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Abstract: Digital cultural tourism is an emerging form of tourism that presents cultural 

heritage and tourism resources digitally to users, providing immersive travel experiences. 

However, traditional methods of constructing virtual scenes often rely on manual modeling, 

leading to low efficiency and high costs. The existing digital cultural tourism platforms 

mostly provide static and pre-set content, lacking interaction with users, making it difficult to 

achieve personalized recommendations and interactive experiences. In response to these 

issues, this article is based on VR (Virtual Reality) scene intelligent generation and 

interactive algorithms, and aims to optimize the overall synergy between the presentation of 

cultural resources and user experience by constructing a digital cultural tourism ecological 

model. Drawing on biomechanical principles, the study emphasizes the importance of natural 

user interactions and physical engagement in enhancing the immersive experience. Firstly, 

the Lindenmayer system (L-system) and parameterized generation rules are used to generate 

complex natural landscapes and architectural structures. Natural and textured scene details 

are added using the Perlin noise algorithm. Using GANs (Generative Adversarial Networks) 

technology, generative and discriminative networks are trained to generate more realistic VR 

scenes, further enhancing the realism and detail representation of the scenes. At the same 

time, a gesture recognition technology combining CNN (Convolutional Neural Network) and 

LSTM (Long Short-Term Memory) models, along with a speech recognition algorithm based 

on DNN (Deep Neural Networks), is adopted to enhance the natural interaction between 

users and virtual scenes. By combining collaborative filtering algorithms with user behavior 

data, personalized content recommendations are realized, enhancing user engagement and 

satisfaction. The efficiency test of scene modeling, the total time required to generate scenes 

using the model in this article is only 84 hours, which is much lower than manual modeling. 

In the interactive test, the highest success rate of the model in this article in gesture 

recognition reaches 94%. The experimental results have verified the advantages of the model 

in this article in improving scene modeling efficiency and enhancing immersive experiences 

through biomechanically informed interactions. 

Keywords: virtual reality; biomechanics; scene intelligent generation; interactive algorithm; 

convolutional neural network; deep neural networks 

1. Introduction 

The current digital transformation in the field of cultural tourism faces multiple 

challenges. The creation of virtual environments relies on manual operation, which 

limits production speed and increases economic burden. Existing digital tourism 

platforms often provide static content and lack dynamic interaction, making it 

difficult to meet personalized user needs and reducing participation interest. To 

address these issues, it is necessary to explore more efficient content production 

methods. Currently, the best solution is to use automated tools and intelligent 
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algorithms to achieve dynamic updates. In addition, the platform should provide 

flexible interactive mechanisms to meet user needs. Although VR (Virtual Reality) 

technology brings new experiences to cultural tourism, its popularity and cost remain 

obstacles, and the threshold needs to be lowered to improve usability and 

accessibility. 

This article focuses on the challenges faced by digital cultural tourism and 

studies a digital cultural tourism ecological model based on VR scene intelligent 

generation and interactive algorithms. This article optimizes virtual scene generation 

through intelligent algorithms, reducing costs and improving efficiency. Gesture and 

speech recognition technology are applied to enhance user interaction experience and 

meet user needs through personalized recommendations, promoting the development 

of digital cultural tourism. This study aims to optimize the overall synergy between 

cultural resource display and user experience by improving specific indicators such 

as user satisfaction, increasing interaction frequency, and enhancing the accuracy of 

personalized recommendations. 

The article first analyzes the current situation and challenges of digital cultural 

tourism in terms of structure, studies a digital cultural tourism ecological model 

based on VR scene intelligent generation and interactive algorithm, and details the 

various technologies used in the model. Subsequently, the efficiency, diversity, and 

interactivity of the model’s scene modeling are evaluated through experiments, and 

the research results and potential impact on the cultural tourism field are summarized 

in the end. 

Main contribution: an intelligent scene generation model based on VR is 

established, which achieves efficient and realistic automatic construction of virtual 

landscapes through L-system and Perlin noise; gesture recognition and speech 

recognition technologies are integrated to enhance the natural interaction experience 

between users and virtual scenes; a personalized content recommendation based on 

user behavior data is implemented, enhancing users’ personalized experience and 

satisfaction. 

2. Related work 

Previous studies have explored improvements and optimizations in digital 

cultural tourism. Ammirato et al. [1] established a classification framework for value 

creation, value proposition, and value acquisition by analyzing the business model 

and key features of cultural tourism mobile applications. The research found that 

although technological advancements provided new opportunities for the cultural 

tourism industry, digital enterprises did not fully utilize these technologies to meet 

user needs. They provided directions for optimizing mobile application services for 

digital enterprises in their research. Kerdpitak [2] studied the potential improvement 

effects of innovative management methods such as collaborative networks, digital 

marketing, service quality, and supply chain management on cultural tourism 

performance in northeastern Thailand. Through questionnaire surveys and random 

sampling, the study found that these management innovations were key factors in 

improving cultural tourism performance. The results emphasized that optimizing 

these management strategies could significantly improve performance in digital 
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cultural tourism. Guo et al. [3] explored the tourist response to immersive digital 

museums as an innovative tourism experience. The study revealed three dimensions 

of pleasure, personal escapism, and locality, and found that visual and auditory cues 

were key to enhancing tourist experience. Emotional state and presence play a 

mediating role between sensory experience and tourist experience. These findings 

contribute to understanding the digital museum experience and provide guidance for 

optimizing the digital tourism experience. Yanti et al. [4] analyzed social media 

content and online comments, and explored how digital information promoted 

communication in the tourism industry and stimulated innovation in rural 

communities. The study found that effective use of the Internet platform could 

change the negative view of rural tourism, promote sustainable development, protect 

cultural heritage, and promote economic development. Preko et al. [5] explored the 

impact of digital tourism experience on revisiting tourist attractions. Technology 

driven service innovation can significantly enhance service value, increase traffic, 

and promote experience sharing. The research results provide insights for tourism 

website operators on how to use technological innovation to improve customer 

revisit rates and share experiences, which is of great significance to policy makers 

and practitioners in the tourism industry. Marwan et al. [6] emphasized the 

importance of digital technology in providing tourism information, forming a 

positive destination image, facilitating accessibility, and improving infrastructure. 

These factors help improve the performance of digital tourism destinations by 

promoting information sharing between tourism providers and potential tourists. 

These studies emphasize the shortcomings in technology application and user 

demand satisfaction in the current field of digital cultural tourism. The importance of 

management innovation reflects that optimizing content production and user 

interaction strategies is the key to enhancing the attractiveness of digital cultural 

tourism. The current personalized needs of tourists are not being taken seriously, and 

the overall user experience is poor. 

Some scholars have attempted to use advanced algorithms to improve the 

effectiveness of scene generation and increase interaction between the scene and 

users. Gao et al. [7] proposed a hierarchical graph network for generating 3D indoor 

scenes. This method considered a complete hierarchical structure from room level to 

object level and then to object part level, and simplified the learning process by 

applying functional areas as intermediate agents. Using a variational autoencoder 

based on conditional recurrent neural networks, furniture objects with fine-grained 

geometric shapes and their layouts were directly generated. Wu [8] et al. proposed a 

diffusion-based 3D scene generation model, BlockFusion, which extended the scene 

by generating unit blocks and seamlessly merging new blocks. BlockFusion can 

generate geometrically consistent and unbounded large-scale scenes in indoor and 

outdoor environments through extrapolation and 2D layout adjustment mechanisms, 

achieving high-quality shape generation. Yang et al. [9] explored the influencing 

factors of personalized travel recommendations based on the stimulus organism 

response theory. Research has found that perceived personalization, visual 

appearance, and information quality are key factors affecting consumers’ perception 

of personalized travel recommendations. Zeng et al. [10] explored how VR tourism 

experiences can stimulate tourists’ willingness to engage in cultural communication 
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behavior by enhancing experiential value and increasing tourist pride. The study not 

only expanded the theoretical understanding of VR tourism from an emotional 

perspective, but also had important practical guidance for VR design and destination 

marketing. These studies have identified the shortcomings in the current field of 

digital cultural tourism and provided reference for the exploration of improving 

scene generation efficiency and user interaction experience in this article. 

3. Intelligent scene generation and interactive optimization 

modeling 

This article explores the application of intelligent scene generation and 

interactive optimization modeling in the field of virtual museums. The advancement 

of digital technology has given birth to virtual museums, a new form of cultural 

dissemination that is not constrained by time and space, allowing people from all 

over the world to easily access and appreciate rich cultural heritage. Virtual 

museums effectively enhance the effectiveness of education and cultural 

dissemination by providing diverse exhibition content and immersive experiences. 

The existing virtual museums still have shortcomings in terms of interactivity and 

personalized experience, which limits the improvement of user experience. 

Therefore, optimizing existing models to enhance user engagement and experience 

quality is particularly urgent. 

3.1. Landscape and structure generation 

Generating complex and realistic landscapes and structures is of great help in 

enhancing the user experience. This article combines L-system with parameterized 

generation rules to efficiently construct natural landscapes and architectural 

structures, achieving enhanced realism and immersion. 

L-system [11,12] is a string replacement-based generative system used to 

simulate complex structures of natural forms. In the environment of a virtual 

museum, the first step is to set up a basic symbol set, where each symbol represents a 

specific element. The basic elements and generation rules set in this article are 

shown in Table 1: 

Table 1. Symbol set for landscape and structure generation. 

Symbol Element type Generative rule Interpretation 

T Tree T → T[+T] [−T] 
The recursive growth of trees, producing branches. [+T] and [−T] represent generating new tree 

symbols in both directions. 

F Flower F → F F | F[F] 
F F means the flowers are repeated in the same place. F[F] indicates that a flower is formed on a 

branch of another flower. 

G Grassplot G → G G | FG 
G G means the grass is repeated in the same place. FG indicates the combination of grass and 

flowers. 

R Rock 
R → R R | FR | 

GR 

R R means the rock is repeated in the same place. FR means the rock formed next to the flower. 

GR indicates that rocks are generated adjacent to grassland. 

B Building B → BB | B[B] 
BB indicates that the building is repeated in the same location. B[B] indicates that the building 

adds more layers to the existing building. 
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Table 1 shows the symbol sets and their generation rules for landscape and 

structure generation used in virtual museum environments. These symbols and rules 

are based on the L-system, which constructs natural landscapes and architectural 

structures through string replacement. Each symbol represents a specific element, 

such as basic trees, flowers, grasslands, rocks, and buildings, and rules define the 

generation methods and interrelationships of these elements. 

The rule definition is completed and the iterative process is carried out. L-

system gradually constructs rich natural landscapes and architectural structures by 

repeatedly applying defined replacement rules. Taking the generation of landscapes 

and structures in forests as an example, the iterative generation first sets an initial 

symbol string X. In the virtual museum environment, X represents a defined basic 

element, namely T. The current symbol string is replaced according to the preset 

generation rules. The replacement process gradually applies more details and 

complexity through specific generation rules. A forest is generated, and the T symbol 

is further replaced with a complex branching structure to achieve the effect of natural 

growth. 

The entire generation process is a process of iterative use of rules in multiple 

rounds. In the first round, the initial symbol string X is replaced and becomes T. In 

the second round, according to the rule T → T[+T] [−T], the symbol string becomes 

T[+T] [−T]. In the third round, the symbol string becomes T[+T] [−T] [+T] [−T], and 

so on. This process is repeated continuously, ultimately forming a complete forest 

structure. 

The recursive nature enables the generated landscape and structure to have a 

high degree of detail and variation, which can reflect the complexity of plants in 

nature. After multiple iterations, the generated trees have rich branches and diversity 

in height, width, and morphology. The generated landscape and structure enhance 

visual appeal and enhance users’ experience in virtual museums. 

In order to flexibly adjust landscape features according to different 

environmental requirements, natural landscapes and buildings suitable for specific 

scenes are generated. This article extends the L-system by parameterizing the 

generation process. The core of parameterized generation rules lies in dynamically 

adjusting various features during the generation process. In the generation of forest 

landscape and structure, the adjusted features include height, width, branch angle and 

color. 

The height of trees directly affects the visual effect and the sense of hierarchy in 

landscape and structure. The height parameter H for trees is set, and the value of H 

for different types of trees is limited. Shorter shrubs are suitable for growing in 

grasslands, while tall pine trees can provide shade in forest environments, increasing 

the richness of space. The width of trees affects the coordination between their 

appearance and their surrounding environment, and the width parameter W is set. 

The angle of branching affects the growth morphology of trees, and the branching 

angle parameter A is set. The color of trees affects the visual effect and is closely 

related to the theme of the virtual museum, and the color parameter C is set. Table 2 

is a regularized table of forest landscape and structural parameters: 
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Table 2. Regularization table of forest landscape and structural parameters. 

Parameter Description Value range Sample 

Height (H) Affects the visual effect and spatial layering of trees 3 m–10 m 

Shrub (2.5 m–4 m) 

Pine tree (7 m–9 m) 

Beech tree (5 m–7 m) 

Birch tree (6 m–8 m) 

Width (W) 
Influences the appearance and harmony with the surrounding 

environment 
0.5 m–2 m 

Willow tree (0.5 m–0.6 m) 

Oak tree (1.2 m–1.8 m) 

Red maple (0.9 m–1.1 m) 

Pine tree (1 m–1.4 m) 

Branching angle (A) Affects the growth form of trees 20°–60° 

20°-22° (Upright growth) 

40°–50°(Spreading growth) 

28°–32° (Slightly tilted) 

48°–52° (Significant 

branching) 

Color (C) Influences visual effects and thematic consistency 
Seasonal 

variation 

Spring (bright green) 

Summer (dark green) 

Autumn (golden) 

Winter (brownness) 

Cherry Blossom (pink) 

Table 2 shows the parameter regularization in forest landscape and structure 

generation. By setting features such as height, width, branching angle, and color, the 

characteristics of trees can be flexibly adjusted to meet specific environmental needs. 

3.2. Detail enhancement 

In the environment of a virtual museum, in order to enhance the realism of the 

landscape and structure, this article applies the Perlin noise algorithm to add natural 

textures and details. Perlin noise [13,14] is a progressive noise generation technique 

that produces results that are coherent and natural. The Perlin noise algorithm can 

effectively simulate the irregularity in nature, making the generated elements more 

vivid and realistic. When applying the Perlin noise algorithm, the base frequency of 

the noise is set to 0.01 and the amplitude is set to 1. To generate richer terrain details, 

a multi-layer noise superposition strategy is adopted, and the frequency and 

amplitude of each layer of noise decrease in the proportion of 1/2^n, where n 

represents the number of noise layers. The smoothness parameter of the noise 

function is set to 0.5 to ensure that the generated terrain is both natural and smooth. 

The application of Perlin noise first determines the coordinate system generated 

by the noise. For the natural landscape and structure in the virtual museum, the three-

dimensional coordinate (𝑥, 𝑦, 𝑧)  are used to represent the spatial position in the 

museum. The continuous noise value 𝑃(𝑥, 𝑦, 𝑧) is generated using the Perlin noise 

function: 

𝑃(𝑥, 𝑦, 𝑧) = (1 − F(𝑡)) × g(𝑎) × (𝑡 − 𝑎) + F(𝑡) × g(𝑏) × (𝑡 − 𝑏) (1) 
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Among them, 𝐹(𝑡)  represents the interpolation function, and 𝑔(𝑎)  and 𝑔(𝑏) 

represent the gradient vectors at points a and b. 

To achieve more complex effects, this article adopts a fractal noise generation 

strategy by stacking multiple Perlin noise layers to form richer details. This process 

involves superimposing various types of noise with different amplitudes and 

frequencies. 

The left side of Figure 1 shows the normalized images of 5 different amplitudes 

and frequencies of noise. The horizontal and vertical coordinates are frequency and 

amplitude, respectively, and the unit a.u. stands for arbitrary units, indicating the 

relative values of frequency and amplitude. The right figure shows the noise density 

distribution after superposition processing, which has also been normalized to 

demonstrate the comprehensive effect of multiple noise layers superposition. The 

color depth of each point represents the noise density at that location, reflecting the 

complexity and diversity of natural textures. 

 

Figure 1. Noise superposition processing. 

The generated Perlin noise values are used in virtual museums to control the 

texture of natural landscape elements. By mapping the noise values to different 

texture features, rich visual effects can be achieved, enhancing the user’s interactive 

experience. 

The terrain is the fundamental part of the entire scene, using Perlin noise to 

generate height maps, creating undulating terrain, and simulating real-world terrain 

changes. The height of each ground point is adjusted according to the corresponding 

noise value, forming a natural high-low fluctuation. By enhancing local details, the 

distribution of vegetation and stones can be further controlled, ensuring the diversity 

and richness of the scene, allowing visitors to experience the real natural 

environment during exploration. 

Perlin noise values are analyzed and vegetation textures are generated. The 

density of trees, shrubs, and grasslands are adjusted based on changes in noise levels 

to make the vegetation layout more reasonable and natural. The noise values are 
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mapped to different green tones, representing different types of plants and enhancing 

the layering of vegetation. 

To enhance the realism of VR scenes, material and lighting treatments are also 

required. The Perlin noise is combined for material mapping to generate different 

textures for the ground, including sand, grass, and stones. Perlin noise provides 

dynamic shadow effects for elements in the scene. The intensity and position of the 

light source affect the brightness and reflection of the elements, ensuring 

coordination with the surrounding environment. Combined with the shadows 

generated from the height map information, the shadow effect under natural lighting 

is simulated to enhance the three-dimensionality of the scene. 

3.3. Realistic scene generation 

In the environment of a virtual museum, this article uses GAN [15,16] 

technology to train generative and discriminative networks to generate 3D scenes. 

The architecture design of GAN in this article is shown in Figure 2: 

 

Figure 2. GAN architecture design. 

Figure 2 shows the architecture design of using GAN to generate 3D scenes in 

this article. The generative network converts random noise into a virtual museum 

scene, which includes an input layer receiving random noise, followed by a fully 

connected layer and a deconvolution layer gradually upsampling, and finally 

outputting three-dimensional scene data such as exhibits, environment, and 

background. 

The discriminative network is responsible for determining whether the input 

virtual museum scene is a real exhibition or generated virtual content. Its structural 

design is similar to that of a generative network, including multiple convolutional 
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layers for extracting features of exhibits, environment, and background, gradually 

reducing the spatial dimension of the input, and finally outputting the probability of 

authenticity through a fully connected layer. 

During the training process, after initializing the weights of the generative 

network and discriminative network, the network is trained iteratively. Firstly, the 

discrimination network is updated with real exhibits, environment and background 

samples, and generated virtual samples to optimize the discrimination loss. In the 

discrimination loss, this article uses cross entropy loss: 

LD = −𝔼[logD(x)] − 𝔼 [log (1 − D(G(z)))] (2) 

Among them, D(x) represents the probability that the discriminative network 

judges the input real virtual museum scene as real. D(G(z))  represents the 

probability that the discriminative network judges the generated virtual scene as real. 

𝔼 represents the expected value of the input sample. 

The output of the discriminative network is used to update the generative 

network and optimize the generation loss. The formula for generating losses is: 

𝐿𝐺 = −𝔼[log𝐷(𝐺(𝑧))] (3) 

Among them, 𝐺(𝑧)  represents the virtual museum scene generated by the 

generation network on the input random noise vector 𝑧 . 𝐷(𝐺(𝑧))  has the same 

meaning as discriminant loss. Through multiple iterations, the network gradually 

converges and continuously improves the quality of the generated scenes. 

The generated virtual museum scene needs to undergo quantitative and 

qualitative evaluations to verify its quality. Quantitative evaluation uses Fréchet 

Inception Distance (FID) and Inception Score (IS) metrics to measure the differences 

and diversity between generated exhibition scenes and real scenes, with lower FID 

and higher IS indicating higher generation quality. At the same time, feedback is 

collected through expert review or user research to evaluate the realism, details, and 

visual appeal of the generated scene. 

3.4. Natural interaction 

In virtual museums, achieving natural interaction between users and virtual 

scenes requires the combination of gesture recognition and speech recognition 

technology. This article chooses the combination of CNN and LSTM for gesture 

recognition. 

Gesture recognition first collects user gesture training data. Gesture videos are 

recorded using cameras and depth cameras, and the recognized gesture categories are 

defined, including “pointing to exhibits”, “clicking on information icons”, and 

“scrolling through”. The data is recorded under different lighting and environmental 

conditions, which can improve the diversity and robustness of the dataset, and 

annotate each gesture. The data preprocessing includes extracting keyframes from 

the video, normalizing image size and pixel values, and improving the accuracy of 

gesture recognition. 

Efficient gesture feature extraction is achieved through multiple convolutional 

and pooling layers. The input layer of the model receives processed image frames, 
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and the input is a three channel image. Convolutional layers use convolution kernels 

of different sizes to capture local features of gestures, combined with ReLU function 

to apply complexity. The pooling layer reduces the feature dimension, preserves the 

most important information, and reduces computational complexity. The fully 

connected layer outputs the probability distribution of each gesture category, 

allowing users to quickly and accurately recognize gestures when interacting with 

the virtual museum, enhancing the user experience. 

To capture the temporal characteristics of gestures, the gesture recognition 

system of the virtual museum integrates an LSTM model. The feature extraction 

results of multiple consecutive frames are input into the LSTM unit to form time 

series data, and recognize the temporal changes in the start, duration, and end states 

of gestures. The LSTM layer is capable of processing complex temporal information 

and combining its output with the results of CNN to ultimately generate gesture 

recognition results. The integration method ensures that when users interact 

dynamically in the virtual museum, the system can recognize their gestures in real-

time, enhancing the overall immersion and interactivity of digital cultural tourism. 

This article uses DNN for speech recognition. Tourists’ voice commands are 

recorded through a microphone, and the recorded voice samples are annotated to 

ensure that each sample corresponds to the correct text label. Voice features are 

extracted through short-time Fourier transform. The input layer of DNN receives 

extracted speech feature vectors and learns features through multiple fully connected 

hidden layers, while ReLU helps process complex speech patterns. Finally, the 

probability distribution of each voice command is generated to identify the specific 

instructions of the tourists. 

3.5. Personalized recommendations 

In personalized recommendations for virtual museums, the behavioral data from 

visitors is collected, including their browsing history, interaction history, rating data, 

and search history. Besides, the data is deduplicated to ensure its uniqueness; 

timestamps are standardized for unified analysis; the various behaviors of tourists are 

encoded to ensure consistent data format. 

The recommendation of virtual museums is achieved through collaborative 

filtering algorithms, which are divided into two methods: visitor-based and exhibit-

based. The collaborative filtering based on tourists first constructs a similarity matrix 

by calculating the similarity between tourists. This article uses cosine similarity to 

calculate the similarity of each visitor entering the virtual museum: 

𝑆(𝑢, 𝑣) =
∑ 𝑟𝑢,𝑖𝑖∈𝐼 × 𝑟𝑣,𝑖

√∑ 𝑟𝑢,𝑖
2

𝑖∈𝐼 ×√∑ 𝑟𝑣,𝑖
2

𝑖∈𝐼

 
(4) 

Among them, 𝑟𝑢,𝑖 and 𝑟𝑣,𝑖 respectively represent the ratings of exhibit i by the 

tourist u and the tourist 𝑣. The tourist who is most similar to the target tourist is 

selected as the neighbor based on the calculated similarity matrix. 

Based on the behavior data of these neighbors, the rating of tourists who have 

not viewed the exhibits is predicted: 
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𝑟𝑢,𝑗 =
∑ 𝑆𝑣∈𝑁(𝑢) (𝑢, 𝑣) × 𝑟𝑣,𝑗
∑ |𝑆(𝑢, 𝑣)|𝑣∈𝑁(𝑢)

 (5) 

Among them, 𝑟𝑢,𝑗 represents the predicted rating of exhibit 𝑗 by the tourist 𝑢, 

and 𝑁(𝑢)  represents the collection of neighbors of the tourist 𝑢 . Based on the 

behavior data of these neighbors, the ratings of tourists who have not viewed the 

exhibits are predicted, generating personalized recommendations accordingly. The 

exhibit-based similarity calculation process is similar to the visitor-based process, 

which calculates the similarity between exhibits and in turn generates a list of 

recommendations for visitors. 

Periodic surveys and feedback are conducted on tourists to collect their 

satisfaction with recommendations. Visitors are asked about their perceptions of the 

relevance, interest, and novelty of the recommended content. Personalized 

recommendations provide virtual museum visitors with highly relevant content 

recommendations. It not only improves visitors’ browsing experience, but also 

enhances their engagement and satisfaction. 

4. Model utility evaluation 

4.1. Scene modeling efficiency testing 

Table 3. Modeling time for different method scenes. 

Scene Type Method Generation Time (Hours) Detail Enhancement Time (Hours) Total Time (Hours) 

Natural Landscape 

Manual Modeling 68 20 88 

Blender Procedural Modeling 45 15 60 

Unity ProBuilder 44 10 54 

The model of this article 32 8 40 

Architectural Structure 

Manual Modeling 54 15 69 

Blender Procedural Modeling 38 10 48 

Unity ProBuilder 32 8 40 

The model of this article 26 4 30 

Exhibit Layout 

Manual Modeling 41 10 51 

Blender Procedural Modeling 20 8 28 

Unity ProBuilder 25 6 31 

The model of this article 12 2 14 

Overall 

Manual Modeling 163 45 208 

Blender Procedural Modeling 103 33 136 

Unity ProBuilder 101 24 125 

The model of this article 70 14 84 

The experiment compares the efficiency of traditional manual modeling, 

Blender Procedural Modeling, Unity ProBuilder and the model proposed in this 

paper in virtual museum scene modeling. Virtual museum scenes of the same 

complexity are selected for modeling, ensuring coverage of natural landscapes, 

architectural structures, and exhibit arrangements. Traditional manual modeling uses 
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Maya tools to record the time required for scene modeling. The time required for two 

methods to generate the same scene is compared when using the model in this article 

for automated modeling. The results obtained are shown in Table 3: 

The results in Table 3 retain the integer part. The total time for manual 

modeling of natural landscapes, architectural structures, and exhibition arrangements 

is 88 h, 69 h, and 51 h, respectively, for a total of 208 h. The total time for Blender 

Procedural Modeling and Unity ProBuilder is 136 h and 125 h, respectively. The 

model in this article takes less time than manual modeling in various scene types, 

with a total time of only 84 h. In order to further explore the reasons why manual 

modeling takes a long time, the specific time data for each part of manual modeling 

are shown in Table 4: 

Table 4. Time required for manual modeling of various parts in different scenes. 

Scene Type Step Time (Hours) Scene Type Step Time (Hours) 

Natural Landscape 

Terrain Creation 35 

Exhibit Layout 

Exhibit Model Creation 25 

Vegetation Design 26 Layout Design 11 

Detail Layout 15 Information Panel Creation 9 

Texture Application 12 Detail Adjustment 6 

Architectural Structure 
Base Structure Setup 22 

 
Material Application 15 

Detail Decoration 19 Lighting Setup 13 

Table 4 shows the time data for manually modeling various parts in different 

scenes, including detailed steps for natural landscape and exhibit layout, as well as 

building structure. The terrain creation of natural landscapes takes the longest time, 

reaching 35 h. The production time for the exhibit model in the exhibit arrangement 

is the longest, at 25 h. The construction of the base structure in the building takes the 

longest time, taking 22 h. From the experimental results, it can be seen that the 

model proposed in this article significantly reduces time consumption in modeling 

scenes of the same complexity. The time-consuming use of manual modeling in 

some stages results in low manual efficiency. 

4.2. Assessment of differences and diversity 

The differences and diversity between the virtual museum exhibition scenes 

generated using this article’s model and the real scenes are evaluated, and images of 

real exhibition scenes are selected as baseline samples. Virtual exhibition images 

corresponding to these scenes are generated. Training is performed using this 

article’s model, and the differences and diversity between the generated images and 

the real images are quantified by calculating the FID and IS metrics. Five types of 

exhibition halls are selected for the experiment, generating 50, 100, 150, and 200 

images for each exhibition hall, and their FID and IS values are calculated. The FID 

statistical results are shown in Figure 3: 



Molecular & Cellular Biomechanics 2025, 22(2), 745.  

13 

 

Figure 3. FID value statistical results. 

Figure 3 shows the results of FID testing. The FID value represents the 

difference between the generated image and the real image, and the smaller the value, 

the smaller the difference. A FID value below 50 indicates good model performance, 

while a FID value below 20 indicates excellent model performance. The FID value 

in the experiment decreases as the number of images increases. When testing 50 

images, the highest FID value in exhibition hall 1 exceeds 30. As the number of 

images increases, the FID value gradually decreases. In exhibition hall 2, the lowest 

FID of 200 images tested reaches 15.9. Figure 4 shows the statistical results of IS: 

 

Figure 4. IS statistical results. 

The results of the IS test are shown in Figure 4. The IS value reflects the 

diversity and quality of the generated image, with a higher value indicating better 

quality and diversity of the generated image. An IS value between 4–7 indicates 

good model performance, while a value above 7 indicates excellent model 

performance. From the perspective of IS value, the model in this article does not 

have excellent performance, with the highest IS value being 5.4. Overall, the model 

presented in this article demonstrates good performance in generating virtual 

museum exhibition scenes, with low variability and good diversity. 
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4.3. Interactive testing 

The purpose of this experiment is to evaluate the application effect of a digital 

cultural tourism ecological model based on VR scene intelligent generation and 

interactive algorithm on interactivity in virtual museums. 20 participants are 

recruited to ensure a diverse range of browsing habits in the virtual museum, 

including users of different ages and cultural backgrounds. Participants have one 

hour of free browsing in the virtual museum, and the model adjusts the 

recommended content in real-time based on their behavior. The success rate of each 

participant in each interaction method is recorded. The results obtained are shown in 

Figure 5: 

 

Figure 5. Interactive evaluation results. 

From Figure 5, it can be seen that the success rate of this article’s model in 

gesture recognition and speech recognition is the lowest at 80%, while the highest 

success rate in gesture recognition reaches 94%. The results show that the model in 

this article performs well in user interaction, accurately recognizing users’ gestures 

and speech, and providing a better interactive experience. 

For the purpose of comprehensively evaluating the interactive effect of the 

model, the experiment also collected the participants' specific feelings, problems 

encountered, and suggestions for improvement during use. Most users said that the 

immersive experience of the virtual museum is very attractive, and gesture 

recognition and voice recognition technology make the interaction more natural and 

smooth. Some users also reported that under certain lighting conditions, gesture 

recognition occasionally misjudged; some users believed that voice recognition did 

not perform well in noisy environments. In response to these problems, users 

suggested that the development team should consider enhancing the system's 

adaptability in different environments and adding more diverse interaction methods 

to meet the needs of different users. 

5. Conclusions 

This article effectively addresses the challenges faced in the field of digital 

cultural tourism by constructing a digital cultural tourism ecological model based on 

VR scene intelligent generation and interactive algorithms. The research adopts L-

system and parameterized generation rules to automatically construct complex 
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landscapes, utilizes Perlin noise and GAN technology to enhance the realism and 

details of the scene, and integrates gesture recognition and speech recognition 

technology to enhance user interaction experience. In addition, the application of 

collaborative filtering algorithms has enabled personalized content recommendation, 

further enhancing user satisfaction. The experimental results show that the model has 

significant advantages in improving scene modeling efficiency, reducing costs, and 

enhancing interactivity and personalized experience. Future research can further 

explore how to combine social media data to optimize personalized recommendation 

algorithms and consider integrating multimodal interactions such as tactile feedback 

into virtual tourism experiences to achieve broader user participation and deeper 

cultural tourism experiences. 
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