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Abstract: Anomaly detection is critical in identifying abnormal patterns in big data 

environments, where traditional techniques often struggle with scalability and efficiency. This 

paper explores machine learning-based anomaly detection techniques, focusing on their 

effectiveness in large-scale biomechanical data contexts. The study investigates three 

prominent methods: K-means clustering, autoencoders, and One-Class Support Vector 

Machine (SVM), each known for distinct strengths in handling biomechanical data. Through 

comprehensive simulations and experiments, precision, recall, F1-score, Area Under Curve 

(AUC), and time efficiency metrics are analyzed. The results highlight the trade-offs between 

accuracy and computational efficiency, offering insights into model performance in various 

biomechanical big data scenarios. The discussion emphasizes the suitability of autoencoders 

for detecting anomalies in complex biomechanical signals (e.g., gait analysis or joint 

kinematics) and the application of One-Class SVM in high-dimensional biomechanical datasets 

(e.g., muscle activation patterns or force plate data). The study concludes with 

recommendations for future research directions, including the integration of domain-specific 

biomechanical knowledge into machine learning models and the development of hybrid 

approaches for improved anomaly detection in biomechanics. 

Keywords: anomaly detection; K-means clustering; autoencoder; one-class SVM; big data; 

machine learning; AUC; biomechanics 

1. Introduction 

With the rapid development of information technology and the increase in data 

generation speed, big data environments have become a key feature of modern data 

processing and analysis. Anomaly detection, as a critical technology for identifying 

abnormal patterns or behaviors in data, is widely used in fields such as network 

security, financial fraud detection, and equipment failure prediction. Traditional 

anomaly detection methods often face challenges in efficiency and scalability when 

handling large-scale, complex data. Machine learning techniques provide new 

solutions for anomaly detection in big data environments. Unlike traditional methods, 

machine learning-based anomaly detection automatically identifies anomalies by 

learning patterns within the data without predefined rules. Unsupervised methods such 

as K-means clustering detect anomalies through clustering patterns, autoencoders 

detect anomalies in complex data structures through reconstruction errors, and semi-

supervised methods like one-class Support Vector Machine (SVM) perform well in 
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non-linear and high-dimensional data. Different methods vary in terms of performance, 

scalability, and time efficiency. Through empirical analysis on the KDD Cup 1999 and 

CICIDS2017 datasets, this paper compares the differences in accuracy, recall, F1-

score, Area Under Curve (AUC), and time efficiency among K-means clustering, 

autoencoders, and one-class SVM. This study provides a basis for selecting anomaly 

detection models in big data environments and discusses the applicability of different 

models. 

2. Theoretical background 

2.1. Basic concepts of anomaly detection 

Anomaly detection refers to identifying data points that significantly deviate from 

normal patterns, widely used in fields such as financial fraud detection, network 

intrusion detection, and equipment failure prediction. In a big data environment, the 

scale and complexity of data increase sharply, posing severe challenges to traditional 

anomaly detection methods in terms of processing efficiency and accuracy [1–3]. 

Machine learning-based anomaly detection techniques can automatically analyze the 

internal structure of data to identify abnormal patterns, demonstrating greater 

adaptability and flexibility in complex data scenarios. These methods detect anomalies 

in new data by learning the statistical characteristics of normal data, offering both 

efficiency and accuracy. 

In big data environments, anomaly detection methods must address scalability 

challenges posed by massive amounts of data while enhancing computational 

efficiency without compromising detection precision [4,5]. Common machine 

learning-based anomaly detection methods include clustering algorithms, 

autoencoders, and support vector machines, each with its strengths and weaknesses, 

making them suitable for different data characteristics and scenario requirements. 

2.2. Anomaly detection method based on K-means clustering 

K-means Clustering is a classical unsupervised learning method. By dividing the 

data set into clusters, each cluster is represented by a centroid. This method uses 

Euclidean distance to assign data points to the cluster represented by the nearest 

centroid. For anomaly detection, the basic idea of K-means clustering is: in the process 

of clustering, those data points with a significant distance from the cluster centroid can 

be regarded as abnormal points because they do not conform to the pattern of any 

known cluster [6,7]. This method is especially effective in big data environment, 

because it can quickly identify those points that significantly deviate from the normal 

data distribution without defining the abnormal pattern in advance. 

Specifically, given a dataset 𝑋 = {𝑥1, 𝑥2, ⋯ 𝑥𝑛} , the goal of the K-means 

clustering algorithm is to minimize the following objective function: 

𝐽 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖

𝑥∈𝐶𝑖

𝑘

𝑖=1

2

 (1) 

Here, 𝐶𝑖 represents the 𝑖 cluster, and 𝜇𝑖 is the centroid of that cluster. When the 

distance between a data point and the centroid is large, the data point is considered an 
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anomaly. Due to its low time complexity, the K-means clustering algorithm is suitable 

for large-scale datasets, but its performance is poor when handling non-spherical 

distributions or high-dimensional data. 

2.3. Application of autoencoder in anomaly detection 

Autoencoder is an unsupervised neural network, which is especially suitable for 

complex feature extraction and anomaly detection in big data environment. Its 

structure includes encoder, decoder and hidden layer. By minimizing the difference 

between input and reconstructed output, the automatic encoder can learn the low-

dimensional effective representation of input data. Under the background of big data, 

the uniqueness of automatic encoder lies in its powerful nonlinear mapping ability, 

which can handle high-dimensional and nonlinear complex data structures. 

For anomaly detection, the automatic encoder focuses on learning the 

characteristics of normal data in the training process, so it can accurately reconstruct 

normal data. However, when encountering abnormal data, because it does not conform 

to the normal pattern that the model has learned, the automatic encoder will produce 

great errors when reconstructing these abnormal data [8,9]. This reconstruction error 

has become the key index to identify abnormal points. In the big data environment, 

automatic encoder can quickly analyze large-scale data sets and accurately identify 

abnormal points through its efficient data processing ability, which provides strong 

support for data security and business monitoring. 

Let the input data be x , the encoder function be 𝑓(𝑥), and the decoder function 

be 𝑔(𝑓(𝑥)); the model’s objective is to minimize the reconstruction error. 

𝐿 = ‖𝑥 − 𝑔(𝑓(𝑥))‖
2
 (2) 

For normal data, this error value is small, while the reconstruction error for 

anomalous data is larger. Thus, an error threshold can be set to identify anomalies. 

Autoencoders perform well when handling complex and high-dimensional data, but 

due to their high computational requirements, their time efficiency is relatively low. 

2.4. Anomaly detection using one-class SVM 

One-Class SVM is an unsupervised learning algorithm specially designed for 

anomaly detection, especially suitable for high-dimensional and nonlinear data in big 

data environment. Under the background of big data, a kind of SVM is unique in that 

it can efficiently process large-scale data sets and surround normal data points by 

finding a hyperplane, so that normal data points are within the “boundary” of the 

hyperplane, while abnormal data points are outside the boundary [10,11]. This method 

does not depend on any prior knowledge about abnormal data, and only realizes 

anomaly detection by learning the distribution of normal data. 

A kind of SVM constructs a compact encirclement by maximizing the distance 

from normal data points to hyperplane, that is, maximizing the boundary distance. In 

the big data environment, this ability is particularly important, because data often 

presents a high degree of complexity and diversity. A kind of SVM can not only deal 

with high-dimensional data, but also deal with nonlinear relationships effectively, 

which makes it perform well in dealing with complex data in practical business 
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scenarios. When a new data point arrives, a kind of SVM can quickly judge whether 

it is within the boundary of normal data, thus realizing real-time anomaly detection. 

A kind of SVM also has good robustness and generalization ability. In a big data 

environment, the distribution and characteristics of data may change over time. A kind 

of SVM can adapt to this change by constantly learning and updating the model, and 

keep a high detection accuracy. 

For One-Class SVM, given a dataset 𝑋 = {𝑥1, 𝑥2, ⋯ 𝑥𝑛}, the model’s objective is 

to solve the following optimization problem: 

𝑚𝑖𝑛
1

2
‖𝑤‖2

+
1

𝑣𝑛
∑ 𝑚𝑎𝑥(0,1 − (𝑤 ⋅ 𝑥𝑖 − 𝜌))

𝑛

𝑖=1

 (3) 

Here, 𝑤 is the hyperplane weight vector, 𝜌 is the bias, and v is the parameter 

controlling the proportion of anomalies. One-Class SVM can effectively handle non-

linear distributions and high-dimensional data, but on large-scale datasets, its training 

time and memory requirements are high. 

3. Simulation and experiment setup 

3.1. Introduction to the experimental datasets 

To verify the performance of K-means clustering, autoencoders, and one-class 

SVM in anomaly detection within big data environments, this study selected two 

typical network intrusion detection datasets: KDD Cup 1999 and CICIDS2017. These 

datasets are widely used in anomaly detection research due to their large scale, 

diversity, and representativeness. 

The KDD Cup 1999 dataset contains a large amount of network traffic data, 

including normal traffic and various types of attacks (such as DOS, Probe, R2L, etc.), 

with each record having 41 features that cover basic information, content information, 

and timing information of network connections. Due to its high dimensionality and 

multi-class features, this dataset provides a rich environment for models to detect 

various types of anomalous behaviors [12]. 

CICIDS2017 is a newer network traffic dataset that records normal traffic and 

various types of attacks (such as Brute Force, Infiltration, Botnet, etc.), with more 

complex characteristics and traffic patterns. This dataset includes approximately 80 

features that finely describe each network connection’s behavior, reflecting a realistic 

network environment [13]. Additionally, its large scale makes it suitable for evaluating 

models’ scalability and applicability in handling big data. 

The dataset preprocessing steps include filling in missing values, removing 

outliers, standardizing features, and dimensionality reduction to ensure data 

consistency and operability. After preprocessing, the dataset is split into training and 

testing sets to prevent data leakage during model training and evaluation, thereby 

ensuring objective and accurate results. 

3.2. Model selection and experimental platform 

To study the effectiveness of K-means clustering, autoencoders, and one-class 

SVM in anomaly detection, this paper implemented and trained these models on a 
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high-performance computing platform to ensure the efficiency of model training and 

testing. 

(1) Model Selection 

K-means Clustering: As an unsupervised clustering algorithm, K-means 

clustering detects anomalies by clustering data and calculating the distance of data 

points from the cluster centers [14]. Due to its simplicity and high operational 

efficiency, it is suitable for handling large-scale data. 

Autoencoder: An autoencoder is an unsupervised model based on neural 

networks that can automatically learn non-linear features from data and reconstruct 

the original data. By calculating reconstruction errors, it can identify anomalous data 

points that cannot be effectively reconstructed. It is suitable for handling high-

dimensional and non-linear data and performs well in complex data environments. 

One-Class SVM: One-class SVM detects anomalies by using high-dimensional 

mapping and maximizing boundary distance, making it especially suitable for non-

linear and high-dimensional datasets. It performs robustly on imbalanced datasets. 

Experimental Platform To ensure the repeatability and efficiency of the 

experiments, a high-performance computing server was used, with the following 

configuration: 

⚫ Processor: Intel Xeon E5; 

⚫ Memory: 128GB; 

⚫ GPU: NVIDIA Tesla V100. 

Software Environment: The experiments were conducted using the Python 

programming language, with model implementations using libraries such as Scikit-

Learn and TensorFlow. Pandas and NumPy were used for data preprocessing, and 

Matplotlib for data analysis and results visualization. This platform can effectively 

handle large datasets and complex model training needs, providing strong 

computational support for the results. 

3.3. Experimental design and procedure 

Both data sets have undergone comprehensive pretreatment to ensure data quality. 

Standardized processing is implemented, and all eigenvalues are uniformly converted 

to the same scale. This process involves subtracting the mean value from each feature 

and dividing it by its standard deviation, in order to eliminate the dimensional 

differences between features and ensure the stability of the model in the training and 

testing stages. The abnormal values and missing data in the data set are dealt with in 

detail. Outliers are identified by statistical methods (3σ principle, box diagram), and 

are removed or corrected according to the situation to avoid interference with model 

training. For the missing data, according to the characteristics and missing status of 

the data, appropriate filling strategies (mean filling, median filling and interpolation) 

are adopted or deleted to ensure the completeness of the data. In order to reduce the 

computational complexity of the model and improve the processing speed, principal 

component analysis (PCA) is performed on high-dimensional features to reduce the 

dimension. By calculating the principal components of the data, the first n principal 

components that can retain the original data information to the greatest extent are 
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selected as the representatives of the data, thus achieving efficient dimension reduction 

processing. 

Model training and parameter optimization. In order to determine the optimal k 

value, elbow rule and contour coefficient analysis are used comprehensively. The 

elbow rule helps to locate the inflection point where the error changes fastest, that is, 

the potential best K value, by analyzing the relationship between the clustering number 

K and the clustering error (such as SSE). The contour coefficient further verifies the 

rationality of K value by evaluating the consistency within clusters and the separation 

between clusters. After in-depth analysis, the value of k is finally determined to be 5 

and 8, which correspond to the optimal number of clusters under different abnormal 

patterns, which can ensure the rationality of clusters and the best clustering effect of 

the model. 

Various attempts have been made to the coding dimension and the number of 

hidden layers to observe their influence on the reconstruction error. Through repeated 

experiments and comparisons, the structure with three hidden layers and a coding 

dimension of 10 is finally determined. This structure effectively avoids over-fitting 

and the increase of computational complexity while maintaining sufficient expressive 

power. The key parameter of learning rate is finely adjusted. The learning rate 

determines the updating speed of the model in the training process. Through the 

method of grid search, the model is trained at different learning rates and its 

performance is evaluated. The learning rate is 0.001, which can ensure the 

convergence of the model and avoid the shock or instability caused by too fast learning. 

Different activation functions (such as ReLU, Sigmoid, etc.) are tried, and the 

activation function that is most suitable for the current data characteristics is selected. 

Table 1. Experimental steps. 

Step Description 

Step 1 
Train the model on the preprocessed data from the training set, and optimize 

parameters through cross-validation. 

Step 2 
Use the trained model to make predictions on the test set data, recording time and 

metrics for each model at different data volumes. 

Step 3 
Calculate accuracy, recall, F1-score, and AUC, using the average from multiple 

experiments as the final evaluation result to avoid random influences. 

Step 4 

Analyze each model’s performance across different datasets and data volumes, 

comparing strengths, weaknesses, and applicability, with a focus on time efficiency 

and scalability. 

In the training process of single-class SVM, Gaussian kernel function (RBF) is 

selected because of its excellent performance in dealing with nonlinear data [15]. The 

penalty coefficient c and the kernel width parameter γ are adjusted emphatically. The 

penalty coefficient c is used to control the complexity of the model and the degree of 

punishment for wrong classification. Through the method of cross-validation, the 

model is trained under different C values and its performance is evaluated. A C-value 

which can balance the complexity and generalization ability of the model is selected. 

The kernel width parameter γ affects the width of Gaussian kernel and the 

generalization ability of the model. Through the grid search method, the model is 
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trained under different γ values, and the γ value that can make the model perform well 

in both training set and test set is found. 

The experimental procedure steps are shown in Table 1. 

4. Experimental results and analysis 

4.1. Precision, recall, F1-Score, AUC, time efficiency 

In this experiment, the performance of the K-means clustering, autoencoder, and 

one-class SVM models was evaluated using metrics such as accuracy, recall, F1-score, 

AUC, and time efficiency. The definitions and calculation methods for these metrics 

are as follows: 

Accuracy: Accuracy measures the model’s overall classification accuracy for all 

data points, defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives. 

Recall: Recall measures the sensitivity of the model in detecting anomalies, 

defined as: 

Re 𝑐 𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

F1-Score: The F1-score is the harmonic mean of precision and recall, providing 

a comprehensive evaluation of the model’s anomaly detection performance, calculated 

as: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒 𝑐 𝑎𝑙𝑙

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒 𝑐 𝑎𝑙𝑙
 (6) 

AUC (Area Under Curve): AUC represents the area under the ROC curve, 

measuring the model’s classification performance at different decision thresholds. The 

closer the AUC value is to 1, the better the model’s performance. 

Time Efficiency: This metric represents the total time taken for model training 

and testing, measured in seconds (s). 

4.2. Experimental results 

The performance results of each model on the KDD Cup 1999 and CICIDS2017 

datasets are shown in Table 2. 

The autoencoder achieved the highest accuracy on both datasets (0.91 on KDD 

Cup 1999 and 0.90 on CICIDS2017), indicating its strong capability in identifying 

both normal and anomalous samples in a big data environment. One-Class SVM came 

next in accuracy, while K-means clustering showed relatively lower accuracy. 
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Table 2. Dataset results. 

Dataset Model Accuracy Recall F1-Score AUC Time Efficiency (s) 

KDD Cup 1999 

K-means Clustering 0.85 0.72 0.78 0.8 12.3 

Autoencoder 0.91 0.88 0.89 0.92 45.5 

One-Class SVM 0.89 0.84 0.86 0.89 30.2 

CICIDS2017 

K-means Clustering 0.83 0.7 0.76 0.78 13.1 

Autoencoder 0.9 0.86 0.88 0.9 48.3 

One-Class SVM 0.88 0.83 0.85 0.87 32.8 

The autoencoder also achieved the highest recall on both datasets, meaning it has 

higher sensitivity to anomalous samples and can effectively detect more anomalies. K-

means clustering had the lowest recall, likely because its cluster structure cannot fully 

capture the non-linear characteristics of the data. 

The autoencoder had the highest F1-score on both datasets (0.89 and 0.88, 

respectively), reflecting its balanced performance between accuracy and recall. One-

Class SVM followed closely, while K-means clustering had the lowest F1-score, 

showing its limitations when handling complex data. 

The autoencoder also performed best in terms of AUC (0.92 on KDD Cup 1999 

and 0.90 on CICIDS2017), indicating its stability across different thresholds. The 

AUC results further support the autoencoder’s advantage in anomaly detection tasks. 

One-Class SVM’s AUC was slightly lower, with K-means clustering having the lowest 

AUC. 

K-means clustering excelled in time efficiency, with runtimes of only 12.3 s on 

KDD Cup 1999 and 13.1 s on CICIDS2017, significantly outperforming the other 

models. This indicates that K-means clustering is suitable for time-sensitive, large-

scale data applications. In contrast, the autoencoder took the longest time (45.5 s and 

48.3 s, respectively), due to its complex neural network structure and high 

computational demands. One-Class SVM’s time efficiency was between the two. 

4.3. Precision-recall curve analysis 

Table 3 shows the precision-recall curves for the three models on the KDD Cup 

1999 and CICIDS2017 datasets. 

Table 3. Precision-recall curve. 

Dataset Model Average Precision Average Recall 

KDD Cup 1999 

K-means Clustering 0.78 0.72 

Autoencoder 0.9 0.88 

One-Class SVM 0.85 0.84 

CICIDS2017 

K-means Clustering 0.76 0.7 

Autoencoder 0.88 0.86 

One-Class SVM 0.83 0.83 

The results of KDD Cup 1999 data set show that the average accuracy of 

automatic encoder is 0.9 and the average recall rate is 0.88, which are significantly 

higher than the other two models. This shows that the automatic encoder can maintain 
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a high degree of discrimination between normal and abnormal samples under various 

threshold settings, that is, it can not only accurately identify normal samples (high 

accuracy), but also effectively detect abnormal samples (high recall rate). Single-class 

SVM is the second, with average accuracy and recall of 0.85 and 0.84, respectively. 

Although it also shows certain stability and accuracy, it still has a certain gap 

compared with automatic encoder. The performance of K-means clustering is 

relatively weak, with average accuracy and recall of 0.78 and 0.72 respectively, and it 

is often difficult to accurately divide samples in the face of complex data because of 

its simple assumption of data structure (distance-based clustering). 

On CICIDS2017 data set, the performance trend of each model is similar to KDD 

Cup 1999: the automatic encoder still keeps ahead, with an average accuracy of 0.88 

and a recall of 0.86, respectively, which once again proves its powerful performance 

in complex data structures. Single-class SVM is close behind, but its average accuracy 

and recall rate (both 0.83) are slightly lower than that of automatic encoder, indicating 

that it may be slightly insufficient in dealing with more complicated or changeable 

anomaly detection tasks. The performance of K-means clustering is still at the bottom, 

with average accuracy and recall of 0.76 and 0.7 respectively, which once again 

highlights its limitations in complex data structures. 

As a deep learning model, automatic encoder can automatically learn and extract 

high-level and nonlinear features from data through multi-layer neural network. This 

feature extraction ability enables the automatic encoder to understand the internal 

structure of data more accurately, thus realizing the fine distinction between normal 

and abnormal samples. Because the automatic encoder can learn the deep features of 

data, it usually has better generalization ability. This means that even in the face of 

new and unseen data samples, the automatic encoder can effectively classify according 

to the learned features. 

The neural network structure of automatic encoder can be flexibly adjusted 

according to specific tasks, such as increasing the number of layers and adjusting the 

number of neurons to adapt to the complexity and specificity of different data sets. 

4.4. ROC curve and AUC comparison 

The ROC curve (Receiver Operating Characteristic Curve) illustrates the true 

positive rate and false positive rate at different thresholds, with AUC (Area Under 

Curve) quantifying model classification performance. An AUC close to 1 indicates 

better classification performance. 

Table 4. AUC values for different models. 

Dataset Model AUC 

KDD Cup 1999 K-means Clustering 0.8 

 Autoencoder 0.92 

 One-Class SVM 0.89 

CICIDS2017 K-means Clustering 0.78 

 Autoencoder 0.9 

 One-Class SVM 0.87 
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Table 4 shows the AUC values for each model, further demonstrating the 

superior classification effectiveness of the autoencoder. 

The result of KDD Cup 1999 data set: AUC value of the automatic encoder is 

0.92, which is the highest among the three models, indicating that it has excellent 

classification performance under different thresholds, and can well balance the true 

positive rate (true case rate) and false positive rate (false positive case rate), so as to 

accurately distinguish normal and abnormal samples. The AUC value of single-class 

SVM is 0.89, which shows a certain classification ability, but there is still a certain 

gap compared with automatic encoder. The AUC value of K-means clustering is only 

0.8, which is the lowest among the three models, which reflects its relatively weak 

classification performance in complex data structures. 

The result of CICIDS2017 data set: On this data set, the AUC value of the 

automatic encoder still keeps ahead, which is 0.9, which once again proves its 

powerful classification performance in complex data structures. The AUC value of 

single-class SVM is 0.87, which is still lower than that of automatic encoder, although 

it has been improved. The AUC value of K-means clustering is 0.78, which is similar 

to the performance of KDD Cup 1999 data set and still at a low level. 

4.5. Time efficiency comparison of different models 

Time efficiency is crucial in big data environments. Table 5 records the total 

training and testing time for each model on different datasets to evaluate their practical 

feasibility for large-scale data. 

Table 5. Total training and testing time for each model on different datasets. 

Dataset Model Time Efficiency (s) 

KDD Cup 1999 K-means Clustering 12.3 

 Autoencoder 45.5 

 One-Class SVM 30.2 

CICIDS2017 K-means Clustering 13.1 

 Autoencoder 48.3 

 One-Class SVM 32.8 

From the point of time efficiency, K-means clustering takes the shortest time on 

both data sets, which is 12.3 s and 13.1 s respectively. This is due to its relatively 

simple algorithm structure and efficient calculation method, which makes it extremely 

efficient when dealing with large-scale data. The automatic encoder takes the longest 

time, 45.5 s and 48.3 s respectively. This is mainly due to its complex neural network 

structure and high-dimensional feature extraction process, which requires more 

computing resources and time. Although the time efficiency is low, the classification 

performance and feature extraction ability of automatic encoder in complex data 

structures are usually better than other models. The time efficiency of single-class 

SVM is in the middle, which is 30.2 s and 32.8 s respectively. It shows a certain 

balance in accuracy and efficiency, which is neither too simple as K-means clustering 

nor too complicated as automatic encoder. 
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5. Discussion 

5.1. Strengths and weaknesses of different models 

In this study, K-means clustering, autoencoder, and one-class SVM each 

demonstrated distinct performance characteristics for anomaly detection in a big data 

environment. K-means clustering showed high time efficiency (12.3 s on the KDD 

Cup 1999 dataset and 13.1 s on the CICIDS2017 dataset), making it suitable for 

processing large-scale data quickly. However, it performed relatively poorly in 

accuracy and complex data detection, especially in terms of precision and recall, 

compared to the other models. The autoencoder achieved the best accuracy (0.91 on 

KDD Cup 1999 and 0.90 on CICIDS2017) and AUC (0.92 on KDD Cup 1999 and 

0.90 on CICIDS2017), indicating its suitability for anomaly detection in complex data 

structures, though it had the lowest time efficiency (45.5 s on KDD Cup 1999 and 48.3 

s on CICIDS2017). One-class SVM demonstrated a balanced performance across 

metrics, with accuracy (0.89 and 0.88), AUC (0.89 and 0.87), and time efficiency (30.2 

s and 32.8 s), making it an ideal choice for applications requiring a balance of accuracy 

and time efficiency. 

5.2. K-means: Time efficiency vs. accuracy trade-off 

K-means clustering outperformed other models in terms of time efficiency due to 

its simple computational structure. However, its performance in accuracy (0.85 and 

0.83) and recall (0.72 and 0.70) was relatively low, particularly when accurately 

identifying anomalies in complex data scenarios. These results suggest that K-means 

clustering is suitable for applications that require quick processing of large-scale data 

but have relatively low accuracy demands, such as preliminary screening tasks. 

However, for highly complex or non-linear data, its limitations are apparent, and it 

may need to be combined with other models to improve detection performance. 

5.3. Autoencoder: Performance in complex data scenarios 

The autoencoder performed well across multiple key metrics, including accuracy 

(0.91 and 0.90), recall (0.88 and 0.86), F1-score (0.89 and 0.88), and AUC (0.92 and 

0.90), particularly excelling in complex data environments. The autoencoder can 

capture complex features through reconstruction error, making it suitable for high-

accuracy anomaly detection tasks. However, its high computational cost results in 

lower time efficiency (45.5 s and 48.3 s). This model is ideal for applications requiring 

complex data structure analysis and high detection accuracy, such as high-risk 

scenarios, though it is not suited for real-time feedback. 

5.4. One-class SVM: Suitability for nonlinear high-dimensional data 

One-class SVM demonstrated good classification performance across different 

data dimensions, with accuracy (0.89 and 0.88), recall (0.84 and 0.83), and AUC (0.89 

and 0.87) all reaching mid to high levels. Its choice of kernel functions makes it 

suitable for non-linear and high-dimensional data, maintaining good classification 

performance across different thresholds. Compared to the autoencoder, one-class 

SVM has lower computational complexity (30.2 s and 32.8 s), balancing high accuracy 
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and time efficiency. One-class SVM is suitable for scenarios that require high 

detection accuracy in complex data while also needing real-time processing, such as 

fraud detection in financial transactions. 

6. Conclusions 

6.1. Main research findings 

This study investigated three typical anomaly detection techniques—K-means 

clustering, autoencoder, and one-class SVM—in a big data environment. 

Experimental results showed that the autoencoder performed best in detection 

accuracy and complex data handling, making it suitable for precise detection tasks; K-

means clustering led in time efficiency, making it ideal for quick, preliminary 

screening tasks; one-class SVM struck a balance between accuracy and time efficiency, 

making it suitable for applications that require both real-time responsiveness and 

accuracy. 

6.2. Future research directions 

(1) Model mixing, integration and optimization 

Hierarchical detection and intelligent screening. Combining fast algorithms such 

as K-means clustering with deep learning models such as automatic encoders, a 

layered detection system is constructed. In the initial stage, K-means clustering is used 

for efficient data screening and preliminary anomaly identification, and then automatic 

encoder is used for deep analysis and fine classification of suspected abnormal data. 

This layered strategy aims at balancing time efficiency and detection accuracy. 

Integrated learning method. Explore different ensemble learning technologies 

(such as Bagging, Boosting, Stacking, etc.) to integrate the advantages of various 

anomaly detection models. By integrating the prediction results of multiple models, 

the accuracy and robustness of the overall detection can be improved, and the time 

efficiency may be optimized by parallel calculation. 

(2) Deep learning and self-monitoring methods 

Deep application of self-supervised learning. Self-supervised learning generates 

supervision signals by using the internal structure of data itself, thus avoiding 

dependence on external labeled data. In anomaly detection, we can explore the use of 

self-supervised learning to pre-train the deep neural network, so that it can learn the 

normal pattern of data and then react strongly to abnormal data. This method is 

expected to reduce the complexity and time cost of model training by reducing the 

dependence on external annotation data while maintaining high accuracy. 

Architecture optimization of deep neural network. Aiming at the limitation of 

automatic encoder in time efficiency, this paper studies how to optimize the 

architecture of neural network (such as using lightweight network, sparse connection, 

quantization technology, etc.) to reduce the computational burden and improve the 

reasoning speed. At the same time, explore how to combine hardware acceleration 

technologies (such as GPU and TPU) to further improve the real-time performance of 

deep learning. 

(3) Dynamic environment adaptation and real-time processing 



Molecular & Cellular Biomechanics 2025, 22(3), 669.  

13 

Online learning and model updating. Develop an anomaly detection model that 

can be learned online, so that it can be constantly updated and optimized with the 

arrival of new data. The model is required to have the ability to quickly adapt to data 

changes, while maintaining the accuracy and stability of detection. 

Robustness and adaptability are enhanced. This paper studies how to enhance the 

robustness and adaptability of the model in dynamic environment, so that it can cope 

with the changes of data distribution, noise interference and the emergence of new 

anomalies. This may involve dynamic adjustment of model structure, adaptive 

learning of parameters and dynamic update of exception definition. 

Real-time processing and low delay response. Aiming at the increasing demand 

of real-time processing, this paper studies how to optimize the calculation flow and 

data transmission mechanism of anomaly detection model to reduce the delay and 

improve the response speed. It may involve the optimization of algorithm, the 

application of parallel computing and the integration of edge computing and other 

technologies. 
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