improvements in PAS, AMS, and 

PER metrics than the CG. Engagement metrics, such as session duration and task 

completion rates, were also positively influenced, highlighting the role of feedback in 

fostering motivation and consistent practice. These findings underscore the potential 

of combining MCS and intelligent feedback to address specific pronunciation issues 

common among non-native speakers, such as vowel articulation and stress patterns. 

The insights gained from this study contribute to a deeper understanding of how 

technology can support personalized, practical pronunciation training. 
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Future research could expand upon these findings by exploring long-term 

retention of improvements, applying these systems across broader linguistic 

backgrounds, and refining feedback algorithms to address increasingly nuanced 

pronunciation challenges. By embracing advanced technologies, pronunciation 

training can become a more precise, engaging, and efficient process, ultimately 

supporting non-native learners in achieving fluency and confidence in English. 

Ethical approval: Not applicable. 

Conflict of interest: The author declares no conflict of interest. 
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