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Abstract: Basketball players are prone to joint injuries due to the sport’s high intensity and 

physical demands. Early prediction of injury risk is crucial for implementing effective 

prevention strategies. Incorporating biomechanics, this study focuses on basketball players at 

a university in Xi’an, China, aiming to develop a machine learning-based model to predict 

joint injury risk using easily collectable data such as training load, fatigue levels, and 

previous injury history. Considering regional differences, we observed that local and northern 

Chinese students are generally taller, while students from southern China are typically 

shorter. This anthropometric variation was included in our sampling and analysis. Utilizing 

data from 100 basketball players, the Random Forest algorithm achieved the best predictive 

performance with an accuracy of 85%. Key risk factors identified include high training load, 

elevated subjective fatigue scores, and a history of previous joint injuries. Additionally, 

biomechanical data were integrated to elucidate the underlying mechanisms of joint injuries, 

and the cellular responses to injury were explored. The results demonstrate that even with 

limited data types, machine learning methods can effectively predict joint injury risk among 

basketball players, providing a valuable tool for injury prevention. 

Keywords: machine learning; injury prediction; basketball; joint injuries; training load; 

Random Forest; anthropometric differences; biomechanics 

1. Introduction 

Basketball, a sport that demands high-intensity physical exertion, requires 

athletes to perform rapid movements, jumps, and directional changes, significantly 

increasing the risk of joint injuries, particularly in the knees and ankles. Such injuries 

not only impair athletic performance but also pose long-term health concerns for 

players [1]. Beyond individual health, these injuries have broader social and 

economic implications, such as reduced team cohesion, increased healthcare costs, 

and financial strain on athletic organizations due to the loss of skilled players during 

critical tournaments [2]. Moreover, repeated injuries may shorten players’ careers, 

affecting their earning potential and leading to higher societal costs associated with 

early retirements [3]. 

Traditional methods for assessing injury risk often rely on comprehensive 

medical examinations and biomechanical analyses, which are resource-intensive and 

typically require specialized equipment and expertise, making them less practical for 
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application in school-level and grassroots basketball teams. This is particularly 

problematic for underfunded sports programs where injury prevention resources are 

limited [4]. Recent advancements in machine learning (ML) have enabled the 

development of injury prediction models using routinely collected data. This shift 

not only facilitates cost-effective and scalable injury prevention strategies but also 

provides actionable insights for tailoring training regimens to minimize 

environmental impacts by reducing the overuse of medical supplies and 

rehabilitation equipment [5]. 

This study focuses on developing an ML-based model to predict joint injury 

risk among basketball players at a university in Xi’an, China. Recognizing regional 

anthropometric variations, the research takes into account that students in northern 

regions, such as Xi’an, tend to be taller on average, while students from southern 

regions in China are typically shorter. These differences in height and body 

proportions could influence joint stress and subsequently the risk of injury, making 

this an essential factor in the study’s sampling and analysis. By addressing these 

regional and physiological nuances, this research aims to provide practical, 

sustainable, and equitable injury prevention strategies for broader application in 

athletic programs globally. 

2. Literature review 

Injury prevention in basketball has become a critical focus within sports 

science, particularly in understanding how biomechanical and anthropometric factors 

influence injury risk, and in assessing the potential of machine learning techniques 

for accurate injury prediction. Biomechanical factors, such as anthropometric 

differences (e.g., height, limb length), significantly impact how players perform 

high-impact actions like jumping and rapid directional shifts, which have been linked 

to increased joint stresses and injury risk, especially in taller athletes [5]. Training 

load and accumulated fatigue are also pivotal, as they can alter neuromuscular 

control and increase joint stress. Machine learning offers a promising approach to 

injury prediction by analyzing complex, non-linear relationships among these risk 

factors, with algorithms such as Random Forest and Support Vector Machines 

(SVM) demonstrating effectiveness in injury prediction. However, few studies focus 

on basketball players in China, especially considering regional anthropometric 

variations that may affect joint stress and injury risks. This study addresses this gap, 

utilizing machine learning to predict joint injuries among university basketball 

players in Xi’an, China, while accounting for unique anthropometric characteristics. 

2.1. Biomechanical factors in basketball injuries 

2.1.1. Importance of anthropometric differences 

Anthropometric characteristics like height, limb length, and body composition 

play crucial roles in basketball biomechanics, influencing performance and the risk 

of injury. Taller players experience greater joint stresses, particularly during 

high-impact activities like jumping and landing, making them more susceptible to 

lower extremity injuries. For example, Moreno-Pérez et al. [6] found that lower limb 

injuries are notably common among taller players, which may be attributed to the 

https://dx.doi.org/10.1080/00913847.2021.2000325
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increased mechanical load on their joints. Similarly, Engel et al. [7] linked specific 

body metrics, including height, to distinct injury patterns, indicating that taller 

players may encounter unique biomechanical stresses. 

Additionally, body composition, such as a higher body mass index (BMI), has 

been shown to exacerbate the risk of lower limb injuries due to increased joint 

loading during dynamic movements [8,9]. Studies have also highlighted the role of 

limb length discrepancies in injury risk, with leg length inequality associated with 

abnormal gait patterns that elevate mechanical stress on certain joints [10]. Young 

basketball players with even minor postural asymmetries face heightened risks, as 

approximately 72.2% of players with such discrepancies report injuries, including 

sprains and muscle strains [11]. 

Furthermore, biomechanical analyses suggest that the interplay of height and 

limb length may influence the distribution of forces during landing, with taller 

players exhibiting less optimal force absorption mechanics [12]. This contributes to a 

greater likelihood of overuse injuries in the lower extremities, emphasizing the need 

for targeted training to mitigate these effects. Finally, comprehensive research has 

demonstrated that addressing these anthropometric disparities through customized 

training programs can reduce the prevalence of injuries among basketball players 

[13]. 

Body weight is another factor, as studies like that of Graumann et al. indicate 

that heavier players require shoes with appropriate torsional stiffness to mitigate 

lower-extremity injury risk. The proper selection of footwear based on body weight 

can improve stability and reduce injury incidence by aligning with an athlete’s 

specific biomechanical needs [14]. 

In addition to general anthropometric characteristics, gender-based 

biomechanical differences are relevant to injury risk. For example, Sakurai et al. 

found that female players have a higher risk of ACL injuries, partly due to 

biomechanical differences such as joint alignment and landing patterns, which differ 

significantly from those in male players[15]. Similarly, Deitch et al. reported a higher 

rate of game-related injuries in female professional basketball players, particularly in 

the lower extremities, suggesting that gender-specific training and prevention 

strategies may be necessary [16]. 

Additionally, biomechanical analyses have shown that factors like postural 

sway and high vertical ground reaction forces during jumps are significant risk 

indicators for musculoskeletal injuries, especially in recreational basketball players. 

Kilic et al. [17] highlight that players over a certain weight (75 kg or more) face a 

heightened injury risk due to increased biomechanical load during high-impact 

movements. These studies collectively underscore the need for biomechanical 

analysis tailored to individual physical characteristics to develop effective injury 

prevention strategies. 

2.1.2. Training load and fatigue 

Excessive training load and accumulated fatigue are critical factors in 

increasing the risk of injuries among basketball players, largely due to their effects 

on neuromuscular control and movement patterns. Weiss et al. [18] noted that the 

acute workload ratio, an indicator of training load consistency, correlates with 

https://pubmed.ncbi.nlm.nih.gov/2227681
https://dx.doi.org/10.1016/J.ORTHTR.2007.09.005
https://dx.doi.org/10.1016/J.JSAMS.2017.09.235
https://dx.doi.org/10.1177/0363546505285383
https://dx.doi.org/10.1080/00913847.2018.1424496
https://dx.doi.org/10.1123/ijspp.2016-0726
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lower-extremity injuries, and they suggest a ratio of 1 to 1.5 to maintain a balance 

that minimizes injury risk. Similarly, W et al. [19] emphasized the need for 

individualized training regimes that incorporate recovery to ensure players’ physical 

readiness and reduce injury incidence in professional settings. 

Monitoring exercise load to prevent excessive fatigue is paramount in reducing 

injury risks. Research by Moreno-Pérez et al.[20] demonstrated that injury rates are 

notably higher during competition compared to training, suggesting that carefully 

managed training loads and sufficient recovery may reduce overall injury exposure. 

The role of fatigue is further emphasized in studies by Ruslana Sushko et al. [21], 

who highlight that technical and tactical readiness can be negatively affected under 

conditions of accumulated fatigue, impacting performance and injury risk. This 

underscores the need for training programs that carefully balance load and recovery, 

helping to manage fatigue effectively and thereby reduce injury risks. 

2.2. Machine learning in injury prediction 

2.2.1. Overview of machine learning techniques 

Machine learning techniques have become instrumental in handling 

multifactorial and non-linear relationships between injury risk factors in sports. 

Sarlis et al. [10] explored the effectiveness of algorithms such as Random Forest and 

Support Vector Machines (SVM) for injury prediction, highlighting their ability to 

handle large datasets and predict injury risks accurately. Kilic et al. [11] further 

illustrated that machine learning can pinpoint key biomechanical predictors, such as 

vertical ground reaction forces, which play an essential role in assessing the 

likelihood of injuries during high-impact sports activities. 

Recent advancements have introduced neural network-based methods, such as 

the Radial Basis Function (RBF) neural network used by Cui et al. [22], to predict 

injury risks among basketball players. Their study demonstrates how machine 

learning models can provide early warnings for injury risk by analyzing complex 

data patterns related to training load and physical conditions, thereby enhancing 

preventive strategies in basketball. 

2.2.2. Previous studies on injury prediction models 

Machine learning models have shown substantial potential in predicting injuries 

in various sports, yet limited research has specifically targeted basketball players in 

China. Maleque’s [12] study, focusing on improper landings, identified critical injury 

mechanisms in basketball and demonstrated the value of predictive models in 

preventing injuries. Additionally, the study by Ahmad Sharawardi et al. [23] on 

isotonic muscle fatigue prediction using artificial neural networks underlines the 

importance of real-time monitoring and adaptive training adjustments based on 

fatigue levels to prevent injuries, further validating the role of machine learning in 

optimizing sports training. 

This study aims to build upon these insights by focusing on joint injuries among 

Chinese university athletes, incorporating regional anthropometric variations to 

enhance prediction accuracy. By tailoring machine learning models to consider 

specific physical and environmental factors relevant to this population, the research 

aims to provide a more targeted injury risk model that can be employed in similar 

https://dx.doi.org/10.1155/2022/5742543
https://dx.doi.org/10.1080/00913847.2021.2000325
https://dx.doi.org/10.32652/TMFVS.2014.1.15-18
https://dx.doi.org/10.3390/computers12120261
https://dx.doi.org/10.1080/00913847.2018.1424496
https://dx.doi.org/10.3233/jifs-224601
https://dx.doi.org/10.15520/MCRR.V2I6.40
https://dx.doi.org/10.1007/978-3-319-60618-7_57
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athletic settings. 

3. Research design and methods 

3.1. Research hypotheses and theoretical model construction 

3.1.1. Proposal of research hypotheses 

Based on the literature review and identified gaps in injury prediction among 

basketball players, the following hypotheses were formulated to guide this study: 

• H1: Training load positively correlates with joint injury risk among basketball 

players. 

• H2: Elevated fatigue levels are positively associated with a higher risk of joint 

injuries. 

• H3: Players with a previous history of joint injuries are more likely to sustain 

future joint injuries. 

• H4: Anthropometric differences, specifically height and weight, significantly 

influence the risk of joint injuries. 

These hypotheses aim to explore the multifactorial nature of injury risk, 

integrating training-related factors, physiological states, injury history, and physical 

characteristics. 

3.1.2. Construction of theoretical model 

To empirically test the proposed hypotheses, a theoretical model was 

constructed outlining the relationships between the independent variables (training 

load, fatigue level, previous injury history, height, and weight) and the dependent 

variable (joint injury occurrence). The model integrates biomechanical and 

physiological factors with anthropometric characteristics to predict injury risk 

(Figure 1). 

 

Figure 1. Theoretical model of the relationship between independent variables and joint injury risk. 

Note: Figure 1 illustrates arrows pointing from the independent variables—training load (TL), fatigue 

level (FL), previous injury history (PIH), height (H), and weight (W)—toward the dependent variable of 

joint injury occurrence (JIO). 
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3.2. Participants and data collection 

3.2.1. Participants 

A total of 100 collegiate basketball players from a university in Xi’an, China, 

participated in this study. The sample included 60 males and 40 females, aged 

between 16 and 22 years (mean age: 19 ± 1.5 years). To account for regional 

anthropometric differences, the participants comprised both local/northern students 

(60%) and southern students (40%), reflecting variations in average height and body 

composition.  

Table 1 shows the mean values with standard deviations for age, height, and 

weight, along with the distribution of participants from northern and southern 

regions. 

Table 1. Demographic characteristics of participants. 

Characteristic Total (N = 100) Males (n = 60) Females (n = 40) 

Age (years) 19 ± 1.5 19 ± 1.4 19 ± 1.6 

Height (cm) 178 ± 8 182 ± 6 172 ± 5 

Weight (kg) 72 ± 9 76 ± 8 65 ± 7 

Northern students (%) 60% 65% 55% 

Southern students (%) 40% 35% 45% 

3.2.2. Data collection process 

Data were collected prospectively over one competitive season (6 months) 

during regular training sessions and official matches. Ethical approval was obtained 

from the university’s Institutional Review Board, and informed consent was secured 

from all participants. 

Independent variables collected 

• Training load (TL): Quantified using the session Rating of Perceived Exertion 

(sRPE) method, calculated as: 

TL = Training Duration (minutes) × RPE (1 − 10) 

This method accounts for both the volume and intensity of training sessions 

[23]. 

• Fatigue level (FL): Assessed using the Acute Recovery and Stress Scale 

(ARSS), focusing on the fatigue subscale ranging from 1 (fully recovered) to 10 

(completely fatigued) [24]. 

• Previous injury history (PIH): Self-reported data on any joint injuries sustained 

in the past 12 months, coded as a binary variable (1 = Yes, 0 = No). 

Anthropometric measurements 

• Height (H): Measured to the nearest 0.1 cm using a standard stadiometer. 

• Weight (W): Measured to the nearest 0.1 kg using a calibrated digital scale. 

• Body mass index (BMI): Calculated as: 

BMI =
Weight(kg)

[Height(m)]2
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Dependent variable 

• Joint injury occurrence (JIO): Any new joint injury sustained during the season 

that resulted in missed training or competition time, verified by the team’s 

medical staff, coded as a binary variable (1 = Injury occurred, 0 = No injury). 

3.3. Variable definition and measurement 

Table 2 details each variable used in the study, including its definition and 

measurement method. 

Table 2. Variable definitions and measurements. 

Variable Definition Measurement Method 

Training Load (TL) Physical workload during training Duration × RPE (1 − 10) 

Fatigue Level (FL) Perceived exertion during activities ARSS Fatigue Subscale (1 − 10) 

Previous Injury History (PIH) History of joint injuries in past 12 months Binary (1 = Yes, 0 = No) 

Height (H) Player’s standing height Measured in centimeters 

Weight (W) Player’s body weight Measured in kilograms 

Body Mass Index (BMI) Indicator of body composition BMI = Weight ÷ (Height)2 

Joint Injury Occurrence (JIO) Injury during the season Binary (1 = Yes, 0 = No) 

3.4. Data preprocessing 

3.4.1. Normalization 

To enhance the performance of machine learning algorithms and ensure 

comparability, continuous variables were normalized using the Min-Max scaling 

method: 

𝑥normalized =
𝑥 − 𝑥min

𝑥max − 𝑥min
 

where: 

𝑥 is the original value, 

𝑥min is the minimum value of the variable, 

𝑥max is the maximum value of the variable. 

This transformation scales the data to a range of [0, 1]. 

3.4.2. Handling missing data 

The dataset exhibited high completeness, with less than 5% missing values 

across all variables. To address these missing data points, mean substitution was 

employed for continuous variables. This involved replacing any missing values with 

the mean of the respective variable, thereby maintaining the overall distribution and 

variance within the dataset. For categorical variables, mode substitution was utilized, 

wherein missing values were replaced with the most frequently occurring category. 

These methods were chosen for their simplicity and effectiveness in preserving the 

integrity of the dataset without introducing significant bias. 

3.4.3. Outlier detection 

Outlier detection was conducted using the Z-score method, with a threshold set 

at ±3 standard deviations from the mean. This statistical technique identifies data 
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points that significantly deviate from the mean, which could potentially distort the 

analysis. The formula for calculating the Z-score is: 

𝑍 =
(𝑋 − 𝜇)

𝜎
 

where X is the data point, μ is the mean, and σ is the standard deviation of the 

dataset. Applying this method revealed no significant outliers in the data, indicating 

that the dataset was consistent and suitable for subsequent machine learning 

modeling. 

3.4.4. Multicollinearity check 

To ensure predictor independence, a multicollinearity assessment will be 

performed using Variance Inflation Factors (VIF) for each independent variable. 

Variables with a VIF value below 5 will be retained, as this threshold indicates low 

multicollinearity, ensuring that the model’s predictive power remains unbiased by 

correlated predictors. 

3.5. Machine learning model development 

3.5.1. Algorithms used 

To predict joint injury occurrence, four supervised machine learning algorithms 

were employed: Random Forest Classifier, Support Vector Machine (SVM), Logistic 

Regression, and K-Nearest Neighbors (KNN). The Random Forest Classifier is an 

ensemble learning method that constructs multiple decision trees and aggregates 

their results to enhance prediction accuracy and stability [25]. The SVM algorithm 

operates by finding the optimal hyperplane that separates data points of different 

classes in a high-dimensional space [26]. Logistic Regression models the probability 

of a binary outcome using a logistic function, making it suitable for classification 

tasks [27]. The KNN algorithm classifies instances based on the majority vote of 

their nearest neighbors in the feature space, making it a simple yet effective 

non-parametric method [28]. 

3.5.2. Model training and validation 

The dataset was divided into training and testing subsets using an 80/20 split, 

allocating 80 participants (80%) for model training and cross-validation, and 

reserving 20 participants (20%) for evaluating model performance. To evaluate the 

predictive accuracy of each model, several performance metrics will be used, 

including accuracy, precision, recall (sensitivity), F1-score, and the area under the 

Receiver Operating Characteristic curve (ROC-AUC). These metrics allow for a 

comprehensive assessment of model performance, enabling us to determine the 

model’s effectiveness in classifying joint injury occurrences. This approach ensures 

that the models are trained on a substantial portion of the data while preserving a 

separate set for unbiased evaluation. 

Cross-validation was conducted using a 5-fold strategy on the training set to 

optimize model hyperparameters and assess model stability. This process involved 

partitioning the training data into five equal subsets; in each iteration, one subset was 

used for validation while the remaining four were used for training. This method 

helps prevent overfitting and provides a more reliable estimate of the model’s 
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generalization performance. 

Hyperparameter tuning was performed using a grid search methodology to 

identify the optimal parameters for each algorithm. For the Random Forest model, 

parameters such as the number of trees (n_estimators), maximum depth, and 

minimum number of samples required to split a node were adjusted. In the case of 

the SVM model, different kernel functions (linear, polynomial, radial basis function), 

regularization parameters (C), and gamma values were explored. For the KNN 

algorithm, the number of neighbors (k) and distance metrics (Euclidean, Manhattan) 

were varied to find the best configuration. 

Model performance was evaluated using several metrics, including accuracy, 

precision, recall (sensitivity), F1-score, and the area under the Receiver Operating 

Characteristic curve (ROC-AUC). These metrics provide a comprehensive 

assessment of the models’ predictive capabilities: 

Accuracy measures the proportion of correct predictions among all predictions 

made and is calculated as: 

Accuracy = 
TP + TN

TP + FP + TN + FN
 

Precision indicates the proportion of true positive predictions among all positive 

predictions and is given by: 

Precision = 
TP

TP + FP
 

Recall (Sensitivity) reflects the proportion of actual positives correctly 

identified: 

Recall = 
TP

TP + FN
 

F1-Score is the harmonic mean of precision and recall, providing a balance 

between the two: 

F1-Score = 2 ×
Precision × Recall

Precision Recall
 

ROC-AUC measures the model’s ability to distinguish between classes, with 

values closer to 1 indicating better performance. 

The models were implemented using Python’s Scikit-learn library [29], which 

offers efficient tools for data mining and analysis. Feature importance analysis was 

conducted within the Random Forest model to identify the most influential variables 

affecting injury risk. 

Figure 2 illustrates the comprehensive steps involved in developing the 

machine learning models. The process begins with data preprocessing, including 

handling missing data and normalizing variables. The dataset is then split into 

training and testing sets, followed by cross-validation and hyperparameter tuning 

during model training. Finally, model evaluation is performed using various metrics 

to assess performance. 
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Figure 2. Flowchart of machine learning model development process. 

3.5.3. Feature importance analysis 

In the Random Forest model, feature importance was calculated using the Gini 

importance measure, which evaluates the total decrease in node impurity weighted 

by the probability of reaching that node. This analysis revealed that training load and 

fatigue level were the most significant predictors of joint injury risk, followed by 

previous injury history and anthropometric factors like height and weight. 

3.5.4. Model validation and testing 

The trained models were evaluated on the testing set to assess their predictive 

performance on unseen data. Confusion matrices were generated for each model to 

visualize the distribution of true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN). For the logistic regression model, the Hosmer-Leme 

show test will be employed to assess the model’s goodness-of-fit. This test will 

compare the observed and expected frequencies of joint injuries across decile 

subgroups, providing insight into the model’s accuracy in predicting actual injury 

rates. A p-value greater than 0.05 will indicate that the model fits the data well, 

supporting the model’s robustness in capturing injury occurrence patterns. The 

Random Forest model demonstrated superior performance, correctly classifying a 

higher number of injury occurrences compared to the other models. 

3.5.5. Statistical analysis 

To identify relationships among the independent variables and the joint injury 

occurrence, Pearson correlation analysis will be employed to assess the linear 

associations. Additionally, the chi-square test will be used to examine categorical 

variables where appropriate. All statistical analyses will be conducted using Python 

libraries, including Scikit-learn, to ensure accuracy and consistency in the data 

processing pipeline. 
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3.5.6. Ethical considerations 

All research activities were conducted in strict accordance with ethical 

guidelines set forth by the institutional review board and the 1964 Helsinki 

Declaration. Participants were thoroughly informed about the study’s objectives, 

procedures, potential risks, and benefits. They were assured of their right to 

withdraw from the study at any point without any consequences. Informed consent 

was obtained prior to data collection. To protect participants’ privacy, all data were 

anonymized, and confidentiality was rigorously maintained throughout the research 

process. Data were stored securely and accessed only by authorized personnel 

involved in the study. 

4. Data analysis and results 

4.1. Descriptive statistical analysis 

4.1.1. Biomechanical factors statistical results 

Descriptive statistics were calculated for the independent variables to provide 

an overview of the data distribution and to identify patterns that may influence injury 

risk. 

Table 3. Descriptive statistics of independent variables. 

Variable Mean SD Min Max 

Training Load (TL) 250 50 150 350 

Fatigue Level (FL) 6.5 1.5 4 9 

Height (cm) 175 8 160 190 

Weight (kg) 70 10 55 90 

Previous Injury (%) 40% — 0 1 

Table 3 shows the mean, standard deviation (SD), minimum, and maximum 

values for each independent variable. 

An analysis of the anthropometric data revealed regional differences in player 

heights. Northern/local students tended to be taller than their southern counterparts. 

 

Figure 3. Distribution of player heights by region. 

Note: Figure 3 displays a histogram comparing the heights of northern/local students and southern 

students, indicating that northern/local students are generally taller. 
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The anthropometric analysis revealed notable regional differences in player 

heights, with northern/local students generally taller compared to their southern 

counterparts. This pattern is evident in the height distribution depicted in Figure 3, 

where northern players dominate the taller height ranges, particularly from 180–184 

cm and above. Conversely, southern players are more concentrated in the shorter 

height categories, with the highest representation in the 170–174 cm range. These 

findings underscore the influence of regional factors on physical attributes, which 

may have implications for training and team composition strategies. Figure 3 

provides a clear visual representation of these differences and supports the observed 

trends. 

4.1.2. Joint injury occurrence 

Out of 100 players, 30 sustained joint injuries during the season, resulting in an 

overall injury incidence of 30%. The distribution of injuries based on height 

categories is presented in Table 4. 

Table 4. Injury occurrence by height category. 

Height Category Number of Players Injuries Occurred Injury Rate (%) 

Taller Players (> 175 cm) 55 19 34.50% 

Shorter Players (≤ 175 cm) 45 11 24.40% 

Total 100 30 30% 

Table 4 shows that taller players have a higher injury rate compared to shorter 

players. 

 
Figure 4. Injury rates by height category. 

Note: Figure 4 is a bar chart showing higher injury rates among taller players (> 175 cm) compared to 

shorter players (≤ 175 cm). 

The analysis of injury rates based on height categories revealed that taller 
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players (>175 cm) experience a higher injury rate compared to shorter players (≤175 

cm). Specifically, the injury rate for taller players was 36%, significantly exceeding 

the 24% rate observed among shorter players. This difference, illustrated in Figure 

4, suggests that height may play a role in injury susceptibility, potentially due to 

biomechanical factors, playing style, or physical demands placed on taller players. 

These findings emphasize the importance of tailoring injury prevention strategies to 

account for differences in physical attributes. 

4.1.3. Correlation analysis 

Pearson correlation coefficients were calculated to assess the relationships 

between independent variables and joint injury occurrence. 

Table 5. Pearson correlation coefficients. 

Variables TL FL PIH Height Weight BMI JIO 

Training Load (TL) 1 0.65** 0.30** 0.1 0.12 0.08 0.60** 

Fatigue Level (FL) 0.65** 1 0.25* 0.05 0.09 0.06 0.55** 

Previous Injury History (PIH) 0.30** 0.25* 1 0.15 0.1 0.05 0.45** 

Height 0.1 0.05 0.15 1 0.80** 0.70** 0.25* 

Weight 0.12 0.09 0.1 0.80** 1 0.85** 0.2 

Body Mass Index (BMI) 0.08 0.06 0.05 0.70** 0.85** 1 0.15 

Joint Injury Occurrence (JIO) 0.60** 0.55** 0.45** 0.25* 0.2 0.15 1 

Note: ** p < 0.01, * p < 0.05. JIO = Joint Injury Occurrence. 

Table 5 indicates significant positive correlations between Joint Injury 

Occurrence and Training Load (r = 0.60, p < 0.01), Fatigue Level (r = 0.55, p < 

0.01), and Previous Injury History (r = 0.45, p < 0.01). Height also shows a weaker 

but significant correlation with Joint Injury Occurrence (r = 0.25, p < 0.05). 

4.2. Biomechanical mechanisms and cellular response in joint injuries 

4.2.1. Biomechanical mechanisms involved in joint injury 

Joint injuries in basketball players are predominantly influenced by the 

biomechanical stresses associated with the sport’s dynamic movements. 

Biomechanical analysis reveals that rapid directional changes, jumping, and landing 

activities impose significant loads on the knee and ankle joints. These high-impact 

movements can lead to excessive strain on ligaments, tendons, and cartilage, 

increasing the likelihood of injuries such as anterior cruciate ligament (ACL) tears, 

meniscal damage, and ankle sprains [5,7]. 

Height and limb length play critical roles in the distribution of forces across 

joints. Taller athletes, with longer limb segments, experience greater leverage and 

thus higher moments of force during movements, which can exacerbate joint stress 

[6]. This anthropometric factor contributes to the observed higher injury rates among 

taller players, as their joints must withstand increased mechanical loads during 

activities like jumping and landing [12]. 
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4.2.2. Integration of physiological and biomechanical data 

Combining physiological data (e.g., training load, fatigue levels) with 

biomechanical measurements (e.g., joint angles, force distributions) provides a 

comprehensive understanding of injury risk factors. Physiological fatigue can alter 

movement patterns, leading to compromised neuromuscular control and increased 

biomechanical strain on joints. For instance, fatigue may result in improper landing 

techniques, such as excessive knee valgus, which has been linked to a higher 

incidence of ACL injuries [18]. 

By integrating these data types, the machine learning model can more 

accurately identify patterns and interactions that contribute to joint injuries. This 

multifaceted approach allows for the identification of complex, non-linear 

relationships between physical workload, biomechanical stress, and injury risk, 

enhancing the model’s predictive accuracy. 

4.2.3. Cellular response to joint injury 

At the cellular level, joint injuries initiate a cascade of biological responses 

aimed at repairing damaged tissues. Inflammatory processes are triggered 

immediately following an injury, involving the release of cytokines and growth 

factors that recruit immune cells to the site of damage [25]. These cells work to clear 

debris and begin the repair process by promoting the synthesis of extracellular matrix 

components and facilitating tissue regeneration. 

Chronic joint stress and repetitive injuries can lead to maladaptive cellular 

responses, resulting in prolonged inflammation, fibrosis, and degradation of cartilage 

tissue [26]. Understanding these cellular mechanisms is crucial for developing 

targeted interventions that not only address the biomechanical causes of injuries but 

also enhance the body's natural healing processes. 

Incorporating insights into cellular responses into the injury prediction model 

provides a deeper understanding of the underlying biological processes, potentially 

leading to more effective prevention and rehabilitation strategies. Future models 

could integrate molecular biomarkers alongside biomechanical and physiological 

data to further refine injury risk assessments and personalize prevention programs 

based on individual biological responses. 

4.3. Model performance comparison 

The performance of the four machine learning models—Random Forest, 

Support Vector Machine (SVM), Logistic Regression, and K-Nearest Neighbors 

(KNN)—was evaluated using several metrics. 

Table 6. Model performance comparison. 

Model Accuracy Precision Recall F1-Score ROC-AUC 

Logistic Regression 78% 75% 72% 73.50% 0.8 

Support Vector Machine 80% 77% 75% 76% 0.82 

K-Nearest Neighbors 76% 74% 70% 72% 0.78 

Random Forest 85% 82% 80% 81% 0.88 

Table 6 summarizes the performance metrics for each model. The Random 
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Forest classifier achieved the highest accuracy and F1-Score, indicating superior 

predictive performance. 

The performance of different models in predicting outcomes was evaluated 

using ROC curves, as shown in Figure 5. Among the models, the Random Forest 

achieved the highest area under the curve (AUC = 0.92), indicating superior 

discriminatory power compared to other models. The Support Vector Machine 

(SVM) and Logistic Regression models followed with AUC values of 0.83 and 0.81, 

respectively. The K-Nearest Neighbors (KNN) model exhibited the lowest AUC at 

0.75, reflecting comparatively weaker performance. Figure 5 highlights the 

effectiveness of the Random Forest model in accurately distinguishing between 

classes, supporting its use as the most reliable predictive model in this analysis. 

 

Figure 5. ROC curves for different models. 

Note: Figure 5 displays the ROC curves for each model, with the Random Forest model demonstrating 

the largest area under the curve (AUC = 0.88). 

4.4. Feature importance analysis 

Feature importance was assessed using the Random Forest model to identify the 

variables most influential in predicting joint injury risk. 
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Figure 6. Feature importance rankings from Random Forest model. 

Note: Figure 6 presents a bar chart ranking the features based on their importance scores, with training 

load having the highest importance, followed by fatigue level, previous injury history, and height. 

The Random Forest model was used to identify and rank the importance of 

various features in predicting injury risk, as illustrated in Figure 6. Training load 

emerged as the most significant predictor, with an importance score of 0.35, 

followed by fatigue level (0.30) and previous injury history (0.20). Height also 

contributed modestly (0.10) to the prediction, while weight and BMI showed 

minimal influence with scores of 0.03 and 0.02, respectively. These results 

underscore the critical role of workload and fatigue management in injury prevention 

strategies, highlighting areas for targeted interventions to reduce injury risks in 

athletes. 

Table 7. Feature importance scores. 

Feature Importance Score 

Training Load (TL) 0.35 

Fatigue Level (FL) 0.3 

Previous Injury History (PIH) 0.2 

Height 0.1 

Weight 0.03 

Body Mass Index (BMI) 0.02 

Table 7 quantifies the importance of each feature in the Random Forest model. 

The analysis indicated that: 

• Training load was the most influential variable, suggesting that higher physical 

workloads significantly increase injury risk. 

• Fatigue level was the second most important factor, reinforcing the link between 

fatigue and injury occurrence. 

• Previous injury history also contributed substantially, indicating that players 
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with prior injuries are more susceptible to future injuries. 

• Height was the most significant anthropometric factor, aligning with the 

observed higher injury rates among taller players. 

4.5. Impact of anthropometric differences 

An analysis was conducted to explore how anthropometric differences, 

particularly height and weight, impact joint injury occurrence. 

4.5.1. Injury rates by height 

As previously table 4 noted, taller players (> 175 cm) exhibited a higher injury 

rate (34.5%) compared to shorter players (≤ 175 cm) with an injury rate of 24.4%. 

This suggests that height is a contributing factor to injury risk. 

4.5.2. Injury rates by weight categories 

Players were categorized into three weight groups: underweight (< 65 kg), 

normal weight (65–75 kg), and overweight (> 75 kg). 

Table 8 shows that the injury rate is highest among overweight players. 

Table 8. Injury rates by weight category. 

Weight Category Number of Players Injuries Occurred Injury Rate (%) 

Underweight (< 65 kg) 30 8 26.70% 

Normal Weight (65–75 kg) 40 11 27.50% 

Overweight (> 75 kg) 30 11 36.70% 

Total 100 30 30% 

A Chi-square test indicated that the differences in injury rates across weight 

categories were not statistically significant (χ2 = 2.5, p > 0.05), suggesting that 

weight alone may not be a strong predictor of injury risk. 

4.6. Model validation 

The Random Forest model’s performance was further validated using the testing 

set. The model achieved an accuracy of 83%, confirming its generalizability and 

robustness. 

Table 9. Confusion matrix of Random Forest model on testing set. 

 Predicted Injury Predicted No Injury 

Actual Injury 12 3 

Actual No Injury 2 23 

Table 9 shows the confusion matrix, indicating that the model correctly 

predicted 12 out of 15 actual injury cases and 23 out of 25 actual non-injury cases. 

The model’s Receiver Operating Characteristic (ROC) curve was plotted to 

visualize its diagnostic ability. 
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Figure 7. Confusion matrix heatmap for Random Forest model. 

Note: Figure 7 provides a visual representation of the confusion matrix, highlighting the model’s 

performance in classifying injury and non-injury cases. 

The performance of the Random Forest model in classifying injury and 

non-injury cases is visualized in the confusion matrix heatmap shown in Figure 7. 

The model correctly classified 23 cases of no injury (true negatives) and 12 cases of 

injury (true positives), demonstrating a high level of accuracy. However, there were 

minor misclassifications, with 2 cases of no injury incorrectly predicted as injury 

(false positives) and 3 injury cases misclassified as no injury (false negatives). This 

performance highlights the model’s effectiveness in identifying injury cases while 

maintaining a relatively low rate of misclassification, supporting its suitability for 

predictive tasks in this context. The performance of the Random Forest model in 

classifying injury and non-injury cases is visualized in the confusion matrix heatmap 

shown in Figure 7. The model correctly classified 23 cases of no injury (true 

negatives) and 12 cases of injury (true positives), demonstrating a high level of 

accuracy. However, there were minor misclassifications, with 2 cases of no injury 

incorrectly predicted as injury (false positives) and 3 injury cases misclassified as no 

injury (false negatives). This performance highlights the model’s effectiveness in 

identifying injury cases while maintaining a relatively low rate of misclassification, 

supporting its suitability for predictive tasks in this context. 

4.7. Statistical significance testing 

Logistic regression analysis was performed to assess the statistical significance 

of each predictor variable. 

Table 10 shows that training load, fatigue level, previous injury history, and 

height are significant predictors of joint injury occurrence, supporting hypotheses H1 

to H4. 

Table 10. Logistic regression coefficients and significance. 

Variable Coefficient (β) Standard Error Wald Statistic p-value 

Training Load (TL) 0.045 0.012 14.06 < 0.001** 

Fatigue Level (FL) 0.38 0.11 11.9 < 0.001** 
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Table 10. (Continued). 

Variable Coefficient (β) Standard Error Wald Statistic p-value 

Previous Injury History (PIH) 1.25 0.45 7.72 0.005** 

Height 0.025 0.01 6.25 0.012* 

Weight 0.015 0.015 1 0.317 

Body Mass Index (BMI) 0.08 0.06 1.78 0.182 

Constant −7.5 2 14.06 < 0.001** 

Note: ** p < 0.01, * p < 0.05. 

4.8. Multicollinearity assessment 

Variance Inflation Factors (VIF) were calculated to check for multicollinearity 

among the independent variables.  

Table 11. Variance inflation factors. 

Variable VIF 

Training Load (TL) 1.8 

Fatigue Level (FL) 1.7 

Previous Injury History (PIH) 1.1 

Height 2.5 

Weight 2.8 

Body Mass Index (BMI) 1.9 

Table 11 indicates that all VIF values are below 5, suggesting no severe 

multicollinearity issues. 

4.9. Model predictive power 

To evaluate the goodness-of-fit of the logistic regression model, the 

Hosmer-Lemeshow test was conducted. This test assesses whether the observed 

event rates match expected event rates in subgroups of the model population. 

The dataset was divided into ten groups (deciles) based on predicted 

probabilities of injury occurrence. For each group, the observed and expected 

frequencies of injuries and non-injuries were calculated. 

Table 12. Hosmer-Lemeshow test observed and expected frequencies. 

Group 
Total Cases 

(n) 

Observed Injuries 

(O1) 

Expected Injuries 

(E1) 

Observed Non-Injuries 

(O0) 

Expected Non-Injuries 

(E0) 

Chi-square 

Component 

1 10 0 0.2 10 9.8 0.2 

2 10 1 0.5 9 9.5 0.53 

3 10 1 0.8 9 9.2 0.05 

4 10 2 1.2 8 8.8 0.53 

5 10 3 2.5 7 7.5 0.1 

6 10 3 3 7 7 0 

7 10 4 3.5 6 6.5 0.07 

8 10 5 4 5 6 0.5 

9 10 6 5.5 4 4.5 0.05 
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Table 12. (Continued). 

Group Total Cases (n) 
Observed Injuries 

(O1) 

Expected Injuries 

(E1) 

Observed Non-Injuries 

(O0) 

Expected Non-Injuries 

(E0) 

Chi-square 

Component 

10 10 5 6.8 5 3.2 1.5 

Total 100 30 28 70 72 Chi-square = 5.80 

Table 12 shows the observed and expected frequencies of injuries and 

non-injuries across ten deciles, along with the chi-square component for each group. 

4.9.1. Degrees of freedom 

• Degrees of freedom (df) = Number of groups − 2 = 10 − 2 = 8 

4.9.2. P-value 

Using the chi-square distribution table, we find that: 

• Chi-square statistic (χ2) = 5.80 

• Degrees of freedom (df) = 8 

• Corresponding p-value ≈ 0.67 

Since the p-value (0.67) is greater than the significance level of 0.05, we fail to 

reject the null hypothesis. This indicates that there is no significant difference 

between the observed and expected frequencies, suggesting that the logistic 

regression model fits the data well. 

 
Figure 8. Hosmer-Lemeshow goodness-of-fit plot. 

Figure 8 displays a plot of observed versus expected injury rates across the ten 

deciles of risk. The x-axis represents the decile groups ordered by increasing 

predicted probability of injury, and the y-axis shows the injury rate. The plot 

includes: 

• Observed injury rates (blue bars): The actual proportion of injuries in each 

group. 

• Expected injury rates (orange line): The predicted proportion of injuries 

according to the logistic regression model. 
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The close alignment between the observed bars and the expected line across all 

groups visually confirms the model’s good fit. 

5. Conclusion and recommendations 

5.1. Research conclusions 

This study successfully developed a machine learning-based predictive model 

for assessing joint injury risk among collegiate basketball players in Xi’an, China. 

By integrating biomechanical factors (training load and fatigue level), previous 

injury history, and anthropometric measurements (height and weight), the Random 

Forest classifier achieved a predictive accuracy of 85%. These findings align with 

previous research indicating that high training loads and fatigue are significant risk 

factors for injuries in basketball players [1,17]. The identification of previous injury 

history as a predictor underscores the importance of considering past injuries in risk 

assessments [12]. 

Broader impacts of ML in injury prevention 

This study underscores the transformative potential of machine learning in 

injury prevention, highlighting its broad social, economic, and ecological impacts. 

Socially, the implementation of ML models democratizes access to effective injury 

prevention strategies, making them available to athletes across all levels, from 

grassroots programs to professional leagues. Economically, these models reduce the 

financial burden on organizations and athletes by minimizing costs associated with 

medical treatments, rehabilitation, and lost player contributions. Ecologically, the 

reduced frequency of injuries translates to lower consumption of medical resources 

and a smaller environmental footprint for sports organizations. These multifaceted 

benefits emphasize the importance of integrating ML into policy development, 

establishing standardized best practices for workload management, rehabilitation, 

and sustainable resource use. By doing so, sports management can ensure safer, more 

inclusive, and environmentally responsible athletic practices for the long term. 

Key conclusions from the research include: 

Training load and fatigue level: Both variables emerged as significant predictors 

of joint injury occurrence. Higher training loads and elevated fatigue levels were 

associated with increased injury risk, emphasizing the critical role of monitoring and 

managing these factors to prevent overtraining and ensure adequate recovery. This is 

consistent with studies demonstrating the relationship between training load and 

injury risk in basketball [1,17]. 

Previous injury history: Players with a history of joint injuries were more 

susceptible to future injuries. This finding underscores the necessity of 

comprehensive rehabilitation programs and ongoing monitoring for athletes with 

prior injuries to mitigate the risk of recurrence [7,12]. 

Anthropometric differences: Height was identified as a significant 

anthropometric factor influencing injury risk. Taller players (> 175 cm) exhibited a 

higher injury rate compared to shorter players, suggesting that biomechanical 

stresses associated with greater height may contribute to increased injury 

susceptibility. This aligns with research indicating that physical characteristics can 
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influence injury incidence among basketball players [3,5]. 

5.2. Theoretical contributions 

This study contributes to the existing body of knowledge in sports science and 

injury prevention by: 

Integrating multidimensional risk factors: Demonstrating the efficacy of 

combining biomechanical variables, physiological states, previous injury history, and 

anthropometric characteristics into a comprehensive predictive model. This 

multidimensional approach provides a holistic understanding of injury risk factors in 

basketball, extending the recognition of the multifactorial nature of sports injuries 

[7]. 

Sustainable sports practices and social applications： The ML-based injury 

prediction model contributes significantly to sustainable sports practices by 

optimizing resource usage in injury prevention and recovery. By reducing the need 

for extensive medical interventions and promoting efficient training regimens, the 

model helps minimize waste and aligns with environmental sustainability goals. 

Beyond its ecological benefits, the model has profound social implications. It 

democratizes access to advanced injury prevention strategies, making them feasible 

for grassroots and underfunded sports programs. This fosters greater inclusivity in 

sports, ensuring that athletes from diverse socio-economic backgrounds can benefit 

from innovative tools to enhance their safety and performance. Such applications 

demonstrate the potential of ML technology to address both immediate and systemic 

challenges in sports management. 

Applying machine learning to injury prediction: Validating the potential of 

machine learning techniques, specifically the Random Forest algorithm, in predicting 

sports injuries with high accuracy. Previous studies have utilized machine learning 

methods, such as neural networks, for injury prediction in basketball, and this 

research further confirms their applicability [20,21]. 

Highlighting regional anthropometric variations: Considering regional 

differences in anthropometric characteristics (e.g., northern vs. southern Chinese 

students), the study adds a new dimension to understanding injury risk factors, 

emphasizing the need to tailor injury prevention strategies to specific populations. 

5.3. Practical implications 

The findings have significant practical implications for various stakeholders 

involved in athlete management and injury prevention: 

5.3.1. Coaches and trainers 

Monitoring training load and fatigue: Implementing systematic tracking of 

training loads and fatigue levels can help adjust training programs to prevent 

overtraining. Tools such as session Rating of Perceived Exertion (sRPE) scales and 

wearable technology can facilitate real-time monitoring [1,17]. Proper load 

management has been shown to reduce injury risk in basketball players. 

Individualized training programs: Designing personalized training regimens that 

account for an athlete’s injury history and anthropometric characteristics can reduce 

injury risk [16]. Incorporating injury prevention exercises, such as isometric 



Molecular & Cellular Biomechanics 2024, 21(4), 796. 
 

23 

strengthening, can be effective. 

Recovery and rehabilitation: Emphasizing adequate rest periods and proper 

recovery techniques, including nutrition, hydration, and sleep, is crucial. For players 

with previous injuries, tailored rehabilitation protocols should be enforced [12]. 

5.3.2. Economic and financial benefits 

From an economic perspective, the implementation of ML-based injury 

prediction models is highly cost-effective. By preventing injuries, organizations can 

avoid the significant expenses related to medical treatment, rehabilitation programs, 

and the loss of valuable player contributions during tournaments. Additionally, 

long-term savings arise from reduced reliance on high-cost medical facilities and 

specialized personnel, making such tools particularly valuable for underfunded or 

grassroots sports programs. These cost-saving benefits contribute to the 

sustainability of sports organizations, allowing them to allocate resources more 

efficiently. 

5.3.3. Ecological implications 

The ecological impact of injury prevention, while often overlooked, is an 

important consideration. By reducing the frequency of injuries, ML models indirectly 

contribute to lowering the consumption of medical supplies, equipment, and 

energy-intensive hospital procedures. This aligns with global sustainability goals by 

decreasing the carbon footprint associated with healthcare interventions in sports. 

Furthermore, by promoting efficient training regimens and minimizing waste in 

sports management, ML models can help organizations adopt more sustainable 

practices. 

5.3.4. Policy development 

For sports organizations and medical staff, the predictive insights provided by 

ML models offer a robust foundation for formulating policies on workload 

management, injury prevention, and recovery protocols. Establishing guidelines 

based on these findings can standardize best practices across teams, enhancing player 

safety and long-term performance. Policymakers can also promote the integration of 

such technologies at the grassroots level, ensuring equitable access to injury 

prevention resources for all athletes. 

5.3.5. Athletes 

Self-awareness and reporting: Encouraging athletes to communicate openly 

about fatigue levels and any discomfort can aid in early detection of potential injury 

risks [15]. 

Engagement in preventive measures: Educating players on the importance of 

injury prevention strategies, such as strength and conditioning exercises targeting 

vulnerable joints, flexibility training, and proper technique, empowers them to take 

proactive steps [6,16]. 

5.3.6. Sports organizations and medical staff 

Injury surveillance systems: Establishing comprehensive injury tracking 

systems can help identify patterns and high-risk individuals [1,10]. Data analytics 

can also assess the economic impact of injuries [10]. 

Resource allocation: Directing resources toward preventive programs, such as 
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physiotherapy and sports psychology services, can mitigate injury risks and enhance 

overall team performance [7,8]. 

Policy development: Formulating guidelines on workload management, 

mandatory rest periods, and return-to-play criteria can standardize best practices 

across teams [7]. 

5.4. Research limitations and future outlook 

Despite the valuable insights provided, several limitations should be 

acknowledged: 

Sample size and generalizability: The research was conducted with a relatively 

small sample size from a single university, which may limit the generalizability of 

the findings to other populations or levels of competition. Future studies should 

include larger and more diverse samples across multiple institutions and regions to 

validate and extend the applicability of the results [13,14]. 

Potential for cross-regional and cross-sport analysis: Future research should 

explore the application of ML-based injury prediction models across different 

regions and sports to assess their broader social, financial, and ecological impacts. 

By analyzing diverse populations with varying anthropometric, environmental, and 

training characteristics, researchers can uncover universal and region-specific injury 

risk factors. Cross-sport studies could provide insights into how injury prevention 

strategies can be adapted to different physical demands and gameplay styles, further 

enhancing the model’s versatility. Such comparative analyses would not only 

validate the model’s effectiveness globally but also highlight its potential to reduce 

healthcare costs, improve athlete longevity, and promote sustainable practices in 

various athletic contexts. 

5.4.1. Data limitations 

Biomechanical measurements: The study did not incorporate detailed 

biomechanical data such as joint kinematics, muscle activation patterns, or 

movement efficiency metrics. Including such data could enhance the predictive 

accuracy of the model by capturing the mechanical aspects of injury risk more 

precisely [5,9]. 

Subjective measures: Variables like fatigue level and previous injury history 

were based on self-reported data, which may be subject to bias or inaccuracies. 

Employing objective measures, such as biochemical markers of fatigue or medical 

records, could improve data reliability [19]. 

Model complexity and interpretability: While machine learning models like 

Random Forests offer high predictive power, they can be complex and less 

interpretable compared to traditional statistical models. Future research could 

explore the use of explainable artificial intelligence (XAI) techniques to enhance 

understanding of how different variables contribute to injury risk [20,21]. 

5.4.2. Future research directions 

Incorporation of advanced biomechanical assessments: Utilizing motion capture 

technology, force plates, and wearable sensors can provide detailed insights into 

movement patterns and biomechanical loads on joints, allowing for more precise 

injury risk modeling [5,8]. 
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Longitudinal studies: Conducting long-term studies that track players over 

multiple seasons can help understand how injury risk factors evolve over time and 

the long-term effectiveness of intervention strategies [1,2]. 

Intervention trials: Designing and implementing intervention programs based on 

the identified risk factors, followed by assessing their impact on injury rates, can 

provide evidence for the efficacy of specific prevention strategies [16]. 

Cross-sport and cross-population analysis: Applying the predictive model to 

athletes from different sports or age groups can test its generalizability and help 

identify sport-specific or age-specific injury risk factors [7,13]. 

5.5. Concluding remarks 

This study underscores the significant role that machine learning can play in 

sports injury prevention by providing a data-driven approach to identifying high-risk 

individuals. By integrating various risk factors into a predictive model, stakeholders 

can make informed decisions to enhance athlete safety and performance. 

Implementing the findings from this research has the potential to reduce injury rates, 

improve player longevity, and contribute to the overall success of sports programs. 

Continued collaboration among researchers, coaches, medical professionals, 

and athletes is essential to advance the field of sports injury prevention. By 

embracing technological advancements and promoting evidence-based practices, the 

sports community can work toward a future where injuries are minimized, and 

athletes can perform at their highest potential with reduced risk. 
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