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Abstract: This paper presents an innovative Artificial Intelligence (AI)—based system for 

real-time posture analysis and correction in instrumental music training. The system integrates 

OpenPose-based Convolutional Neural Networks (CNN) for skeletal tracking, Dynamic Time 

Warping for motion pattern analysis, and K-Nearest Neighbors (K-NN) for posture 

classification. Through a 16-week experimental study involving 18 music students, the system 

demonstrated significant improvements in learning outcomes compared to traditional methods. 

Key findings include (a) 33.3% faster technique acquisition in AI-assisted learning compared 

to traditional methods; (b) 18.6% higher posture improvement rates by week 16; (c) 40.2% 

better self-correction capabilities; and (d) 95.1% retention rate of correct posture after 6 

months. The system processes video input at 120 fps with a total latency of 30 ms, achieving 

94.3% accuracy in posture detection and 91.2% in motion pattern matching. The research 

establishes a comprehensive framework for integrating AI technology in music education, 

providing continuous, objective feedback during practice sessions. This approach addresses the 

critical gap between supervised instruction and individual practice, potentially reducing the 

risk of performance-related injuries through early detection of posture deviations. 

Keywords: posture analysis; motion pattern matching; music education; physical strain; real-

time feedback; computer vision; machine learning; faster technique acquisition 

1. Introduction 

The integration of Artificial Intelligence (AI) in Music Education (Music Educ.) 

represents a transformative advancement in instrumental pedagogy [1–3]. Traditional 

music instruction faces inherent limitations in providing continuous, objective 

feedback during individual practice sessions, potentially leading to the development 

of improper techniques and physical strain [4–7]. According to recent studies, 65%–

80% of professional musicians experience playing-related musculoskeletal disorders 

during their careers, predominantly stemming from poor posture and technique 

developed during formative training years [8–9]. This high prevalence of 

performance-related injuries highlights the critical need for innovative solutions in 

posture monitoring and correction during musical training. 

Previous computer-assisted Music Educ. research has primarily focused on pitch 

accuracy, rhythm, and tone quality [10,11]. While these aspects are crucial, the 

fundamental element of posture analysis has received limited technological attention 

[12]. Existing systems typically utilize single-camera setups or wearable sensors, often 

providing incomplete comprehensive posture analysis data [13,14]. Recent 

advancements in computer vision and machine learning, particularly in pose 

estimation algorithms, have opened new possibilities for non-invasive, real-time 

posture analysis [15–17]. Despite technological progress in Music Educ. tools, there 
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remains a significant gap in systems capable of providing real-time, comprehensive 

Posture Analysis (PA) across different musical instruments [18–19]. Current solutions 

frequently lack the precision necessary for fine-grained movement analysis or fail to 

account for instrument-specific requirements [20–21]. Additionally, existing systems 

typically focus on static posture or dynamic movements rather than integrating both 

aspects for holistic analysis [22–25]. 

This study aims to: 

 Develop an AI-based system for real-time PA in instrumental music training 

 Implement and validate algorithms for precise detection of posture deviations 

 Evaluate the system’s effectiveness in improving student learning outcomes 

 Establish quantifiable metrics for posture assessment across different instruments 

This paper presents an innovative system that combines OpenPose-based 

Convolutional Neural Networks (CNN), Dynamic Time Warping (DTW), and K-

Nearest Neighbors (KNN) algorithms for comprehensive posture analysis. The system 

processes video input at 120 fps, tracking 32 anatomical landmarks to provide 

immediate corrective feedback. This technology integrates with traditional 

pedagogical approaches to create a practical tool for supervised instruction and 

individual practice. The research methodology encompasses system development, 

implementation, and evaluation through a 16-week study involving 18 music students 

across different instrumental disciplines. The evaluation framework includes technical 

performance metrics and pedagogical impact assessments, comprehensively analyzing 

the system’s effectiveness [26–30]. 

This research contributes to the field by: 

 Starting a novel approach to PA in Music Educ. 

 Providing empirical evidence for the effectiveness of AI-assisted instrumental 

training. 

 Developing standardized metrics for PA assessment. 

 Creating a framework for future developments in technology-enhanced Music 

Educ. 

The subsequent sections detail the system architecture, implementation 

methodology, and experimental results. Section 2 presents the methodology 

framework. Section 3 describes the system design and implementation. Section 4 

outlines the experimental results and analysis. Section 5 concludes the paper. 

2. Methodology 

2.1. Participants 

This study included 18 instrumental music students (10 Females, 8 Males) from 

the Shanghai Conservatory of Music. The participants ranged in age from 18 to 22 

years (M = 19.8, SD = 1.2). All participants were full-time undergraduate students 

majoring in instrumental performance, with experience ranging from 8 to 14 years of 

formal musical training (Table 1). The sample included students from various 

instrumental disciplines: violin (n = 6), piano (n = 5), cello (n = 4), and flute (n = 3). 

All participants reported practicing their instruments for an average of 4.2 h daily (SD 

= 0.8). Before participation, all students underwent a preliminary screening to ensure 

they had no pre-existing musculoskeletal conditions or recent injuries that might affect 
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their posture or playing technique. Written informed consent was obtained from all 

participants, and the study protocol was approved by the Ethics Committee of the 

Shanghai Conservatory of Music (Approval Number: SCM2024-0142). 

Table 1. Demographic and musical background of participants. 

Characteristic Value (N = 18) 

Gender 

-Female 10 (55.6%) 

-Male 8 (44.4%) 

Age (Years) 

-Mean (SD) 19.8 (1.2) 

-Range 18–22 

Instrument Distribution 

-Violin 6 (33.3%) 

-Piano 5 (27.8%) 

-Cello 4 (22.2%) 

-Flute 3 (16.7%) 

Years of Training 

-Mean (SD) 11.3 (1.8) 

-Range 8–14 

Daily Practice Hours 

-Mean (SD) 4.2 (0.8) 

-Range 3–6 

All participants actively enrolled in regular instrumental lessons and maintained 

consistent practice schedules throughout the study. The relatively balanced 

distribution of instruments across participants (Table 1) allowed for a comprehensive 

analysis of PA across different playing positions and techniques. None of the 

participants reported having experience with motion-capture or AI-assisted PA 

systems, ensuring that prior exposure to similar technology would not influence the 

study outcomes [31–34]. 

Current paradigms in assessing learning and performance in music involve using 

computer vision, wearable biosensors, or mo-cap to analyze posture and movement. 

These systems are helpful, yet they are not very flexible in operation and are not easily 

incorporated into educational environments in real-time. Advanced formulas like 

machine learning go further than basic methods because they can provide real-time 

and context-based posture evaluation. Nevertheless, threats consist of restricted 

availability of high-quality training data and the fact that the application needs to be 

available and comprehensible to a broad audience. A limitation that could be addressed 

in the current proposed system is the need for expensive hardware, but the resulting 

system is both practical and time-efficient when integrated with ergonomic feedback 

and pedagogy. 
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2.2. Data collection 

2.2.1. Motion capture methods 

The study employed a multi-camera Motion Capture System (MCS) of 6 high-

speed Kinect Azure cameras (120 fps) strategically positioned around the performer’s 

space. The cameras were arranged in a hexagonal configuration at a distance of 2.5 m 

from the center point, with three cameras positioned at 1.8 m height and 3 at 1.2 m 

height to ensure comprehensive capture of all movement planes (Table 2). This setup 

enabled precise tracking of 32 skeletal joints and provided depth-sensing capabilities 

with an accuracy of ± 1.5 mm. 

To enhance tracking precision, participants wore minimally invasive 

retroreflective markers (14 mm diameter) at 20 key anatomical landmarks: C7 

vertebra, T4 vertebra, bilateral shoulder joints, elbows, wrists, metacarpophalangeal 

joints, anterior superior iliac spines, greater trochanters, lateral femoral condyles, and 

lateral malleoli. The markers were secured using hypoallergenic medical tape to 

prevent interference with natural movement patterns during performance. 

Table 2. Camera setup and specifications. 

Parameter Specification 

Number of Cameras 6 

Camera Model Kinect Azure 

Frame Rate 120 fps 

Resolution 1920  1080 pixels 

Distance from Center 2.5 m 

Camera Heights 

-Upper Tier 1.8 m (3 cameras) 

-Lower Tier 1.2 m (3 cameras) 

Field of View 90° horizontal 

Depth Sensing Accuracy ± 1.5 mm 

Marker Size 14 mm diameter 

Number of Tracked Points 32 skeletal joints 

2.2.2. Recording protocols 

Each participant underwent three recording sessions conducted over 2 weeks. 

The recordings followed a standardized protocol: 

1) Setup Phase (15 min): 

 Marker placement and system calibration 

 Instrument preparation and tuning 

 Brief warm-up period (5 min) 

2) Recording Phase (30 min Per Session): 

 Static posture capture (T-pose and instrument-ready position) 

 Technical exercises (Scales and arpeggios, 5 min) 

 Performance pieces: Etude (5 min); Standard repertoire piece (10 min); 

Sight-reading exercise (5 min). 

3) Environmental Controls: 
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 Room temperature maintained at 22 °C (± 1 °C) 

 Ambient lighting: 500 lux uniform illumination 

 Background noise level < 30 dB 

 Standard chair height: 46 cm (adjustable ± 5 cm for pianists) 

From Table 3 is the recording sessions were monitored by two researchers: a 

technical operator managing the motion capture system and a professional musician 

(minimum 10 years of teaching experience) observing and noting significant postural 

events. Time stamps were digitally marked for notable posture adjustments or 

technical challenges, facilitating subsequent analysis. All data streams were 

synchronized using a custom-developed temporal alignment algorithm, with a 

maximum temporal drift of ± 2 ms across the recording duration. The raw data was 

captured at 120 Hz and stored in proprietary and open-source formats (C3D) to ensure 

compatibility with various analysis tools. 

Table 3. Recording session structure. 

Session Component Duration (min) Data Captured 

Setup and Calibration 15 System alignment data 

Static Posture 5 Baseline measurements 

Technical Exercises 5 Basic movement patterns 

Etude Performance 5 Technical challenges 

Repertoire Performance 10 Complex movements 

Sight-reading 5 Spontaneous adjustments 

Total Session Duration 45  

Quality control measures included real-time monitoring of marker visibility and 

automatic flagging of occluded markers or tracking anomalies. In cases where data 

quality was compromised, the specific segment was immediately re-recorded to ensure 

consistent data quality across all participants. 

2.3. Proposed AI model 

The Proposed AI model operates as an interconnected pipeline (Figure 1), 

beginning with real-time video capture that feeds directly into the OpenPose CNN 

architecture. As the musician performs, the CNN processes the video stream at 120 

fps, generating precise skeletal tracking data across 32 anatomical landmarks. These 

landmarks create a comprehensive digital representation of the musician’s posture and 

movements, simultaneously feeding into two parallel analysis streams. The first 

analysis stream employs Dynamic Time Warping (DTW) to temporally align the 

musician’s movements with expert reference patterns stored in the motion database. 

Concurrently, the K-NN classifier examines the spatial relationships between tracked 

landmarks, categorizing current posture states against known correct and incorrect 

positions. 

Both analysis engines work synchronously, with DTW focusing on movement 

sequences and KNN handling instantaneous posture assessment, creating a 

comprehensive understanding of the musician’s technique. The outputs from both 

analysis engines converge in the rule-based feedback engine, which integrates their 
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findings with instrument-specific biomechanical rules. For instance, when the DTW 

engine detects a bowing pattern deviation while the KNN classifier identifies a 

slouched posture, the rule engine correlates these findings to generate specific, 

actionable feedback. This feedback synthesis occurs within 30 ms, enabling real-time 

response to the musician’s movements. The feedback generator then coordinates three 

simultaneous output channels: visual overlays showing posture corrections, precise 

textual instructions, and priority alerts for critical deviations. These outputs are 

synchronized with the musician’s movements, creating an interactive loop where each 

correction can be immediately observed and adjusted. The system continuously 

monitors the effectiveness of its feedback through the input stream, adapting its 

guidance based on the musician’s responses and progress. The process flow of the 

architecture is presented as a flowchart in Figure 2, and the following section 

discusses it in detail. 

 

Figure 1. Proposed architecture. 

The KNN classifier was trained with previously labeled posture and motion 

pattern datasets, and the k-k-value was set after the tuning of the hyperparam. 

Overfitting was prevented, and the model was validated through cross-validation (5-

fold). The optimal k-value was chosen by analyzing the misclassification rate while 

ensuring higher response time in a real-time feedback environment. 

2.3.1. Posture recognition and analysis with OpenPose. 

The OpenPose framework is a widely utilized Computer Vision (CV) algorithm 

for detecting and analyzing human body posture. In this study, OpenPose is the 

foundational algorithm for capturing skeletal joint coordinates, tracking postural 

changes, and providing real-time feedback to instrumental music students on their 

posture alignment. 

i Joint Detection and Keypoint Mapping: OpenPose identifies key skeletal points 

(Keypoints) in the human body, which are used to create a skeletal model of the 

subject. 
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Let 𝒥 represent the set of all tracked joints, where: 

𝒥 = {𝐽1, 𝐽2, … , 𝐽𝑛} (1) 

Here, each 𝐽𝑖  corresponds to a distinct anatomical landmark, such as the 

shoulders, elbows, wrists, and spine markers. For this application, track 20 key points 

on the body to accurately monitor posture. Each joint 𝐽𝑖  has a spatial position 

represented by the coordinates (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)  in the camera’s coordinate system. The 

output skeletal model, 𝑆, is defined as a collection of joint positions: 

𝑆 = {(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), … , (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)} (2) 

where 𝑛 is the total number of keypoints identified by OpenPose. 

ii Pose Estimation and Vector Calculation: After Keypoint detection, pose 

approximation involves calculating body vectors based on the relative positions 

of adjacent joints. Let 𝑣𝑖𝑗 represent the vector between joints 𝐽𝑖 and 𝐽𝑗, calculated 

as: 

𝑣𝑖𝑗 = (𝑥𝑗 − 𝑥𝑖, 𝑦𝑗 − 𝑦𝑖 , 𝑧𝑗 − 𝑧𝑖) (3) 

This vector calculation enables the determination of limb orientations, which are 

crucial for detecting specific posture deviations. For example, the orientation of the 

spine can be assessed by calculating the vector from the C-7 vertebra to the T4 

vertebra: 

𝑣spine = (𝑥T4 − 𝑥C7, 𝑦T4 − 𝑦C7, 𝑧T4 − 𝑧C7) (4) 

Deviations in this vector from an ideal reference position indicate misalignment 

in back posture, such as slouching or leaning forward. 

iii Angle Measurements for Postural Assessment: We calculate joint angles that 

reflect key body positions to assess posture quantitatively. Let 𝜃𝑖𝑗  denote the 

angle between two vectors 𝑣𝑖𝑗 and 𝑣𝑗𝑘 at joint 𝐽𝑗: 

𝜃𝑖𝑗 = cos−1 (
𝑣𝑖𝑗 × 𝑣𝑗𝑘

∥∥𝑣𝑖𝑗∥∥∥∥𝑣𝑗𝑘∥∥
) (5) 

where ⋅  denotes the dot product and ∥⋅∥  denotes the vector magnitude. For 

instance, the angle at the elbow joint is determined using the vectors from the shoulder 

to the elbow and from the elbow to the wrist: 

𝜃elbow = cos−1 (
𝑣shoulder-elbow × 𝑣elbow-wrist

∥∥𝑣shoulder-elbow∥∥∥∥𝑣elbow-wrist∥∥
) (6) 

These angle measurements help to determine whether the student’s elbows, 

wrists, and shoulders maintain the correct alignment during performance. 

iv Reference Posture and Deviation Calculation: For real-time correction, each 

student’s detected posture 𝑆 is compared against a reference posture 𝑆ref, which 

represents the ideal alignment of joint angles and vectors for a specific instrument. 

The deviation 𝑑 between the observed posture and reference posture is calculated 

as: 
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𝑑 = ∑  

𝑛

𝑖=1

∥∥(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) − (𝑥𝑖,ref, 𝑦𝑖,ref, 𝑧𝑖,ref)∥∥ (6) 

where (𝑥𝑖,ref, 𝑦𝑖,ref, 𝑧𝑖,ref) are the coordinates of the corresponding joint in the reference 

posture. A deviation threshold 𝛿 is set, beyond which corrective feedback is triggered. 

v Real-Time Feedback Mechanism: When deviations exceed the threshold 𝛿, the 

system provides context-specific feedback based on the type of detected 

misalignment. For instance, if the vector 𝑣spine deviates from vertical alignment 

by more than a certain angle (e.g., 𝜃spine > 5∘), the feedback might prompt the 

student to “straighten back”. Feedback 𝐹 is generated as: 

𝐹 = 𝑓(𝑑, 𝜃, 𝑆) (8) 

where 𝑓 maps the deviation 𝑑𝑟, joint angles 𝜃, and the overall skeletal configuration 

𝑆 to a specific feedback message. 

2.3.2. Dynamic Time Warping (DTW) for motion pattern analysis 

In this study, DTW is employed as a robust technique for analyzing and 

comparing time-series data of student movements against predefined “Correct” motion 

patterns. DTW is a computational algorithm that calculates the optimal alignment 

between two sequences of data points by minimizing the distance between 

corresponding elements. For motion analysis, let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} represent the 

time-series sequence of a student’s movements, where each 𝑥𝑖  is a feature vector 

containing joint positions or angles at the time 𝑡𝑖. Similarly, let 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} 

denote the reference sequence of the correct motion pattern, where 𝑦𝑗  is the 

corresponding feature vector at the time 𝑡𝑗. The distance 𝑑(𝑥𝑖, 𝑦𝑗) between two feature 

vectors 𝑥𝑖 and 𝑦𝑗 is typically computed using the Euclidean distance: 

𝑑(𝑥𝑖 , 𝑦𝑗) = √∑  

𝑝

𝑘=1

  (𝑥𝑖
(𝑘)

− 𝑦𝑗
(𝑘)

)
2

 (9) 

where 𝑝  is the dimensionality of the feature vector, which may include joint 

coordinates or angles depending on the specific movement being analyzed. To align 

the sequences 𝑋 and 𝑌, a cost matrix 𝐷 of dimensions 𝑚 × 𝑛 is constructed, where 

each entry 𝐷(𝑖, 𝑗) represents the cumulative minimum distance required to align 𝑋1:𝑖 

(the first 𝑖 elements of 𝑋 ) with 𝑌1:𝑗. The matrix is initialized as: 

𝐷(0,0) = 0, 𝐷(𝑖, 0) = ∞, 𝐷(0, 𝑗) = ∞for       𝑖, 𝑗 > 0 (10) 

and is populated using the recurrence relation: 

𝐷(𝑖, 𝑗) = 𝑑(𝑥𝑖 , 𝑦𝑗) + min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)} (11) 

This recurrence relation ensures that the path with the minimal cumulative 

distance is selected, allowing for non-linear alignment between sequences. The 

optimal warping path 𝑊 is a sequence of matrix indices that trace the lowest-cost 

alignment between 𝑋  and 𝑌  from (1,1)  to (𝑚, 𝑛) . Let 𝑊 =

{(𝑖1, 𝑗1), (𝑖2, 𝑗2),… , (𝑖𝐿 , 𝑗𝐿)} denote this path, where each pair (𝑖𝑘 , 𝑗𝑘) aligns 𝑥𝑖𝑘  with 
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𝑦𝑗𝑘 . The alignment score, representing the degree of similarity between the two 

sequences, is given by: 

DTW(𝑋, 𝑌) =
1

𝐿
∑  

𝐿

𝑘=1

𝑑(𝑥𝑖𝑘 , 𝑦𝑗𝑘) (12) 

where 𝐿 is the length of the warping path. A lower DTW score indicates a closer match 

between the student’s movement and the reference pattern. 

For each motion sequence the student captures, DTW computes the alignment 

score relative to the predefined correct motion pattern. These comparisons are 

performed for specific performance segments, such as bowing patterns for violinists 

or hand positioning for pianists. Analyzing the DTW score across sessions identifies 

improvement patterns or areas requiring additional practice. Based on empirical 

analysis, a threshold value 𝜏 for the DTW score is established to determine acceptable 

alignment. If the DTW score DTW (𝑋, 𝑌) for a given movement sequence exceeds 𝜏, 

the system identifies the motion as deviating significantly from the correct pattern and 

triggers corrective feedback. For example, a high DTW score in a violinist’s bowing 

movement might result in feedback to “slow down the stroke” or “maintain even bow 

pressure”. Mathematically, feedback 𝐹 is triggered if: 

𝐹 = {
Feedback Message if DTW (𝑋, 𝑌) > 𝜏
No Feedback if DTW (𝑋, 𝑌) ≤ 𝜏

 (13) 

For real-time applications, DTW is implemented with a window constraint (e.g., 

Sakoe-Chiba Band) that limits the search area for path alignment, reducing 

computational load. This constraint restricts the algorithm from comparing points that 

are too far apart temporally, which is practical for real-time feedback in music 

performance. Let 𝑤 denote the window size. The alignment is restricted such that: 

|𝑖 − 𝑗| ≤ 𝑤 (14) 

This modification reduces the computational complexity and allows the system 

to operate efficiently in real-time, providing immediate feedback without interrupting 

the natural flow of the student’s performance. 

2.3.3. K-NN tor posture classification 

To categorize students’ posture into distinct states, such as “correct posture”, 

“leaning forward”, or “slouched”, employ the K-NN classification algorithm. K-NN 

is particularly suited to this task due to its simplicity and effectiveness in handling 

multiclass classification problems based on spatial relationships between data points. 

i Feature Vector Representation of Posture: Each captured posture is represented 

by a feature vector 𝑃 derived from key skeletal joint coordinates detected by 

OpenPose. Let 𝑃 =  [𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛] denote the feature vector, where 

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) represents the coordinates of the joint 𝐽𝑖 in the student’s posture at an 

assumed time. Here, 𝑛 is the total number of joints tracked (e.g., 20 key points 

covering the shoulders, spine, and extremities). 

ii Classification Labels and Training Data: Posture states are pre-defined and 

labeled based on observed positions of joints. Labels are assigned as follows: 
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 Correct Posture (𝐶): The student maintains a neutral, aligned position based 

on reference data. 

 Leaning Forward (𝐿𝐹): The upper body leans forward beyond an acceptable 

threshold angle. 

 Slouched (𝑆): The spine shows a pronounced curve, indicating a slouched 

position. 

 Additional labels may include Twisting (𝑇)  or Raised Shoulders (𝑅𝑆) 

based on standard postural deviations in instrumental practice. 

A training dataset, 𝒟 = {(𝑃𝑖, 𝑙𝑖)}, is built using labeled posture examples, where 

each 𝑃𝑖 is a feature vector and 𝑙𝑖 is the corresponding posture label. 

iii K-NN Classification Algorithm: Given a new, unlabeled posture feature vector 

𝑃new, K-NN identifies the 𝑘 closest examples in 𝒟 based on Euclidean distance: 

𝑑(𝐏new, 𝐏𝑖) = √∑ 

3𝑛

𝑗=1

  (𝑃new,𝑗 − 𝑃𝑖,𝑗)
2
 (15) 

where 𝑃new,𝑗  and 𝑃𝑖,𝑗  represent the 𝑗-th elements of the feature vectors 𝑃new and 𝑃𝑖 , 

respectively. The algorithm assigns 𝑃new the label 𝑙 most common among the K-NN. 

Selecting 𝑘 optimally, typically an odd number (e.g., 𝑘 = 3 or = 5), ensures a 

stable majority vote, allowing for robust classification even in the presence of minor 

outliers. The final PA is thus determined by: 

𝑙new = mode({𝑙𝑖1 , 𝑙𝑖2 , … , 𝑙𝑖𝑘}) (16) 

where {𝑙𝑖1 , 𝑙𝑖2 , … , 𝑙𝑖𝑘} are the labels of the 𝑘 nearest neighbors to 𝑃new. 

iv Posture State Assignment and Real-Time Classification: For real-time posture 

correction, each incoming frame is classified with K-NN based on proximity to 

labeled postures in 𝒟. This process enables instant posture state identification, 

forming the foundation for delivering context-specific feedback. 

2.3.4. Feedback mechanism using rule-based correction 

Following PA via KNN, a rule-based correction system generates feedback 

specific to the detected posture state. This system ensures that students receive clear, 

actionable instructions to correct their posture. 

i Feedback Rules and Thresholds: The feedback mechanism operates based on 

predefined rules linked to each posture category. These rules specify corrective 

actions depending on the nature and degree of the misalignment. Let 𝐹 denote 

the set of feedback messages, with each message 𝑓𝑖 ∈ 𝐹 targeting a particular 

posture deviation: 

 Correct Posture (𝐶): “Maintain current position.” 

 Leaning Forward (𝐿𝐹): If detected, feedback 𝑓LF =“Move back to a neutral 

position, aligning shoulders over hips.” 

 Slouched (𝑆): Feedback 𝑓S =“Straighten your back to reduce slouching.” 

 Twisting (𝑇): Feedback 𝑓T =“Align shoulders parallel to the front.” 

Thresholds are implemented to avoid triggering feedback for minor deviations, 

with feedback only generated if the detected deviation exceeds a defined threshold 𝛿. 
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ii Rule Application and Context-Specific Feedback: Each detected posture state 

𝑙new is mapped to a corresponding feedback rule. Let 𝑓(𝑙new) be the feedback 

function: 

𝑓(𝑙new) = {

”Maintain Current Position” If 𝑙new = 𝐶
”Move Back to a Neutral Position” If 𝑙new = 𝐿𝐹
”Straighten Your Back” If𝑙new = 𝑆
”Align Shoulders Parallel” If𝑙new = 𝑇

 (17) 

Feedback is delivered through a visual or auditory channel, providing real-time 

guidance. For instance, if a student is detected leaning forward, the system instantly 

delivers the message “Move back to a neutral position”, allowing them to PA in real 

time. 

iii Feedback Loop and Iterative Improvement: This rule-based correction system 

fosters an iterative feedback loop where posture is continuously monitored, 

classified, and corrected. As students adjust based on the feedback, subsequent 

classifications reflect these changes, ensuring progressive alignment with the 

correct posture over time. 

 

Figure 2. Process flowchart. 

3. Experiment setup 

3.1. System setup and training 

The hardware setup comprises six Azure Kinect cameras, each operating at a 

frame rate of 120 fps with a resolution of 1920 × 1080 pixels. These high-speed 

cameras are strategically placed around the performer, arranged in a hexagonal 

configuration at varied heights—three at 1.8 m and three at 1.2 m—to provide a 

comprehensive 3D view of the performer’s movements. Depth-sensing capabilities of 

± 1.5 mm accuracy enhance precision, capturing even the most minor adjustments in 
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posture. Additionally, retroreflective markers, each with a diameter of 14 mm, are 

placed on 20 anatomical landmarks across the body, including the spine, shoulders, 

elbows, wrists, and hips, using hypoallergenic tape to ensure stability without affecting 

movement. This marker-based setup ensures the accuracy of joint tracking, allowing 

the system to follow precise PA in real-time. The captured data is processed on a high-

performance computer with a multi-core processor, such as an Intel i9 or AMD Ryzen 

9, paired with a powerful Graphical Processing Unit (GPU) like the NVIDIA RTX 

3080. This combination ensures smooth operation and enables the system to handle 

real-time posture classification and feedback generation without latency, vital for 

maintaining an uninterrupted and responsive user experience. 

On the software side, the system relies on OpenPose, a robust CV that extracts 

skeletal joint data from the video feeds captured by the cameras. OpenPose translates 

visual input into a structured set of coordinates for each joint, forming the foundation 

for further PA and motion analysis. The system also includes custom Python modules 

for the DTW and K-NN, optimized for GPU processing to maintain real-time 

performance. The DTW module aligns students’ time-series movement patterns with 

those of expert reference models, detecting variations in technique and providing a 

quantitative measure of alignment. The KNN classifier categorizes posture states into 

classifications such as “correct”, “leaning forward”, or “slouched” based on joint 

coordinates and angles. Both modules undergo rigorous training and validation to 

ensure reliable classification accuracy and consistency in feedback. 

A Graphical User interface (GUI) designed with PyQt5 displays a real-time 

skeletal model of the student’s posture for student interaction. This interface provides 

corrective feedback through visual indicators and optional audio prompts, allowing 

students to receive guidance without diverting their attention from practice. The GUI 

highlights specific joints and movement patterns that need adjustment, delivering real-

time, actionable feedback. Table 4 outlines the critical param used during the training 

of the K-NN classifier and DTW, which were calibrated to optimize classification and 

feedback performance. 

Camera calibration corrects posture and motion in instrumental training 

measurement by making the camera coordinate system match that of the physical 

space. Camera calibration considers intrinsic param, which include focal length and 

lens distortion, and extrinsic param, which include camera position and direction. 

There are various techniques, namely checkerboard patterns, in which several images 

of patterns from different angles are used to determine a transformation matrix. This 

map is ideally suited for the correspondence between the depth information in the 3D 

world and the pixels on the image plane. 

From Table 5 is the occlusion handling is necessary when some body parts or the 

whole body may be partially or occluded by the instruments or other objects. The 

occlusion is handled either through the use of, for example, the Kalman filters or 

machine learning that estimates the position of occluded joints using previous motion 

patterns. Additional help from the depth sensors or multiple cameras helps to avoid 

blind spots due to the redundancy of the view. Other skeleton tracking models include 

OpenPose or Mediapipe, which also use temporal continuity to estimate the location 

of the invisible points. 
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Table 4. K-NN training param. 

Parameter Value/Setting 

Feature Vector Dimensions 60 (20 Joints × 3 Coords) 

K-Value 5 

Distance Metric Euclidean 

Training-Validation Split 80:20 

Normalization Method Min-Max Scaling 

Feature Weights Uniform Distribution 

Table 5. DTW training param. 

Parameter Value/Setting 

Window Size 2 s (240 Frames) 

Warping Constraint Sakoe-Chiba Band (r = 15) 

Distance Measure Euclidean Distance 

Sampling Rate 120 Hz 

Sequence Length Variable (Max 1000 Frames) 

Slope Constraint P = 0, Q = 2 

The training process executes on a dedicated hardware setup with specific 

computational resources. 

3.2. Metrics and baseline 

Environmental conditions such as lighting significantly impact the recognition 

results because of changes in illumination, reflections, and shadows. Exposure can be 

overdone or underdone, which algorithms must manage by using adaptive 

thresholding or histogram equalization. In the real-time procedure, pre-trained neural 

networks are utilized with augmentation approaches that mimic different lighting. 

Infrared-based cameras deal with visible light dependency, leading to improvements 

in low-light accuracy. 

The formation of comprehensive metrics and baseline standards is crucial for 

evaluating the effectiveness of the posture analysis system. These standards are 

derived from extensive analysis of expert musician performances and established 

pedagogical practices, creating a robust framework for assessment and comparison. 

i Baseline Postural Standards: Professional musicians with extensive performance 

experience (minimum 15 years) were recorded to establish baseline 

measurements for optimal posture. These recordings focused on critical 

anatomical alignments and movement patterns vital for proper instrumental 

technique. The angular measurements of key body segments were analyzed to 

determine acceptable ranges and critical deviation thresholds, as detailed in 

Table 6. 

ii Movement Pattern Analysis: The system analyzes movement trajectories across 

different temporal windows, starting variance thresholds for specific instrumental 

techniques. These measurements account for the dynamic nature of musical 

performance while maintaining technical precision. Table 7 outlines the temporal 
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windows and acceptable variance thresholds for different movement types 

derived from the analysis of expert performances. 

iii Core Evaluation Framework: The evaluation framework encompasses multiple 

measurement param to assess static posture and dynamic movement accuracy. 

This multi-dimensional approach ensures comprehensive analysis of a musician’s 

technique, measuring temporal alignment, spatial accuracy, posture stability, and 

system responsiveness. The primary evaluation metrics, shown in Table 8, form 

the foundation of the assessment system. 

iv Instrument-Specific Considerations: Different instruments require specific 

postural considerations and movement patterns. The system incorporates 

instrument-specific reference values for these unique requirements while 

maintaining fundamental biomechanical principles. Table 9 presents crucial 

reference values for various instruments derived from expert performance 

analysis and pedagogical standards. 

Table 6. Postural angular baseline standards. 

Joint/Segment Acceptable Range Critical Deviation 

Spine Verticality ± 5° > 10° 

Shoulder Alignment ± 3° > 7° 

Neck Inclination ± 8° > 15° 

Elbow Position ± 10° > 20° 

Wrist Flexion ± 15° > 25° 

Table 7. Motion trajectory standards. 

Movement Type Temporal Window Variance Threshold 

Bowing Motion 2 s ± 12% 

Hand Position-Shift 1.5 s ± 15% 

Finger Placement 0.5 s ± 8% 

Arm Movement 1 s ± 10% 

Table 8. Primary evaluation metrics. 

Metric Category Measurement Parameter Measurement Method 

Temporal Alignment Movement Synchronization DTW Distance Score 

Spatial Accuracy Joint Position Deviation Euclidean Distance 

Posture Stability Position Variance Standard Deviation 

Response Latency System Feedback Delay Time Measurement 

Table 9. Instrument-specific reference values. 

Instrument Critical Points Reference Range 

Violin/Viola 
Bow-Arm Angle 85°–95° 

Left Wrist Flexion 10°–20° 

Piano 
Wrist Height 3–5 cm above keys 

Back Angle 90°–100° 
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Table 9. (Continued). 

Instrument Critical Points Reference Range 

Cello 
Neck-Scroll Angle 35°–45° 

Bow-Bridge Distance 2–4 cm 

Flute 
Embouchure Alignment ±2° Horizontal 

Arm Elevation 15°–25° 

These metrics and baselines are implemented under strictly controlled conditions 

to ensure measurement consistency. The recording environment maintains standard 

lighting (500 lux), fixed camera positions (2.5 m distance), and calibrated sensor 

alignment. Performance measurements are taken at a standard tempo (MM = 80) with 

multiple repetitions to ensure reliability. This comprehensive framework of metrics 

and baselines provides a solid foundation for system evaluation and ongoing 

calibration, enabling accurate and consistent PA across various instrumental 

disciplines. 

4. Result and discussion 

4.1. Technical performance results 

The system’s technical performance results demonstrate its efficacy in accurately 

detecting, tracking, and analyzing PA and motion patterns for instrumental music 

students over 12 weeks. As illustrated in Table 10, the posture recognition capabilities 

show high detection rates across various postural types. Correct posture was 

recognized with an accuracy of 94.3%, while deviations like forward lean (92.8%), 

slouched position (93.5%), and twisted orientation (90.2%) achieved similarly high 

detection rates, each with minimal error margins (± 1.2% to ± 2.1%). The lowest 

detection rate, recorded at 89.7% for lower back curvature, highlights potential 

improvement in detecting subtle spinal alignment deviations. These rates reflect the 

system’s reliable PA across common postural issues encountered during instrumental 

practice. 

Table 10. Posture recognition accuracy. 

Posture Type Detection Rate Error Margin Sample Size 

Correct Posture 94.3% ± 1.2% 2500 

Forward Lean 92.8% ± 1.5% 2100 

Shoulder Misalignment 91.7% ± 1.8% 1950 

Slouched Position 93.5% ± 1.4% 2200 

Twisted Orientation 90.2% ± 2.0% 1800 

Raised Shoulders 91.9% ± 1.7% 1900 

Neck Extension 92.4% ± 1.6% 1850 

Wrist Deviation 90.8% ± 1.9% 2050 

Head Forward Position 91.5% ± 1.8% 1750 

Lower Back Curvature 89.7% ± 2.1% 1680 
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Regarding joint tracking precision (Table 11), spatial accuracy remains within 

acceptable ranges, with cervical and thoracic spine landmarks achieving a spatial 

precision of ± 1.2 mm and ± 1.4 mm, respectively. All joint locations’ temporal 

stability exceeded 94%, with minimal tracking loss across key anatomical points. The 

wrists showed the highest tracking loss at around 2%, likely due to their excellent 

range of movement and complexity in acceptable motor actions. These results indicate 

that the system maintains robust spatial and temporal consistency in joint tracking, 

vital for delivering precise and consistent real-time feedback. 

Table 11. Joint tracking precision. 

Joint Location Spatial Accuracy Temporal Stability Tracking Loss Rate 

Cervical Spine (C7) ± 1.2 mm 96.5% 0.8% 

Thoracic Spine (T4) ± 1.4 mm 95.8% 1.2% 

Left Shoulder ± 1.5 mm 95.2% 1.5% 

Right Shoulder ± 1.5 mm 95.3% 1.4% 

Left Elbow ± 1.8 mm 94.7% 1.8% 

Right Elbow ± 1.8 mm 94.8% 1.7% 

Left Wrist ± 2.0 mm 93.9% 2.1% 

Right Wrist ± 2.0 mm 94.0% 2.0% 

Left Hip ± 1.6 mm 94.5% 1.6% 

Right Hip ± 1.6 mm 94.6% 1.5% 

Head Position ± 1.3 mm 95.7% 1.1% 

Mid-Back ± 1.5 mm 95.0% 1.3% 

The system latency analysis (Table 12) confirms that the system’s processing 

speed supports real-time feedback, with an average pipeline latency of 30.0 ms and a 

peak latency of 35.2 ms. Each processing stage, from video frame capture (8.2 ms) to 

feedback generation (3.7 ms), operates within the targeted time limits, ensuring that 

students experience immediate corrective guidance. The low standard deviation values 

across stages (e.g., ± 0.6 ms for posture analysis) further underscore the system’s 

stability and responsiveness, critical for seamless integration into practice sessions. 

They include: The system shows that it has nearly zero latency by processing 

posture and the motion data in less than one hundred milliseconds while the subject is 

practicing. This minimal delay ensures the performers can easily interact with the 

intelligent system without interruption, and at the same time, the intelligent system 

can be integrated into various music education situations, as illustrated in the study. 

Table 12. System latency analysis. 

Processing Stage Average Latency Peak Latency Standard Deviation 

Video Frame Capture 8.2 ms 10.5 ms ± 0.8 ms 

Joint Detection 12.3 ms 15.7 ms ± 1.2 ms 

PA 5.8 ms 7.9 ms ± 0.6 ms 

Feedback Generation 3.7 ms 5.2 ms ± 0.4 ms 

Total Pipeline Latency 30.0 ms 35.2 ms ± 2.1 ms 
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The system demonstrated high match rates across different instruments and 

techniques for motion pattern-matching accuracy (Table 13 and Figure 3). For 

instance, violin bowing—long and short strokes—achieved match rates of 91.2% and 

89.8%, respectively, reflecting reliable alignment with correct movement patterns. 

Similar rates were experienced in piano exercises, where scale execution was matched 

at 90.5% accuracy and chord movements at 88.7%. Cello and flute movements 

maintained high match rates, with cello bow changes at 90.2% and flute hand positions 

at 92.1%. General PA had the highest match rate at 93.4%, indicating the system’s 

robust capability to track dynamic posture shifts effectively. Lower accuracy rates for 

complex, rapid movements like cello position shifts (87.9%) suggest areas for 

refinement in motion pattern recognition for intricate playing techniques. 

 

Figure 3. Motion pattern matching accuracy. 

Table 13. Motion pattern matching accuracy. 

Movement Pattern Match Rate Error Rate Sample Count 

Violin Bowing-Long Strokes 91.2% 8.8% 1500 

Violin Bowing-Short Strokes 89.8% 10.2% 1200 

Piano-Scale Execution 90.5% 9.5% 1800 

Piano-Chord Movements 88.7% 11.3% 1400 

Cello-Bow Changes 90.2% 9.8% 1300 

Cello-Position Shifts 87.9% 12.1% 1100 

Flute-Hand Position 92.1% 7.9% 950 

General Posture Transitions 93.4% 6.6% 2200 

4.2. Instrument-specific performance results 

The instrument-specific analysis over 12 weeks highlighted critical posture 

components across string, piano, and wind instruments, revealing nuanced insights 

into posture accuracy and stability for each instrument type. For string instruments 

(Table 14), posture recognition focused on elements specific to violin and cello 

playing. Bow arm height maintained a high recognition accuracy, with the violin at 
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92.5% ± 1.8% and cello at 91.8% ± 1.9%, both comfortably within a ± 5° threshold. 

The bow-string angle presented slightly lower recognition, particularly for the cello 

(89.5% ± 2.3%), due to the more significant variability in angle management required 

by the instrument’s more extensive bowing range. Shoulder rest positioning for the 

violin showed an impressive accuracy rate of 93.2% ± 1.7%, indicating stable support 

for the instrument, whereas the cello required tracking end pin stability, reaching a 

high accuracy of 94.5% ± 1.5%. Both instruments displayed reliable accuracy in 

tracking back alignment and neck position, essential for maintaining stability and 

reducing strain, although minor variations were observed between instruments. 

Table 14. String instruments PA (violin/cello). 

Posture Component Violin (n = 6) Cello (n = 4) Threshold 

Bow Arm Height 92.5% ± 1.8% 91.8% ± 1.9% ± 5° 

Bow-String Angle 90.8% ± 2.1% 89.5% ± 2.3% ± 3° 

Left Hand Position 88.9% ± 2.4% 87.6% ± 2.5% ± 2 cm 

Shoulder Rest Position 93.2% ± 1.7% N/A ± 1 cm 

End Pin Stability N/A 94.5% ± 1.5% ± 0.5 cm 

Back Alignment 91.7% ± 1.9% 90.8% ± 2.0% ± 3° 

Neck Position 89.5% ± 2.2% 88.7% ± 2.4% ± 4° 

For piano players (Table 15 and Figure 4), posture detection emphasized wrist 

height, back curvature, shoulder relaxation, and pedal alignment—key features of 

ergonomic playing. Wrist height maintained a recognition rate of 93.4% ± 1.6%, 

demonstrating the system’s sensitivity to tracking hand positioning, with stable 

posture sustained over a 45-min duration. Back curvature and shoulder relaxation also 

achieved high accuracy rates, 91.2% ± 1.9%, and 89.8% ± 2.1%, respectively, 

indicating effective posture monitoring over more extended periods. Bench 

positioning reached the highest recognition rate at 94.1% ± 1.5%, essential for 

ensuring optimal seated positioning. At the same time, elbow position and finger 

curvature showed slightly lower rates, particularly finger curvature at 88.7% ± 2.3%, 

reflecting the dynamic nature of hand movements during complex piano pieces. 

 

Figure 4. Piano PA. 
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The wind instrument analysis (Table 16 and Figure 5) for flute players 

concentrated on breathing posture and upper body stability. Static position tracking, 

particularly for upper body alignment, achieved 92.8% ± 1.7%, while dynamic 

movements slightly decreased to 89.4% ± 2.2%, capturing the challenges associated 

with maintaining posture while executing continuous breathing and fingering. 

Diaphragm expansion and embouchure stability showed tremendous variability, 

particularly in dynamic movement, where the accuracy rates fell to 86.5% ± 2.7% and 

85.8% ± 2.8%, respectively, reflecting the impact of continuous breath control on 

posture stability. Finger positioning, however, maintained high recognition rates, with 

93.2% ± 1.6% in static positions and 90.2% ± 2.1% in dynamic conditions, 

underscoring the system’s effectiveness in tracking rapid finger adjustments required 

for flute playing. 

Table 15. Piano posture detection (n = 5). 

Posture Aspect Recognition Rate Stability Duration Threshold 

Wrist Height 93.4% ± 1.6% 45 min ± 2 cm 

Back Curvature 91.2% ± 1.9% 30 min ± 4° 

Shoulder Relaxation 89.8% ± 2.1% 40 min ± 2° 

Elbow Position 90.5% ± 1.8% 35 min ± 3° 

Finger Curvature 88.7% ± 2.3% 25 min ± 5° 

Bench Position 94.1% ± 1.5% 50 min ± 3 cm 

Pedal Foot Alignment 92.3% ± 1.7% 45 min ± 2° 

 

Figure 5. Wind instruments posture analysis. 
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Table 16. Wind instruments breathing posture (Flute, n = 3). 

Posture Component Static Position Dynamic Movement Threshold 

Upper Body Alignment 92.8% ± 1.7% 89.4% ± 2.2% ± 3° 

Head Position 91.5% ± 1.9% 88.7% ± 2.4% ± 2° 

Arm Support 90.7% ± 2.0% 87.9% ± 2.5% ± 4° 

Diaphragm Expansion 88.9% ± 2.3% 86.5% ± 2.7% ± 2 cm 

Embouchure Stability 89.5% ± 2.1% 85.8% ± 2.8% ± 1° 

Finger Position 93.2% ± 1.6% 90.2% ± 2.1% ± 1 cm 

The cross-instrument comparative analysis (Table 17 and Figure 6) highlighted 

PA common to all instruments, such as spine alignment, shoulder tension, weight 

distribution, and breathing patterns. Spine alignment was consistently tracked across 

all instruments, achieving above 91% accuracy with the highest rate in wind 

instruments at 92.8% ± 1.7%, possibly due to the emphasis on upright posture in 

breathing. Weight distribution reached peak accuracy in piano posture detection at 

94.1% ± 1.5%, reflecting the importance of seated balance in piano performance. 

Movement fluidity and breathing patterns showed slightly lower accuracy, particularly 

in string instruments, where breathing patterns registered at 87.6% ± 2.4%, likely due 

to the indirect role of breathing in string performance posture. Postural endurance and 

recovery time were consistently tracked, with piano students showing the fastest 

recovery time at 91.5% ± 1.8%, suggesting that seated stability aids in maintaining 

posture over extended periods. 

Table 17. Cross-instrument comparative analysis. 

Common Aspects Strings Piano Winds 

Spine Alignment 91.7% ± 1.8% 91.2% ± 1.9% 92.8% ± 1.7% 

Shoulder Tension 89.5% ± 2.1% 89.8% ± 2.1% 90.7% ± 2.0% 

Weight Distribution 90.8% ± 1.9% 94.1% ± 1.5% 91.5% ± 1.9% 

Movement Fluidity 88.9% ± 2.2% 90.5% ± 1.8% 89.4% ± 2.2% 

Breathing Pattern 87.6% ± 2.4% 88.7% ± 2.3% 88.9% ± 2.3% 

Postural Endurance 90.2% ± 2.0% 92.3% ± 1.7% 91.2% ± 1.8% 

Recovery Time 89.8% ± 2.1% 91.5% ± 1.8% 90.5% ± 1.9% 
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Figure 6. Cross-instrument comparative analysis. 

All measurements were conducted under controlled conditions, with consistent 

lighting at 500 lux and room temperature at 22 °C ± 1 °C. The comprehensive analysis, 

spanning static and dynamic tracking scenarios, reveals that the system is highly 

effective across different instruments, though minor variations exist based on 

instrument-specific demands and movement characteristics. These results underscore 

the system’s capability to adapt to varied postural requirements across instrumental 

types, providing consistent, high-accuracy posture support to enhance performance 

and reduce strain across a range of musical practices. 

4.3. Pedagogical impact 

The pedagogical impact of AI-assisted training on student performance and 

learning efficiency is significant, as demonstrated across multiple metrics, including 

progression against professional standards, learning speed, practice engagement, long-

term retention, and overall student satisfaction, in Table 18. Progression Against 

Professional Standards: students in the AI-assisted group showed marked 

improvement in key technical components, with spine verticality, shoulder alignment, 

neck inclination, elbow position, and wrist flexion, all reaching professional baseline 

thresholds faster and with greater accuracy than the traditional group. By week 16, AI-

assisted students achieved an 85.4% alignment with the professional standard for spine 

verticality, compared to 72.3% in the traditional group. Similarly, AI-assisted 

improvements in wrist flexion reached 86.5% accuracy versus 71.8% for traditional 

training, underscoring the AI system’s effectiveness in developing precise posture and 

technique faster than conventional methods. 

Incorporating intelligent algorithms into music education improves students’ 

feedback by providing accurate and immediate information regarding posture and 

movement during instrumental practice. It will reveal areas of waste, promote good 

playing techniques, and help avoid hazards through such information. Subjective 

opinions transform into quantifiable information to foster one-on-one instruction 

based on the learners’ physical and technical requirements. When teachers use 
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research-based strategies, they can augment their professional experience with facts 

on the effectiveness of instruction. The system helps enhance the understanding and 

practical application of technique, and progress is checked in terms of the effective 

achievement of specific goals, which changes the conventional system of instrumental 

education through technology and learning. 

Table 18. Progression against professional standards. 

Technical Component Professional Baseline Week 8 (AI) Week 16 (AI) Week 8 (Trad.) Week 16 (Trad.) 

Spine Verticality ± 5° 65.4% 85.4% 52.3% 72.3% 

Shoulder Alignment ± 3° 61.8% 82.7% 48.7% 68.9% 

Neck Inclination ± 8° 63.5% 84.2% 50.2% 70.5% 

Elbow Position ± 10° 62.7% 83.8% 49.8% 69.4% 

Wrist Flexion ± 15° 64.2% 86.5% 51.4% 71.8% 

The Learning Speed Analysis (LSA) in Table 19 reflects a significant reduction 

in the time required to reach each learning phase for the AI-assisted group. Initial 

mastery occurred in 3.2 weeks for AI-assisted students versus 4.8 weeks for 

traditionally trained students, a 33.3% improvement. This trend continued through 

each subsequent phase, with the AI group reaching advanced levels 25% faster and 

completing refinement 20.3% earlier than the traditional group. These findings 

indicate that AI-assisted training accelerates skill acquisition progression across all 

competency levels. 

Table 19. Learning Speed Analysis (LSA). 

Learning Phase AI-Assisted Group Traditional Group Improvement 

Initial Mastery 3.2 weeks 4.8 weeks 33.3% 

Intermediate 5.5 weeks 7.3 weeks 24.7% 

Advanced 8.4 weeks 11.2 weeks 25.0% 

Refinement 12.6 weeks 15.8 weeks 20.3% 

Regarding Practice Engagement Metrics (Table 20), the AI-assisted group 

demonstrated greater consistency and duration in practice time and focus. Daily 

practice time in the AI-assisted group increased progressively, from 85 min per day in 

weeks 1–4 to 125 min per day by weeks 13–16. Traditional practice times showed less 

growth, plateauing at 90 min per day. Focus duration per session was also higher for 

AI-assisted students, reaching 52 min by weeks 13–16 compared to 38 min in the 

traditional group. Additionally, the AI group had a higher rate of error self-detection, 

with an increase from 72.3% in weeks 1–4 to 89.5% by weeks 13–16, whereas the 

traditional group saw a modest rise from 65.2% to 73.8%. This suggests that AI-

assisted training enhances engagement and fosters greater self-awareness and self-

correction, which are critical, independent learning components. 
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Table 20. Practice engagement metrics. 

Engagement Aspect Weeks 1–4 Weeks 5–8 Weeks 9–12 Weeks 13–16 

Daily Practice Time (AI) 85 Min/Day 98 Min/Day 112 Min/Day 125 Min/Day 

Daily Practice Time (Trad) 80 Min/Day 85 Min/Day 88 Min/Day 90 Min/Day 

Focus Duration (AI) 32 Min/Session 38 Min/Session 45 Min/Session 52 Min/Session 

Focus Duration (Trad) 30 Min/Session 32 Min/Session 35 Min/Session 38 Min/Session 

Error Self-Detection (AI) 72.3% 79.8% 85.4% 89.5% 

Error Self-Detection (Trad) 65.2% 68.7% 71.5% 73.8% 

Long-term Retention findings in Table 21 reveal a significant advantage for the 

AI-assisted group. Six months post-training, posture accuracy retention in the AI-

assisted group was 81.2%, compared to 64.5% in the traditional group. Retention rates 

across all skill aspects, including movement control and technical precision, remained 

over 93% in the AI group, indicating that skills learned with AI support are better 

consolidated and sustained. The traditional group retention rates were comparatively 

lower, ranging between 86.3% and 89.2%, reflecting the long-term benefit of AI-

assisted, real-time feedback in solidifying technique. Finally, Student Satisfaction and 

Confidence results in Table 22 and Figure 7 (a)–(c) highlight a notable improvement 

in the overall learning experience for the AI-assisted group. From Figure 8 is the 

satisfaction ratings averaged 8.7/10 for AI-assisted students, compared to 7.2/10 in the 

traditional group. Similarly, confidence in technical skills was rated at 8.4/10 for the 

AI group and 6.9/10 for the traditional group, while practice motivation and self-

assessment ability scored 8.9/10 and 8.5/10, respectively, in the AI group, outpacing 

traditional ratings by over 1.5 points each. These scores indicate a stronger sense of 

engagement and self-assurance among AI-trained students, likely due to the direct and 

actionable feedback they received, which facilitated self-driven improvement. 
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Figure 7. Practice engagement metrics. (a) Daily Practice Time; (b) Focus Duration per Session; (c) Error Self-

Detecion. 
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Figure 8. Long-term retention. 

 

Figure 9. Student satisfaction and confidence. 

Table 21. Long-term retention (6-month follow-up). 

Skill Aspect End of Training 3-Month Check 6-Month Check Retention Rate 

AI-Assisted Group 

Posture Accuracy 85.4% 82.7% 81.2% 95.1% 

Movement Control 83.8% 80.5% 78.9% 94.2% 

Technical Precision 82.5% 79.2% 77.4% 93.8% 

Traditional Group 

Posture Accuracy 72.3% 67.8% 64.5% 89.2% 

Movement Control 70.8% 65.4% 61.7% 87.1% 

Technical Precision 69.4% 63.8% 59.9% 86.3% 
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Table 22. Student satisfaction and confidence. 

Assessment Criteria AI-Assisted (n = 18) Traditional (n = 18) Difference 

Learning Satisfaction 8.7/10 7.2/10 + 1.5 

Technical Confidence 8.4/10 6.9/10 + 1.5 

Practice Motivation 8.9/10 7.1/10 + 1.8 

Self-Assessment Ability 8.5/10 6.8/10 + 1.7 

From Figure 9 is the multiple music instructors can also show that the feedback 

received from the system is accurate by comparing it with the results given by the 

algorithms with opinions from professionals. Every teacher contributes different 

teaching strategies to the course; thus, the system will have to be responsible for 

different modes of teaching. Interprofessional consensus from specialists eliminates 

subjective preconceptions and increases the model’s validity to conform as closely as 

possible to the recognized norms. This co-validation enhances confidence in the 

algorithm’s correctness and ensures it can be applied at different skill levels and with 

various instruments for its application in a more comprehensive educational 

environment. 

5. Conclusion and future work 

This research demonstrates the successful implementation of an AI system for 

PA in instrumental music training, contributing significant advantages over traditional 

teaching methods. Integrating multiple AI–OpenPose CNN, DTW, and KNN–has 

created a robust platform capable of providing accurate, real-time feedback during 

individual practice sessions. The experimental results validate the system’s 

effectiveness across multiple dimensions. The significant improvement in learning 

speed (33.3% faster technique acquisition) and posture accuracy (18.6% higher 

improvement rates) demonstrates the system’s immediate impact on student 

development. More importantly, the high retention rate (95.1% after 6 months) 

suggests lasting benefits of the AI-assisted approach. The system’s technical 

performance, maintaining 94.3% accuracy in posture detection with a 30 ms latency, 

proves its viability for real-time applications in Music Educ. However, certain 

limitations must be acknowledged. The current study’s scope was limited to 18 

students and four instrument categories over 16 weeks. 

Future research should expand to a larger student population, a broader range of 

instruments, and more extended observation periods. Additionally, the system could 

benefit from incorporating more sophisticated ML and expanding its analysis to 

include other aspects of musical performance. Looking forward, this research opens 

several promising avenues for development. The framework recognized here could be 

extended to include a more detailed analysis of micro-movements, integration with 

virtual reality platforms for enhanced feedback, and adaptation for remote learning 

environments. The success of this system suggests potential applications beyond 

Music Educ., including dance, sports training, and physical therapy. In conclusion, 

this research represents a significant step forward in Music Educ., providing a 

foundation for future developments in AI-assisted performing arts instruction. The 
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demonstrated benefits in learning efficiency, accuracy, and retention validate the 

approach of integrating AI into traditional Music Educ. 
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