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Abstract: This study addresses the problem of power battery health state assessment for 

electric vehicles, integrating biomechanical principles and machine learning algorithms to 

investigate the health state assessment accuracy of different types of power batteries under 

different working conditions. The study adopts a variety of data-driven methods to deeply 

analyse the performance degradation law of power batteries. The results show that the 

machine learning algorithm incorporating biomechanical principles can effectively improve 

the accuracy of power battery health state assessment, especially under complex working 

conditions, and exhibits better robustness. The current status of power battery health state 

assessment technology is reported, and it provides a useful reference for future power battery 

health management in electric vehicles. 
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1. Introduction 

Globally, energy crisis and environmental problems are increasingly becoming 

key factors constraining socio-economic development. As a clean and efficient new 

energy vehicle, electric vehicles (EVs) have received extensive attention from 

governments and research institutes for their zero emission and efficient energy 

utilisation [1]. As the core energy storage device of EVs, the performance of power 

batteries directly affects the range, safety and overall service life of EVs. Therefore, 

accurate assessment of the state of health (SOH) of power batteries is of great 

significance for ensuring the reliable operation of EVs and extending battery life [2]. 

Currently, power battery state of health assessment methods are mainly classified 

into two main categories: one is the assessment method based on physical models, 

which usually relies on an in-depth understanding of the internal chemical reactions 

of the battery and mathematical modelling, such as equivalent circuit models, 

electrochemical models, etc.; and the other is the assessment method based on data-

driven methods, which collects real-time operational data of the battery, and 

processes and analyzes the data using machine learning algorithms to achieve the 

assessment of the battery’s state of health (SOH). processing and analysing to 

achieve the prediction of battery health state [3]. Although these methods have 

achieved some success in theory and practice, there are still many challenges in 

terms of assessment accuracy, computational complexity, and generalisation 

capability. In recent years, the application of biological principles in the field of 

optimisation algorithms and machine learning has become increasingly widespread, 
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in which biological principles such as biological evolution theory, neural networks, 

and population intelligence provide new ideas for solving complex optimisation 

problems [4]. For example, biomimetic algorithms such as Genetic Algorithm (GA), 

Ant Colony Algorithm (ACA), Particle Swarm Optimisation (PSO), etc. have shown 

good search ability and adaptability in the fields of parameter optimisation and path 

planning. Meanwhile, the development of deep learning technology, especially the 

breakthrough of neural network in the fields of image recognition and natural 

language processing, provides a new technical way for power battery health state 

assessment [5]. The purpose of this paper is to explore the application of machine 

learning algorithms incorporating biological principles in the health state assessment 

of power batteries for electric vehicles, with a view to improving the assessment 

accuracy and generalisation ability. 

2. Integration of biological principles with machine learning 

algorithms 

2.1. Principles of biological evolution 

The principle of biological evolution refers to the process by which populations 

of organisms adapt to their environments by changing their gene frequencies over 

time through mechanisms such as natural selection, genetic variation and gene flow 

[6]. At the core of this principle is the ‘survival of the fittest’, i.e., individuals that 

are better adapted to their environment are more likely to survive and reproduce, 

passing on their favourable genetic traits. In the field of machine learning, the 

principle of biological evolution is mainly reflected in the design and 

implementation of genetic algorithms (GA). This paper draws on the principle of 

biological evolution and proposes an optimisation strategy based on genetic 

algorithm for optimising the parameters of machine learning algorithms. Genetic 

algorithms achieve iterative optimisation of solutions (i.e., individuals) by simulating 

biological evolutionary processes such as natural selection, crossover and mutation 

[7]. Specifically, we encode the parameters of the machine learning algorithm as 

chromosomes, generate new parameter combinations in each generation through 

selection, crossover, and mutation operations, and then evaluate the performance of 

these parameter combinations through a fitness function. Through multiple rounds of 

iterations, the algorithm is able to find optimal or near-optimal parameter settings, 

thus improving the performance of the machine learning model [8]. In addition, this 

paper also considers elitist strategies and dynamic adjustment of the probability of 

genetic operations to enhance the algorithm’s search capability and convergence 

speed. 

2.2. Principles of neural networks 

The neural network principle is based on the structure and function of the 

biological nervous system and mimics the process of processing information in the 

human brain. It forms a network capable of distributed information processing by 

interconnecting a large number of simple processing units (i.e., neurons) [9]. In the 

field of machine learning, neural networks, especially deep learning models, have 
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achieved remarkable results in a number of fields such as image recognition, speech 

processing, and natural language understanding. 

In this paper, we use a deep learning model based on biological neural networks 

to achieve feature extraction and classification of power battery health status. 

Specifically, we constructed a multi-layer convolutional neural network (CNN) to 

extract high-dimensional features during battery charging and discharging. The CNN 

can automatically learn the spatio-temporal features in the battery data, which are 

crucial for the health state assessment [10]. Subsequently, the extracted features are 

fed into a fully-connected neural network that mimics the decision-making process 

of the cerebral cortex to classify the health state of the battery. In order to improve 

the generalisation ability of the model and reduce overfitting, we introduced a 

dropout layer and a Batch Normalization (BN) technique [11]. In addition, this paper 

explores the use of Recurrent Neural Networks (RNN) and its variant Long Short-

Term Memory Network (LSTM) to process time-series data to better capture the 

trend of battery health status over time. 

3. Machine learning algorithms incorporating biological principles 

The machine learning algorithm incorporating biological principles proposed in 

this paper is a multi-stage process that aims to improve the accuracy and efficiency 

of power battery health status assessment by combining biological evolution and 

neural network principles. 

3.1. Data pre-processing 

Data preprocessing is a key step for the success of machine learning algorithms, 

which includes the processes of data cleaning, transformation, normalisation and 

feature selection [12]. For power battery data, effective preprocessing can improve 

the training efficiency and prediction accuracy of the model. 

(1) Data cleaning 

Before data preprocessing, data cleaning is first needed to remove invalid, 

incorrect or duplicate data points. This step can be achieved by setting thresholds, 

using clustering algorithms to detect outliers, or applying statistical tests. For 

example, the Z-score method can be used to identify outliers: 

𝑍 =
𝑥 − 𝜇

𝜎
 

where 𝑥 is the data point, 𝜇 is the mean of the data set, 𝜎 is the standard deviation, 

and 𝑍  is the normalised score. Typically, data points may be considered outliers 

when |𝑍| > 3. During the data cleaning process, special attention was paid to the 

treatment of missing values and sensor noise. For missing values, interpolation 

methods were applied to fill them, such as linear interpolation or interpolation based 

on neighboring data. For sensor noise, filtering techniques such as moving average 

filtering or Kalman filtering were applied to smooth the data and reduce the effect of 

noise. 

(2) Data transformation 

Data transformation may include logarithmic transformation, power 

transformation, etc. to stabilise the variance or to transform the data distribution so 
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that it is closer to a normal distribution. The formula for logarithmic transformation 

is as follows: 

𝑥log = 𝑙𝑜𝑔(𝑥) 

(3) Normalisation 

The normalisation process aims to scale the data to a fixed range, usually 

between [0,1], to eliminate the effect of magnitude between different features. In 

addition to min-max normalisation, another commonly used method is normalisation 

(Z-score normalization): 

𝑥std =
𝑥 − 𝜇

𝜎
 

where 𝑥std is the normalised data, and 𝜇 and 𝜎 are the mean and standard deviation of 

the data, respectively. 

(4) Feature Selection 

Feature selection is the process of choosing the subset of features that are most 

useful for model prediction. This can be achieved through Recursive Feature 

Elimination (RFE), model-based feature selection (e.g., using Random Forests for 

feature importance), or methods based on L1 regularisation (e.g., LASSO). The 

optimisation problem for LASSO can be expressed as: 

𝑚𝑖𝑛
𝑤

1

2𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2 + 𝜆 ∑|𝑤𝑗|

𝑝

𝑗=1

 

where 𝑤  is the feature weight, 𝑥𝑖  is the feature vector of the 𝑖  sample, 𝑦𝑖  is the 

corresponding true value, 𝑛 is the number of samples, 𝑝 is the number of features, 

and 𝜆 is the regularisation parameter. 

3.2. Feature extraction 

Feature extraction is a critical component of the power battery health state 

recognition process, tasked with distilling useful information from high-dimensional 

raw data for prediction purposes [13]. Convolutional neural networks (CNNs), 

renowned for their robust feature extraction capabilities, have found widespread 

application in image processing and sequence data analysis within the deep learning 

domain. 

(1) Convolutional Layer 

Convolutional layer is the key layer used for feature extraction in CNN, which 

captures the local features of the input data through convolution operation. The 

mathematical expression for the convolution operation can be further detailed as: 

𝑓CNN(𝑥) = 𝜎 (∑  

𝑁

𝑖=1

𝑤𝑖 ∗ 𝑥𝑖 + 𝑏) 

where 𝑓CNN(𝑥) is the output feature map of the convolutional layer, 𝑥𝑖  is a local 

region of the input data, 𝑤𝑖 is the weight of the 𝑖 convolutional kernel, ∗ denotes the 

convolutional operation, 𝑏 is the bias term, 𝜎 is the activation function such as ReLU, 

Sigmoid, or Tanh, and 𝑁 is the number of convolutional kernels. The selection of the 

number of kernels and their sizes is based on the input data characteristics and the 
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complexity of the features to be captured, with larger kernels capturing more 

extensive features and a greater number of kernels increasing the model’s capacity to 

learn diverse features. 

(2) Activation function 

The activation function introduces a non-linear element that allows the neural 

network to learn and simulate more complex functions. The ReLU activation 

function is defined as follows: 

𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

is chosen for its simplicity and effectiveness in mitigating the vanishing 

gradient problem, thus facilitating faster and more stable training. 

(3) Pooling layer 

The pooling layer is used to reduce the dimensionality of the feature map while 

retaining important feature information. The most common pooling operation is Max 

Pooling, which can be expressed as: 

𝑝𝑖𝑗 = 𝑚𝑎𝑥
𝑚∈𝑀𝑖𝑗

(𝑓CNN(𝑚)) 

where 𝑝𝑖𝑗 is an element of the pooled feature map and 𝑀𝑖𝑗 is a local region on the 

input feature map. The choice of pooling size and stride is determined by the need to 

balance feature map reduction with the retention of significant information, thereby 

enhancing the model’s ability to generalize. 

(4) Batch Normalisation 

Batch normalisation is a technique used to speed up the training process and 

reduce internal covariate bias. Its formula is: 

𝑥
^

=
𝑥 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

 

𝑦 = 𝛾𝑥
^

+ 𝛽 

where 𝑥 is the input feature, 𝜇𝐵 and 𝜎𝐵
2 are the mean and variance of the batch data, 

respectively, 𝜖  is a small constant to avoid dividing by zero, and 𝛾  and 𝛽  are 

learnable parameters. Batch normalisation is applied to improve the stability and 

efficiency of the training process, leading to faster convergence. 

(5) Deep Convolutional Neural Network Structure 

In practice, CNNs are composed of multiple stacked convolutional and pooling 

layers, forming a deep network structure. A simplified deep CNN structure can be 

represented as: 

𝑓CNN(𝑥) = 𝜎(𝑃𝑜𝑜𝑙(𝜎(𝐶𝑜𝑛𝑣(𝜎(𝑃𝑜𝑜𝑙(𝜎(𝐶𝑜𝑛𝑣(𝑥))))))) 

This multi-layer architecture enables the CNN to extract hierarchical feature 

representations from the raw data, which are vital for the accurate classification and 

prediction of power battery health status. The depth and complexity of the network 

are carefully designed to ensure sufficient capacity for learning intricate patterns 

without overfitting, thereby optimizing model performance. 
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3.3. Model training 

In the model training phase, we employ a Genetic Algorithm (GA) to optimise 

the parameters of the deep learning model, thereby enhancing its performance and 

generalisation capabilities. The GA is a heuristic search algorithm inspired by natural 

selection and genetic mechanisms from biological evolution.  

(1) Initialising the population 

The initial step in the GA involves randomly generating a set of parameters, (𝑤), 

to form the initial population, (𝑃0). These parameters comprise the weights and bias 

terms of the neural network. The population size, (𝑁), is determined based on the 

problem’s complexity and available computational resources. 

𝑃0 = {𝑤1, 𝑤2, … , 𝑤𝑁} 

(2) Adaptability Assessment 

Fitness assessment evaluates the effectiveness of an individual in solving the 

problem. We introduce a fitness function, (𝐹(𝑤)), to assess the performance of each 

parameter set, (𝑤). This function is typically the inverse of the model’s loss function 

on the validation set or a function of relevant performance metrics. The specific form 

of the fitness function is chosen to directly relate to the accuracy of battery health 

assessment, ensuring that the optimisation process aligns with the goal of minimising 

prediction errors in battery health state. 

𝐹(𝑤) = −𝐿(𝑤) 

𝐿(𝑤) =
1

𝑛
∑  

𝑛

𝑖=1

ℓ(𝑦𝑖, 𝑓(𝑥𝑖; 𝑤)) 

where 𝐿(𝑤) is the loss function, ℓ is the loss of a single sample, 𝑓(𝑥𝑖; 𝑤) is the 

model’s prediction of input 𝑥𝑖, 𝑦𝑖 is the true label, and 𝑛 is the number of samples in 

the validation set. 

(3) Selection 

The selection process screens individuals based on their fitness to determine 

which will contribute to the next generation. Common methods include roulette 

selection and tournament selection. The selection probability, (𝑝𝑖 ), is calculated 

based on the relative fitness of each individual: 

𝑝𝑖 =
𝐹(𝑤𝑖)

∑  𝑁
𝑗=1 𝐹(𝑤𝑗)

 

(4) Crossover 

Crossover simulates the mating process in biological evolution, creating a new 

individual by combining genes from two parent individuals. If (𝑤𝑎) and (𝑤𝑏) are 

selected for crossover, the new individual, (𝑤new), is generated as: 

𝑤new = 𝛼𝑤𝑎 + (1 − 𝛼)𝑤𝑏 

where 𝛼 is a random number between 0 and 1. 

(5) Mutation 

Mutation introduces diversity by randomly altering certain bits of an 

individual’s genes. The mutated individual, (𝑤mut), is expressed as: 
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𝑤mut,j = 𝑤𝑗 + 𝛿𝑗 

where 𝛿𝑗 is a random variable obeying some distribution (e.g., Gaussian) and 𝑗 is the 

gene location of the variant. 

The GA iteratively refines the population through the following process: 

𝑤𝑡+1 = 𝐺𝐴(𝑤𝑡, 𝐹(𝑤𝑡)) 

where 𝑤𝑡 is the 𝑡  generation parameter population and 𝑤𝑡+1  is the parameter 

population after one round of GA operation. This iteration continues until stopping 

conditions are met, such as reaching a predefined number of iterations or when the 

fitness function value no longer shows significant improvement. 

3.4. Health status assessment 

After the model training is completed, we enter the stage of power battery 

health state assessment. The goal of this phase is to accurately classify the health 

state of the battery using the trained model. The following is the detailed expansion 

and formula description of the health state assessment: 

(1) Model output and probability distribution 

We adopt the softmax function as the activation function of the output layer of 

the deep learning model in order to convert the raw output of the model into a 

probability distribution that can be interpreted as the probability of each health state 

category. the softmax function is defined as follows: 

𝑃(𝑦𝑗|𝑥) =
𝑒𝑧𝑗

∑  𝐾
𝑘=1 𝑒𝑧𝑘

 

where 𝑃(𝑦𝑗|𝑥) denotes the probability that the model predicts the output to belong to 

category 𝑗 given input 𝑥, 𝑧𝑗 is the activation value of the 𝑗 node of the model’s output 

layer, and 𝐾 is the total number of health state categories. 𝑧𝑗 is usually generated by 

the last fully connected layer of the model. 

(2) Classification decision 

Based on the probability distribution of the softmax function output, we can 

make a classification decision by selecting the category with the highest probability 

as the final prediction of the model: 

𝑦
^

= 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑗

𝑃(𝑦𝑗|𝑥) 

where 𝑦
^
is the model’s prediction class for input 𝑥. 

(3) Health state score 

In addition to categorisation decisions, we can also use probability distributions 

to obtain a continuous health state score, which helps to assess the health of the 

battery in more detail. For example, we can use the following formula to calculate 

the health state score: 

𝑆(𝑥) = ∑  

𝐾

𝑗=1

𝑗 × 𝑃(𝑦𝑗|𝑥) 
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where 𝑆(𝑥) is the health state score of input 𝑗, and 𝑗 is the category index, which can 

also represent the level of health state. In this way, a higher score indicates a worse 

health state of the battery. 

(4) Evaluation Metrics 

To quantify the performance of the model, we use a series of evaluation metrics 

such as Accuracy, Precision, Recall, F1 Score and Confusion Matrix. These metrics 

help us understand the performance of the model on different health state categories. 

4. Experiments and analyses 

4.1. Data sources 

The dataset utilized in this study is sourced from the power battery of a globally 

renowned electric vehicle brand, recognized for its leadership in battery technology 

and electric vehicle innovation. The data collection process was conducted using a 

high-precision data acquisition system, ensuring the accuracy and reliability of the 

data. All sensors were meticulously calibrated prior to use, further guaranteeing data 

quality. The data acquisition encompassed various driving modes (such as city 

driving, high-speed driving, and hill climbing) and diverse environmental conditions 

(including seasonal temperature fluctuations and humidity variations) to simulate 

real-world usage scenarios. The resultant dataset comprehensively covers a range of 

key performance indicators, including the battery’s charging and discharging 

processes, ambient temperature changes, and battery aging, providing a robust 

information base for assessing the health status of power batteries [14]. Table 1 

offers a detailed overview of the data sources: 

Table 1. Overview of power battery data. 

Data Type Descriptions Dimension (Unit) 
Sampling 

Frequency 

Data 

Range 

Charge and 

Discharge Data 

Encompasses voltage, current, and time series data from the battery 

during standard charging and discharging processes. These data are 

pivotal for analyzing the battery’s dynamic response and internal 

impedance changes. 

Voltage (V), Current 

(A) 
1 Hz 

0–100% 

SOC 

Ambient 

Temperature 

Records various temperature points in the battery’s operating 

environment, including maximum, minimum, and average temperatures. 

Ambient temperature significantly influences battery performance and 

lifespan. 

Celsius (°C) 1 Hz 
−20 °C to 

60 °C 

Aging Data 

Includes the number of cycles the battery has undergone since factory 

production, the percentage of capacity loss, and the increase in internal 

resistance. These metrics are crucial for evaluating the battery’s aging 

state. 

Cycles (times), 

Capacity (Ah), Internal 

Resistance (mΩ) 

Monthly 

update 
N/A 

During the data preprocessing stage, techniques such as denoising, filtering, and 

outlier processing were employed to ensure data quality. For the charge/discharge 

data, feature extraction was also performed, including but not limited to peak voltage, 

discharge plateau width, and capacity decay rate, all of which are essential for the 

subsequent health state assessment model. 

For real-time assessment of power battery health status in electric vehicles, the 

real-time performance and scalability of the algorithm are crucial. The algorithm 

incorporating biological principles proposed in this paper is designed through several 
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key optimizations to meet the needs of real-time monitoring. First, the algorithm 

adopts a lightweight model structure, which reduces the computational complexity 

and realizes the fast processing of battery data. Second, the efficiency of the 

algorithm is further enhanced by utilizing parallel computing techniques, allowing 

multiple battery parameters to be evaluated simultaneously. In addition, the modular 

design of the algorithm enhances its scalability, facilitates integration with various 

battery management systems (BMS), and adapts to different types and sizes of 

batteries. To further optimize the algorithm for real-time applications, future work 

will explore the implementation of edge computing strategies to minimize latency 

and improve responsiveness. 

4.2. Experimental results 

(1) Comparative Experiments 

In order to comprehensively evaluate the performance of the machine learning 

algorithm incorporating biological principles proposed in this paper in power battery 

health state assessment, we conducted a series of comparative experiments. In the 

experiments, the algorithm in this paper is compared in detail with the following 

industry-accepted assessment methods: equivalent circuit model (ECM), 

electrochemical model (PCM), and data-driven method based on support vector 

machine (SVM). As can be seen from Table 2, the algorithm proposed in this paper 

significantly outperforms the other methods in terms of evaluation accuracy, with an 

average evaluation accuracy of 92.4% and a standard deviation of 1.1%, which 

indicates that the algorithm has high stability and reliability. In terms of computation 

time, the algorithm in this paper takes only about 100 seconds, which is more 

efficient than the ECM and SVM methods, and although it is slightly faster than the 

PCM method, the algorithm in this paper has a clear advantage in terms of 

comprehensive performance, considering the lack of the PCM method in terms of 

generalisation ability and stability. In order to demonstrate the robustness of the 

algorithms in this paper more comprehensively, we further expand the scope of the 

generalization ability test to include more diverse battery aging conditions and 

degradation patterns. Specifically, we add the following test scenarios: batteries with 

different aging levels: including new batteries, moderately aged batteries, and 

heavily aged batteries. Batteries with different degradation modes: including 

batteries with different degradation characteristics such as capacity degradation, 

internal resistance increase, and power decrease. 

Table 2. Performance comparison of different algorithms. 

arithmetic Assessment accuracy (%) Calculation time (s) generalisation capability stability 

ECM 85.2 ± 2.5 120 ± 15 usual moderate 

PCM 87.6 ± 1.8 250 ± 20 rather or relatively good rather or relatively good 

SVM 89.1 ± 1.3 150 ± 10 usual rather or relatively good 

The algorithms in this paper 92.4 ± 1.1 100 ± 5 vigorous vigorous 

In terms of generalisation ability, the algorithm in this paper performs well, 

which is mainly attributed to the integration of adaptive and evolutionary 
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mechanisms in biological principles, which enables the algorithm to better adapt to 

different types and operating conditions of power battery data. In addition, this 

paper’s algorithm also outperforms other methods in terms of stability, which is 

attributed to the fact that the algorithm adopts a variety of biological heuristic 

optimisation strategies during the training process, such as the crossover and 

mutation operations of the genetic algorithm, as well as the local search capability of 

the simulated annealing algorithm [15], which help the algorithm to avoid falling 

into the local optimum, thus improving the overall performance of the evaluation. 

(2) Verification of generalisation ability 

Generalisation ability is one of the key indicators of the performance of 

machine learning algorithms, which refers to the algorithm’s ability to perform on 

unknown data. In order to comprehensively verify the generalisation ability of the 

algorithm proposed in this paper, we have conducted extensive tests covering power 

battery data of different types, specifications and operating conditions. Figure 1 

demonstrates the health state assessment accuracy of this paper’s algorithm on three 

different types of power batteries (Type A, Type B, and Type C). Each battery type 

is selected based on the differences in its chemical composition, structural design 

and application scenarios to evaluate the adaptability of the algorithm under different 

battery characteristics. 

 
Figure 1. Accuracy of health state assessment of different types of power batteries. 

From the figure, it can be seen that the algorithm in this paper maintains a high 

evaluation accuracy on three different types of power batteries, which are 92.4%, 

91.8% and 90.6%, respectively. This result indicates that the algorithm can 

effectively adapt to the characteristics of different battery types with strong 

generalisation ability. This generalisation ability is achieved thanks to the 

algorithm’s deep learning and abstraction of battery characteristics during the 

training process, which enables the model to capture the essential features of battery 
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health state assessment, rather than just the surface features of a specific type of 

battery. 

Figure 2 demonstrates the health state assessment accuracy of this paper’s 

algorithm on batteries with different aging levels, and Figure 3 shows the 

assessment accuracy on batteries with different degradation patterns. These test 

results further demonstrate the strong generalization capability of this paper’s 

algorithm in the face of diverse battery aging conditions and degradation modes. 

 
Figure 2. Accuracy of health state assessment of batteries with different aging levels. 

 
Figure 3. Accuracy of health state assessment of batteries with different degradation modes. 
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Figure 4 further demonstrates the accuracy of this paper’s algorithm in 

evaluating the health status of the power battery under different working conditions. 

The selection of working conditions covers common EV usage scenarios, including 

urban congested road conditions, motorway driving, mountainous hill climbing and 

extreme weather conditions. These test results further demonstrate the strong 

generalization capability of this paper’s algorithm in the face of diverse battery aging 

conditions and degradation modes. 

 
Figure 4. Accuracy of power battery health state assessment under different working conditions. 

The results show that the algorithm in this paper can maintain high evaluation 

accuracy under different working conditions, which are 92.1%, 91.5%, 90.9% and 

92.3%, respectively. This shows that the algorithm can not only perform well under a 

single working condition, but also maintain a stable and high precision assessment in 

the dynamic changes of different working conditions, which further proves the 

strong generalisation ability of the algorithm and its reliability in practical 

applications. 

5. Conclusion 

This study represents a pivotal advancement in the realm of power battery 

health management by merging biological principles with machine learning 

algorithms for electric vehicle applications. The developed algorithm, with its 

meticulous data parsing and rigorous model training, has showcased unparalleled 

performance in accuracy and generalisation, effectively tailoring to various battery 

types and operational scenarios. Our innovative approach not only carves out a new 

path for battery management technology but also expands the potential of machine 

learning in energy storage systems. Looking ahead, our research will intensify efforts 

in algorithm optimization using adaptive learning techniques, model enhancement 

through deep learning architectures and biological insights, and multi-model fusion 

to enhance reliability. We are committed to developing a real-time monitoring 

system with edge computing integration, conducting comprehensive economic and 
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scalability analyses, and validating our findings across a broader spectrum of battery 

conditions. Furthermore, we will assess the environmental impact to promote 

sustainability. Through these targeted endeavors, our aim is to provide both 

theoretical insights and practical, scalable, and eco-friendly solutions that propel the 

electric vehicle industry forward. 
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